

ロッドタイプ単軸ロボットYMSシリーズ

"YMS" Series Rod Type Single-axis Robots

菊地 秀幸 Hideyuki Kikuchi ●IMカンパニー 技術チーム

図1 YMSシリーズ(左:YMS45、右:YMS55)

図2 ロボットコントローラー「ERCD」

Abstract

At the IM (Intelligent Machinery) Company of Yamaha Motor Co., Ltd., we have developed a new series of rod type single-axis industrial robots, named the "YMS" series, and corresponding "ERCD" robot controllers. These rod type robots function more quietly, create a cleaner work environment and run on less energy than conventional robots utilizing a pressurized air cylinder. Due to their inherent qualities, these robots can also be used in harsher work environments. Here we report on the development of these models.

1

はじめに

ヤマハ発動機株式会社(以下、当社)のIM(Intelligent Machinery)カンパニーでは、エアシリンダーより静粛性に優れ、クリーンな作業環境と省エネルギーをもたらし、厳しい作業環境下でも使用可能なロッドタイプ単軸ロボット「YMSシリーズ」(図1)、および、ロボットコントローラー「ERCD」(図2)を開発したのでここに紹介する。

2 開発の背景

近年、生産設備で使用される機器では、省エネルギーや地球環境保護の目的から、動力源を空気圧から電動へと置き換える方向にある。エアシリンダーに代表される空気圧機器に比べ、サーボモーターで駆動する電動機器の単軸ロボットには、次のメリットがある。

- (1)環境にやさしい(潤滑オイルミストで雰囲気を汚さない)
- (2)静粛性が高い(排気音がない)
- (3)エネルギー効率が高い

また、半導体の高集積化や、システムLSI(Large Scale Integration)の登場により、携帯電話をはじめとした電子機器製品の高性能化、小型化、低価格化が加速的に進んでいる。これに伴い、生産設備自体にも小型化や効率化、低価格化が求められている。

YMSシリーズは、このような生産設備用ロボットの市場動向を背景に、空気圧機器に替わる製品として、「小型」「低価格」「使いやすさ」等の要望に応えて開発された。

3 製品の特徴 ① YMS シリーズ

表1にYMSシリーズの基本仕様を示す。

3.1 用途の多様性

YMSシリーズはACサーボモーターとボールねじの組み合せにより、本体に対してロッドが伸縮する構造となっている。ロッドの先端にツールを付けて搬送作業をさせたり、ロッドでワークを押すことでクランプしたりできる。電気・電子部品や機械部品の搬送・取り出しの他、カシメや圧入作業等の幅広い用途に対応することができる。

3.2 コンパクト設計

ボールネジ駆動のモーターをカップリングレスの ビルトイン構造にすることで、業界同クラス最短の 全長を実現した。

3.3 高いメンテナンス性

ビルトインモーターはボールネジに直接取り付ける構造ながら、モーターのみの取り外しを可能とした(図3)。これにより高いメンテナンス性が確保でき、万一の場合も短時間で復旧が可能となる。

3.4 長寿命

ボールネジナット部には高含油ファイバーネット による潤滑装置、ロッド指示部には接触スクレーパ を装備し、長期メンテナンスフリーを実現した。さら に、接触スクレーパはロッド伸長時のガタツキを小 さくする働きも備えている(**図4**)。

表1 YMSシリーズ基本仕様

型式		YMS45		YMS55	
モーター出力 (W)		30		30	
繰り返し位置決め精度 (mm)		± 0.02		± 0.02	
減速機構		ボールネジ / φ 8mm		ボールネジ / φ 12mm	
ボールネジリード (mm)		12	6	12	6
最高速度 (mm/s) * 1		600	300	600	300
最大可搬 質量 (kg)	水平仕様	4.5	6	5	9
	垂直仕様	1	2	1.5	4
定格推力 (N) ** 2		32	64	32	64
ストローク (mm)		50~200 (50ピッチ)		50~300 (50ピッチ)	

- ※ 1 YMS55 の 300mm ストローク時は
- 最高速度 450mm/s,250mm/s(75%) になります。
- ※2 推力制御の精度は保証外となります。

