

リチウムイオン二次電池セルの劣化評価技術

Rechargeable Lithium-ion Battery Cell Deterioration Assessment Technology

齋藤 亮 大西 範幸 安藤 裕介 中村 仁

Abstract

Due to their small size and light weight, lithium-ion batteries (LiBs) are used in a wide range of products that cover everything from consumer applications, such as smart-phones, to power applications including hybrid and electric vehicles. The market for LiBs used in hybrid and other vehicles, in particular, has grown incredibly quickly in recent years, with a projected market scale of between 2.5 and 5 trillion yen in 2020^{[1][2]}. From this kind of market trend, the direction of automotive LiB technology is attracting quite a lot of attention.

LiBs used as a power source must have a wide range of characteristics to meet vehicle requirements. Typical aspects of this include the battery capacity which influences traveling range, and the power density which affects acceleration. The battery's deterioration characteristics are also an example of this. Loss of performance due to battery deterioration can have a big effect on remaining battery display accuracy and the traveling distance in electric vehicles. Simply put, ascertaining battery deterioration trends in advance is very important as it is directly related to the convenience and reliability of electric vehicles.

Therefore, this report will introduce the method used to estimate capacity deterioration using the deterioration coefficient, with the goal of efficiently understanding the deterioration trends of LiBs.

はじめに

リチウムイオン電池(以下 LiB; Lithium-ion Battery)は小型・軽量であることから、スマートフォン等の民生用途からハイブリッド車や電気自動車といった動力用途に幅広く利用されている。特にハイブリッド車を含む車載向けの LiB 市場は近年急速に伸びており、市場規模は 2020 年には 2.5 兆円から 5 兆円の間で推移するとされる^{[1][2]}。このような市場傾向から車載用 LiB の技術動向に注目が集まっている。

動力用 LiB には車両要求から様々な機能が要求される。代 表的な特性として、航続距離に関わる電池容量、加速力に関 わる出力密度などがある。電池の劣化特性もその一つである。 電池の劣化による性能低下は、電動車両での電池残量表示や 航続距離に大きな影響を与える。つまり電池の劣化傾向を車 両があらかじめ把握しておくことは、電動車両の利便性、信頼 性向上につながるため重要である。

そこで、本稿では LiB の劣化傾向の効率的な把握を目的とし、劣化係数を用いた容量劣化推定手法について紹介する。

2 リチウムイオン電池と劣化について

2-1. リチウムイオン電池の動作原理と劣化

本題に入る前にLiBの動作原理に触れる。まず、図1にLiB の構成部品と動作原理を示す。

図1にあるように、リチウムイオンの電極間の移動に際し

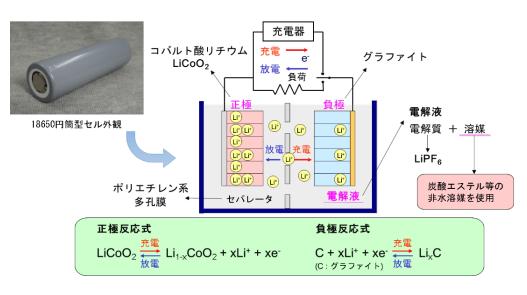
電子の移動が起こり、LiBは充放電が可能となる。よって、図1 に示す充放電反応以外の副反応が生じると性能が低下する。 つまりこれが電池の劣化であり、副反応の生じやすい状況、例 えば繰り返し充放電や高温環境に置かれることなどで劣化は 進む。

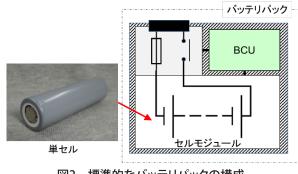
一般にリチウムイオン電池の劣化は、使用電圧および使用 環境温度が高いほど顕著である。また電池の劣化挙動は使用 モードによっても異なる。充放電サイクルに伴い進行する劣 化挙動(サイクル劣化)と充放電を伴わない保管状態で進行 する劣化挙動(保存劣化)に大別され、実際の電池の劣化は 両モードが組み合わされた状態で推移する。

