

ボディシリンダのテクスチャリングによる 低フリクション化技術

Low friction technology using textured body cylinders

村瀬 雄太 伊東 明美

本稿は SETC2019 (Small Engine Technology Conference) および第30回内燃機関シンポジウムで発表された下記の論文を 著作権者の許可を得て再編集したものです。

Murase, Y., Kumagai, H. "Friction Reduction of All-aluminum Cylinder for Motorcycles by a Mirror Finished bore with Dimples", SAE Technical Paper 2019-32-0530(2019).

小林大吾,伊東明美,村瀬雄太:エンジンの燃焼室壁面から蒸発する潤滑油消費に関する研究,第30回内燃機関シンポジウム 講演予稿集,20194773(2019).

要旨

近年、小型エンジンの更なる競争力向上の為、燃費向上への要求が高まっている。

この問題の解決のため、特に燃費低減に対する寄与の大きいシリンダボアとピストン、ピストンリングとのフリクションロス低減 を目的とした開発が盛んに行われている。本稿ではアルミ製シリンダボアのテクスチャに対するフリクションロスの影響に着目し、 シリンダボアの鏡面化とディンプル付与の効果を浮動ライナ法により評価した。

評価の結果、従来のシリンダボア面にクロスハッチが付与された仕様(本稿では「プラトー仕様」と表する)に対し、鏡面化により 摩擦平均有効圧力(Friction Mean Effective Pressure 以降、FMEP)が14.1%低減した。また、鏡面化とディンプル付与の組み 合わせにより、プラトー仕様に対し、最大で FMEP が19.5%低減した。ディンプルを付与した仕様についてレーザー誘起蛍光法 による油膜厚さ測定を行ったところ、プラトー仕様と比較して上死点から中央行程において油膜厚さの増加が顕著に見られ、ディ ンプル付与によりシリンダボア面への供給油量が増加したと推察された。

Abstract

In recent years, in order to further improve the competitiveness of small engines, there has been increasing demand for improved fuel efficiency.

To help solve this problem, development is being actively carried out with the aim of reducing friction loss between the cylinder bore, piston, and piston ring, which contributes to greater fuel efficiency. In this report, we focus on the effect of friction loss on the texture of aluminum cylinder bores and evaluate the effects of mirroring the cylinder bores and adding dimples using the floating liner method.

As a result of this evaluation, the friction mean effective pressure (FMEP) achieved was 14.1% due to the mirror surface, compared to the conventional specification with a crosshatch on the cylinder bore surface (referred to as "plateau specification" in this report). In addition, the combination of mirroring and dimples reduced FMEP by up to 19.5% compared to plateau specifications. When the oil film thickness is measured by the laser-induced fluorescence method for the specifications with dimples, a remarkable increase in the oil film thickness was observed from the top dead center to the center stroke compared to the plateau specifications, suggesting that the amount of oil supplied to the cylinder bore surface increased due to the addition of dimples.

1

はじめに

シリンダボアとピストン、ピストンリング間のフリクションロスはエンジン全体の損失中約35%を占める。ゆえにこれらのフリクションロスを低減することはエンジンの燃費や出力を向上させる上で重要である^[1]。過去、輸送機器メーカー各

社はシリンダボア表面のテクスチャがフリクションロスに及ぼ す影響について、多くの研究を行ってきた。これらの研究の中 で、フリクションロスを低減する方法は主に2つに大別できる。 一つ目はシリンダボア表面の鏡面化である。これは固体同士の 直接接触を回避し、安定した油膜の形成を狙ったものであ る^{[2][3]}。二つ目はディンプルの様な凹形状の付与である。これは 研究者らごとに様々な狙いがあり、代表的なものでは摺動面に 供給する潤滑油量のコントロール、摺動面積低減によるオイル のせん断抵抗の低減、動圧効果によりオイルより浮上力を得る ことなどが報告されている^{[4][5]}。しかしながら、モーターサイク ルのエンジンに対する研究事例、特にシリンダボアの鏡面化や ディンプル付与の複合的効果に関する研究事例は乏しい。よっ て、本稿ではオールアルミシリンダを採用する小型のモーター サイクル用エンジンを用い、シリンダボアのテクスチャによるフ リクションロス低減のメカニズムを考察する目的で、浮動ライナ 法によるフリクションロスの評価と、レーザー誘起蛍光法による 油膜厚さ測定を実施した事例について紹介する。