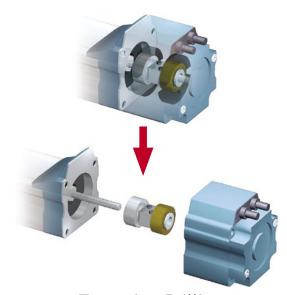


図3 モーターの取り外し

図4 YMSシリーズ構造

3.5 高信頼性

位置検出機構には従来機種「FLIP-Xシリーズ」同様、レゾルバを採用した。レゾルバは内部に電子部品を使用しないため、

- (1)使用温度範囲が広い
- (2)振動・衝撃に強い

などの特徴を持ち、高い耐環境性を備えている。

4

製品の特徴②ロボットコントローラー「ERCD」

「ERCD」は、従来の機能性に加え、新たにサーボドライバーとしての使いやすさを備えた新型ロボットコントローラーとして開発された。「YMSシリーズ」の他、「FLIP-Xシリーズ」のT4/T5、C4/C5の駆動も可能である。 表2 ERCD基本仕様

表2にERCDの基本仕様を示す。

4.1 機能強化

表3にERCDの主要な運転形態と、それらの機能詳細を示す。

従来機種に比べ、「ポイントトレース運転」では入 出力機能の向上と汎用性を高めることで、システム 構築の自由度、使いやすさを向上させた。「プログラ ム運転」ではトルク制限機能を新たに追加し、ワーク の押し付け、圧入、把持等の動作を可能とした。また これらに加え、「パルス列運転」を新規追加させるこ とで、加工、組立て、検査等の専用機の駆動軸への 応用を含め、幅広い用途での使用が可能になった。

基本仕様	適合モーター仕様	24V 30W 以下		
	外形寸法	W44 × H142* × D117		
	質量	450g		
	使用電源電圧	DC24V ± 10% 3~4.5A (ロボットにより異なる)		
	使用温度	0°C∼ 40°C		
般仕	保存温度	-10℃~ 65℃		
	使用湿度	35%~85%RH(結露しないこと)		
様	ノイズ耐性	IEC61000-4-4 レベル 2 準拠		
	制御軸数	1 軸		
軸	制御方式	AC フルデジタルソフトウェアサーボ		
制	運転形態	表 3 参照		
御	位置検出方式	レゾルバ		
	分解能	16384P/rev		
	プログラム	1024 ステップ /100 プログラム		
メモリー	マルチタスク数	4		
	ポイント数	1000		
	ポイント教示方式	MDI(座標値入力) リモートティーチング ダイレクトティーチング		

※ステー部の高さは 166mm です。

表3 ERCD機能詳細

運転形態	ポイントトレース運転	プログラム運転	パルス列運転		
特徴	あらかじめポイントデータを登録し、ポイント番号の指定(最大 64 点)と移動命令の入力で簡単に位置決めが行える。	複雑なロボット周辺動作を、BASIC ライクなロボット言語により簡単に置換え可能。マルチタスクの使用でプログラムの効率化もはかれる。	入力指令パルス(最大 2Mpps) により位置制御が可能。		
主な機能	● ゾーン出力 ● I/O 割付変更 ※移動先ポイント番号の出力や I/O によるジョグ移動、ポイント 教示が選択可能	●マルチタスク ●トルク制限 ※ロボット移動中の最大トルク指 令を制限することで、押し付け、 圧入、把持などの動作が可能。	●電子ギヤ ※入力 1 パルスあたりの 移動量を任意に設定可能 ●原点復帰		
共通機能	●シリアル通信(RS232C) ●フィードバックパルス出力 ※ロボットの現在位置を差動で出力 ●状態モニター ※I/O モニター、デューティモニター等で各種状態把握可能				

4.2 小型・低価格の追及

小型化は、生産設備の傍らに配置される制御盤にも求められている。そのため制御盤内に設置されることの多いコントローラーの小型化も重要な開発目標であった。部品の小型化や基板の高密度実装で、従来製品の62%(容積比)まで小型化を実現。また部品点数の削減、筐体ボックスの樹脂化、組立ての簡素化等により従来製品に対し、40%の大幅なコストダウンを達成することができた。

5 おわりに

当社では、自社開発の製造組立ての合理化と加工精度の向上を目的として、1974年より産業用ロボットの研究・開発を始め、1984年より外販を開始した。以来、スカラ型ロボット、直交型ロボット、単軸ロボットを次々に開発・発売し、工場におけるオートメーション化に貢献してきた。また現在、その豊富なバリエーションと信頼性で社内外より高い評価をいただいている。

今後も、それらを土台に、さらなるコストパフォーマンスのアップと、その時折のニーズを反映し、お客様にとってメリットのある商品開発を進めていきたい。

■著者

菊地 秀幸