環境条件や使用モードといった使われ方に加え、構成材料 や内部構造の異なる電池の劣化傾向をシミュレーション等物 理モデルにより正確に推定することは現時点では困難である。 したがって劣化特性の把握のためには、実際に対象となる電 池を想定する環境および使用パターンで評価し、データ取得 することが一般的である。このため、詳細に劣化傾向を把握し ようとすればするほど評価条件数や評価期間が増大すること となる。

2-2. バッテリパックと劣化

LiBは電圧および温度の標準使用領域と危険領域が他の電 池と異なり接近しているため、保護管理機能を持った制御基板 と組み合わせて使用される。図2に標準的なバッテリパックの構 成を示す。




図1 リチウムイオン電池の動作原理図 ※正極にコバルト酸リチウム、負極に黒鉛を用いたものを具体例として示した

この制御基板はLiBの安全管理に加え、電池の残量表示や車両との通信機能等を合わせ持つことが一般的であり、バッテリコントロールユニット(BCU: Battery Control Unit)などと呼称される。

BCUが長期的に安定してLiBを管理するためには、LiBの劣 化による特性変化に追従する必要がある。よって、LiBそのもの の劣化傾向があらかじめ把握されている、または劣化状態を推 定できることが望ましく、BCUによっては取得済みの劣化特性を データ郡(劣化マップデータと称される)として保持し、これを元 に劣化状態推定を行うものもある。

劣化マップデータは、詳細にあればあるほど状態推定精度が 向上しLiBの利便性が増すものの、一方で評価条件数やデータ 取得に要する時間が増大することとなり、開発費の増大につな がる。また、保持するデータ量が多くなればBCUが必要とするメ モリ容量も大きくなり、部品コストの増大やロバスト性の低下に つながる。

以上を踏まえ、本稿では推定精度は維持したまま評価数や 評価期間を低減するための試みとして、劣化係数をマップデー タとして用いた劣化推定とその精度について検討した。

3 劣化係数マップを用いた 劣化推定と推定精度の検証

3-1. 劣化係数マップの作成

まず図3に示すように、リチウムイオン電池が一般的に使われる限界温度と電圧を上限として代表評価条件を設定し、これら代表条件での劣化傾向から代表点に囲まれた範囲の補間が可能かどうかを検討した。これにより、マップデータを一次式のパラメータとして持つことで、保持データ量の削減と試験条件数および試験時間の低減を狙う。

3-1-1. 試験サンプル

検証のためのサンプルとして、図1左上写真に示されるような 市販の18650円筒型電池を用いた。サンプルは三元系正極を 用いた容量2Ah級のセルである。

3-1-2. 劣化試験条件

サイクル劣化試験は、サンプルを図3に青丸で示される温 度・電圧、例えば60℃・4.2Vといったように設定し、充放電を繰り 返した後一定の回数で取り出し、常温で容量測定を行うという 手法で実施した。

保存劣化試験は、検体を一定期間ごとに取り出し常温で性 能測定後、再び満充電にして再度保存を繰返すという手順で 行った。

それぞれの劣化試験の条件および容量測定条件を表1に示 す。

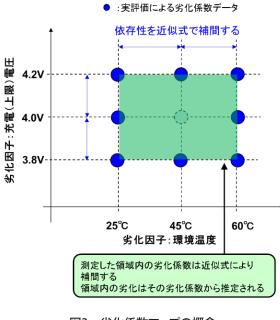


図3 劣化係数マップの概念

表1 各劣化試験条件と容量測定条件

試験項目	充電	放電	容量測定
サイクル劣化	2A(1C) CV時0.05Cまで	2A(1C) 2.7Vまで	100cycle毎
試験項目	保存前充電	保存後放電	容量測定
保存劣化	0.4A(0.2C) CV時0.05Cまで	0.4A(0.2C) 2.7Vまで	4week毎
試験項目	充電	放電	
容量測定	0.4A(0.2C) (CV)4.2V 0.05Cまで	0.4A(0.2C) 2.7Vまで	