2 実験方法

2-1. フリクションロスの測定

ボディシリンダ周りのフリクションは浮動ライナ法を用いて測 定し、得られたデータから FMEP を計算することでフリクション ロスを評価した。浮動ライナ法による評価を行う利点は以下の 2点である。

- 1) 実機の環境に近いファイアリングによる評価であること。
- シリンダ周りのフリクションロスのみを測定するため、他部 品の影響を受けにくく、測定結果の再現性が高いこと。

本実験に用いた浮動ライナ装置は単気筒のオールアルミシ リンダ用に開発したものを用いた^[6]。装置の構成を図1に示す。 ボディシリンダがピストンやピストンリングから受ける摩擦抵抗 をシリンダ下部に設置されたロードワッシャーにより計測する 仕組みである。

また、評価に用いたエンジンの諸元を表1に示す。排気量 115cm²クラスの小型スクーターの空冷単気筒エンジンであ る。

ボディシリンダ周辺の部品の仕様を表2に示す。ボディシリン ダの材料はボディシリンダ専用に開発^[7]され、現在量産されて いる DiASil 材(過共晶 Al-Si ダイカスト合金)^[8]を用いている。 ピストンリングの仕様はアルミ製のシリンダとの耐焼き付き性 を担保する目的で DLC コーティングが処理されている。

また、各リングの張力を表3に示す。

試験条件を表4に示す。フリクションの測定は燃費への寄与 の大きいエンジン回転数から代表で3水準(4400rpm、 4800rpm、5200rpm)を選択して行った。また、シリンダボアテ クスチャのフリクションロスに対する寄与を正確に評価するため に、図示平均有効圧力(Indicated Mean Effective Pressure)、 シリンダ壁温、油温を各試験で統一した。

図1 浮動ライナ装置模式図

表1 試験エンジン諸元

Engine type	•Gasoline •Four stroke cycle •Air cooled single cylinder
Bore \times Stroke(mm)	50.0×57.9
Displacement(L)	0.113
Connecting rod length(mm)	93.5
Reciprocating parts mass(kg)	0.136

表2 ボディシリンダ周辺の部品仕様

Parts		Material	Surface treatment
Piston		Alminum(For forging)	Iron plating
Piston ring	Тор	Steel	DLC
	Second	Cast iron	None
	Oil	Steel	DLC
Body cylind	er	Aluminum(For die casting)	None(Except texturing)

表3 ピストンリングの張力

	Tangential Force(N)	Unit pressure(kPa)
Тор	3	171
Second	3	120
Oil	10	571

表4 試験条件

Oil viscosity	10W-40
Oil temperature	70℃ (at entrance of crankcase)
Body cylinder temperature	$120 \sim 130^{\circ}$ C (at middle position of thrust side)
Engine rotation speed and IMEP	 4400rpm, IMEP:354kPa 4800rpm, IMEP:412kPa 5200rpm, IMEP:494kPa

2-2. 油膜厚さの測定

油膜厚さの測定はレーザー誘起蛍光法(以降、LIF法)により 行った。測定法の概略図を図2に示す。LIF法では光ファイバー をシリンダボア面に埋め込み、潤滑油に添加した蛍光剤が励起 光の照射により蛍光を発する特性を利用する。発する蛍光の強 度は油膜厚さに依存するため、光ファイバーを通して計測した 蛍光の強度を油膜厚さに換算して測定値とした。

LIF 法による油膜厚さの測定は本稿のように、シリンダボア のフリクションロスと潤滑状態の関係を考察する目的のみなら ず、燃焼室に浸入する油量を推定することでオイル上がりによ る潤滑油消費との関係を議論する上でも有用である。

図2 レーザー誘起蛍光法(LIF法)による油膜測定の概略図

2-3. サンプル仕様

サンプルとして以下4種のシリンダを準備した。

1)プラトー仕様 2)鏡面仕様 3)ディンプル仕様 A 4)ディ ンプル仕様 B 各仕様の概要を表5に示す。プラトー仕様はホーニング加工 により、目の粗い砥石で谷部を、目の細かい砥石でプラトー部 を形成した仕様である。また、鏡面仕様は目の細かい砥石のみ を用いてホーニング加工を行い、凹凸の極めて小さい表面状 態である。ディンプル仕様 A、ディンプル仕様 B は鏡面仕様を ベースとして一部にディンプルが付与されている。

プラトー仕様と鏡面仕様の外観と粗さ曲線を図3に示す。プ ラトー仕様は深さ1~2μm 程度の深溝が付与されている。対し て鏡面仕様は1μm を超えるような凹凸は見られない。両仕様 を Ra で比較するとプラトー仕様が Ra0.2~0.3μm 程度、鏡面 仕様は Ra0.03μm 前後である。

ディンプル仕様 A、B について、ディンプルの形態と付与範囲 の詳細を表6、図4に示す。本品におけるディンプル付与の目的 は浦部らの研究^[4]で報告されている摺動面積の低減によるオ イルのせん断抵抗の低減である。そのため、ディンプルはピスト ンが比較的高速で運動する行程中央部に付与した。また、ディ ンプル仕様 A は行程中央部の全周に付与されており、ディンプ ル仕様 B は膨張行程時に比較的大きなピストン側圧がかかる 吸気側にのみ付与されている。

Cylinder type	Overview	Aim
Plateau	Having conventional cross-hatches	For comparison
Mirror	Having no cross-hatches and no irregular surface characteristics	Sliding loss reduction by reducing the frequency of direct contact between piston or piston ring and cylinder
Dimple A	Most of part is mirror finished but dimples are given at a limited part both of intake and exhaust side	Sliding area reduction of piston or piston ring and cylinder
Dimple B	Most of part is mirror finished but dimples are given at a limited part of only intake side	Sliding area reduction of piston or piston ring and cylinder

表5	各サンプルの)概要
200	н	

表6 ディンプルの形態、付与範囲の詳細

Area ratio 40%		40%		
Shape		Circle		
Diameter 0.5mm		0.5mm		
Depth		About 7µm		
	Axial direction	As shown in Figure 4		
Application range	Radial direction	Dimple A	Both of intake side and exhaust side	
		Dimple B	Intake side only	

図4 ディンプル付与範囲の模式図

2-4. ディンプルの付与方法

ディンプル仕様 A、B はホーニング加工後、レーザー加工に より付与した。レーザー加工の模式図を図5に示す。シリンダボ ア内に挿入された鏡でレーザー光を反射し、シリンダボアを回 転移動、平行移動させることで狙いの位置に加工を行った。

レーザー加工後のディンプル仕様A、Bのボア面の展開写真 を図6に示す。加工範囲は四角に区切られており、同じ範囲で繰 り返し加工を行うため、ディンプルの処理部にわずかに隙間が 生じている。

図6 シリンダボア表面の展開写真(ディンプル仕様 A,B)

また、レーザー加工によりシリンダの母材が蒸発する際、ディ ンプルの端部に微小突起が生じたため、再度ホーニング加工 を行い除去した。仕上げホーニング前後のディンプル処理部の 断面形状を図7に示す。微小突起は最大で5µm 程度の高さが あり、仕上げホーニング後は完全に除去されている。また、ボ ディシリンダの材料は母材中に初晶 Si や共晶 Si 等の晶出物 が多量に存在しており、加工速度が場所により不均一である。 そのため、ディンプル底部の形状は細かな凹凸を持っている。

3 結果と考察

3-1. FMEP 測定結果

エンジン回転数4400rpm、4800rpm、5200rpmで測定し たFMEPの平均値を図8に示す。クランク角度0~720°の合算 値と、吸気行程(0°-180°)、圧縮行程(180°-360°)、膨張行 程(360°-540°)、排気行程(540°-720°)の各行程に分割し たFMEPがそれぞれ示されている。FMEPはプラトー仕様、鏡 面仕様、ディンプル仕様A、ディンプル仕様Bの順で小さくなる。 プラトー仕様に対するFMEPの低減率は鏡面仕様で14.1%、 ディンプル仕様Aで17.3%、ディンプル仕様Bで19.5%であ る。膨張行程のFMEPはプラトー仕様、鏡面仕様、ディンプル仕 様B、ディンプル仕様Aの順で小さくなり、他の行程(吸気、圧 縮、排気)ではプラトー仕様、ディンプル仕様A、鏡面仕様、ディ ンプル仕様Bの順で小さくなる。

また、図9に摩擦波形の比較グラフを示す。横軸がクランク角 度、縦軸が摩擦力を表す。摩擦力は正方向がシリンダボアを ヘッドシリンダ側に押し上げる力、負方向がクランク方向に押し 下げる力であり、絶対値が摩擦力の大きさである。図中矢印は ディンプル処理位置直上を各部品が通過するクランク角度を 表す。