3-1-3.劣化評価試験結果と劣化係数の導出

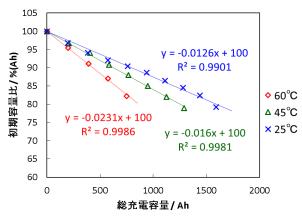
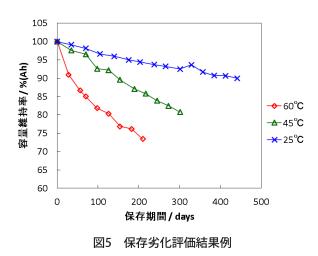
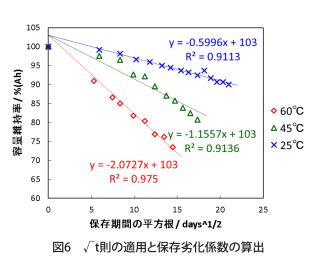

これら劣化評価試験の結果、サイクル劣化モードと保存劣化 モードでは異なる劣化傾向が見られた。

図4に上限電圧を4.2Vとしたサイクル劣化評価試験の結果 を例として示す。図には各代表点における容量劣化率(劣化後 容量÷初期容量×100)の時系列変化を示した。図に見られる ように、容量低下挙動に線形近似可能な傾向が見られた。温度 が上昇するにつれ劣化傾向は顕著であることがわかる。


線形性の評価のため、一次近似式を用い各温度における(劣 化率[%(Ah)])/(累積充電容量[Ah])を算出した。一次近似式と 実測値との残差を示す決定係数(R2値)は、0.98以上であり明 確な相関性を示した。この傾きをサイクル劣化係数と定義した。


図5に保存電圧を4.2Vとした環境温度に対する容量維持 率を例として示す。図には各代表点における容量劣化率(劣 化後容量÷初期容量×100)の時系列変化を示した。 保存劣化の傾向はサイクル劣化と異なり、単純な線形関係 を示さなかった。

LiBでは電極表面に電解液との反応生成物、いわゆるSEI (Solid Electrolyte Interface)^[3]を生成することが知られてい る。SEIの成長は高温環境での保存劣化に大きく寄与し、その 皮膜成長速度は経験則として用いられる√t則^[4](ここでt=時 間)によく従うことが報告されている。そこで、図6にX軸に保存

期間の1/2乗をとったグラフを示す。

図6に示すように、、「t則を適用することで劣化傾向を直線 近似した。各一次近似式の決定係数(R2値)は0.91以上であ り、明確な相関性を示した。よって、これら一次近似式の傾き を保存劣化係数と定義した。

3-1-4. 劣化係数マップの検討と作成

これまでの評価試験結果より、各代表評価条件での劣化係 数を導出することができたので、図3に示すように代表点間の近 似式による補間について検討した。結果例を図7に示す。

図7に示すように、環境温度に対する依存性は、反応速度の 温度依存性を示すとして広く用いられるアレニウスの式を参考 に指数関数近似を取ったところ、良好なフィッティングが得られ た。決定係数(R2値)は0.96以上であり、明確な相関性を示した。 本結果は劣化係数の取得への温度加速試験の適用可能性を 示唆するものとも考えられる。

同近似式より、代表点の間の環境温度例えば35℃環境など に対する劣化係数の算出が可能となる。これら算出されたデー タ郡を表2のように温度に対する劣化係数マップとした。

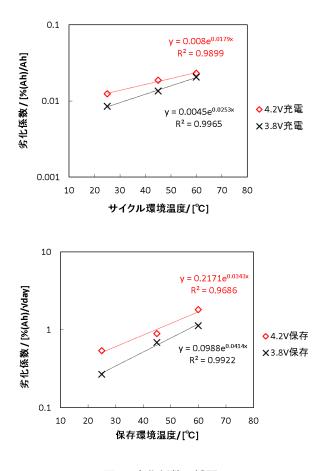
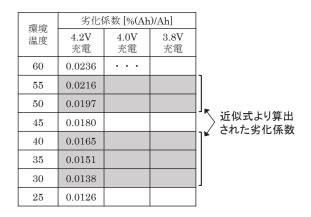



図7 劣化係数の補間

表2 劣化係数マップ例

3-2. 劣化係数マップによる劣化推定精度の検証

上記劣化係数マップが実際に代表点以外の条件を補間でき るかを確認するため、劣化係数導出に用いたものと同じLiBを 図3の測定代表点に囲まれた範囲内のランダムな条件で劣化さ せた。

ランダムな条件で劣化させた各サンプルの履歴データから、 環境温度に対するサイクル劣化係数マップおよび保存劣化係 数マップを参照のうえ、劣化係数を決定し容量劣化率を算出 することで劣化状態を推定した。なお、各劣化サンプルは充放 電電流も当該LiBの仕様範囲内でランダムに変化させているが、 今回の劣化率推定では考慮していない。

図8にはX軸に劣化係数マップから推定された容量劣化率を、 Y軸に実際に測定された容量劣化率をとったものを示す。

実容量劣化率と推定値との線形近似式の決定係数(R2値) は0.89と強い相関性を示し、推定精度は近似式がy=xつまり傾 きが1のとき100%であるので、近似式の傾き0.97より97%で あった。この結果から、代表点の測定より得られる劣化係数マッ プによる推定値は、代表点に囲まれた範囲の劣化状態を比較 的精度良く表現できることがわかった。

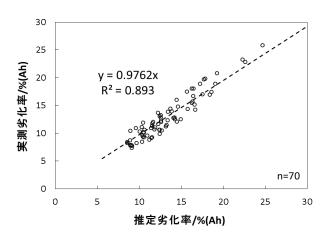


図8 劣化係数マップからの推定劣化率と実際の劣化率の比較

4 おわりに

本稿では LiB の効率的な劣化傾向把握を目指し、その一 手法として代表点における劣化傾向を取得することで、代表 点に囲まれた範囲の電池の劣化状態を比較的精度良く推定 できることを示した。本手法の適用により、評価条件数や評 価期間の低減が期待できる。

なお、今回は温度の影響を主として劣化推定を行った事 例を紹介したが、他の劣化因子、例えばサイクル劣化での 充電電流や下限電圧に対する劣化係数マップを追加、補正 項とすることで、推定精度をさらに向上させられるものと考え られる。

今後の LiB 技術の発展によって電動車両も航続距離が 2 倍以上、寿命が 2 倍以上といったことが期待されている。使 いこなし技術の一つである劣化評価技術もさらなる発展が必 要である。当該技術とその深化により、多くのお客様の期待 を超える商品の開発につなげていきたいと考える。

■参考文献

[1] 2013 年 電池関連市場実体総調査 富士経済 (2014)
[2] 2014 年 電池関連市場実体総調査 富士経済 (2014)
[3] 東レリサーチセンター The TRC NEWS No.108 (7)
(2009)

[4] GS Yuasa Technical Report 第10巻 第2号 (2013)8-15

■著者

齋藤亮 Ryo Saito 技術本部 研究開発統括部 先進技術研究部

大西範幸 Noriyuki Ohnishi 技術本部 研究開発統括部 先進技術研究部

安藤 裕介 Yusuke Ando 技術本部 研究開発統括部 先進技術研究部

中村仁 Hitoshi Nakamura 技術本部 研究開発統括部 先進技術研究部