3-2. 鏡面仕様の FMEP の低減効果について

図10にプラトー仕様と鏡面仕様の摩擦波形を示す。第二軸 はピストンに働くスラスト力を表し、正の値が吸気側、負の値が 排気側へ働く力の大きさを表す。鏡面仕様はスラスト力の正負 によらず、吸気、圧縮、膨張、排気の全行程においてプラトー仕 様より FMEP が小さくなった。シリンダボア鏡面化のリスクとし て、表面に凹凸が無いことから、保油性が低下し油膜が形成さ れずに摺動抵抗が大きくなることが挙げられるが、今回の試験 下では凸部が小さく、物体の直接接触を妨げて摺動抵抗を低 減する効果が勝ったものと思われる。野口らの研究^[3]では鏡面 化による保油量減少とそれに伴うフリクションロスの増大はエ ンジン始動直後にのみ見られ、エンジン始動の数10サイクル 後には鏡面化した方が低フリクションであることが報告されて いる。

図8 各シリンダの FMEP (4400,4800,5200rpm 測定値平均)

図10 プラトー仕様と鏡面仕様の摩擦波形データ(4800rpm 運転時)

3-3. ディンプル仕様 A、B の FMEP 低減効果について

ピストンスカート、各ピストンリングがディンプル上を通過し ている間の FMEP を比較すると、ディンプル仕様 A が最小と なったのはトップリングに対してのみであり、他の部品に対して はディンプル仕様 B が最小である。図11に鏡面仕様とディンプ ル仕様 A、B の摩擦波形を示す。例えばクランク角度360°前後 のディンプルが付与されていない範囲においても各仕様のフリ クションに差が見られることから、行程中央部に付与されたディ ンプルがディンプル付与範囲外の潤滑状態に影響を与えてい ることが示唆される。また、ディンプル仕様 B(ディンプル仕様 A に対して付与範囲半分)が最もフリクションロスが小さかったこ とから、フリクション低減効果はディンプルの付与範囲に比例し て得られるものではなく、最適な配置があると言える。

図11 鏡面仕様とディンプル仕様 A,B の摩擦波形データ(4800rpm 運転時)

3-4. 油膜厚さ測定結果

油膜厚さの測定は最も FMEP の低減効果の大きいディンプ ル仕様 B と、比較対象とするプラトー仕様に対して行った。油 膜厚さの測定位置、即ち光ファイバーの埋め込み位置は吸気 側の上死点付近、ディンプル処理位置、下死点付近の3か所と した(図12)。

CH3・・・トップリング下死点直上

図12 光ファイバーの埋め込み位置(CH1,CH2,CH3)の模式図

エンジンの運転条件は浮動ライナ評価時と同様である。また、ディンプル仕様 B は圧縮行程(180°~360°)、膨張行程(360°~540°)において顕著な FMEP の低減効果が見られることから、これらの行程における測定結果について考察を行う。

図13に膨張行程における各測定チャンネルの油膜厚さの測 定結果を示す。図中の黒色線はピストンの概略形状であり、油 膜厚さの測定チャンネル直上を通過する際のクランク角度との 関係を表す。上死点付近、ディンプル付与部(中央行程)におい て、ディンプル仕様 B はプラトー仕様と比較して厚い油膜厚さ となった。膨張行程ではピストンに対してシリンダの吸気側に 強い側圧が加わり、潤滑状態は境界潤滑に近づくことが予想さ れ、油膜が形成されることでフリクションロスは小さくなる。よっ て、測定結果はフリクションロスの測定結果と整合する。特に ディンプル付与部のチャンネル2位置において両シリンダ仕様 の油膜厚さの差異は大きくなっており、ディンプル付与によりシ リンダ壁面への供給油量が増加し、油膜形成を促進したと推察 する。

図14 圧縮行程の油膜厚さ測定データ

次に、図14に圧縮行程における各測定チャンネルの油膜厚 さの測定結果を示す。ここではピストンスカートとの間の油膜厚 さが計測されるクランク角度の範囲を抽出して示した。図中に 油膜厚さ測定時のピストン姿勢のイメージを併せて示す。圧縮 行程においても、膨張行程と同様に油膜厚さはディンプル仕様 Bの方が厚い傾向が見られる。また、形成される油膜厚さは膨 張行程時と比較すると不連続であり、部分的な油膜の破断を伴 いながらピストンが上死点方向に移動していることが示唆され る。

圧縮行程は膨張行程に対して側圧が小さく、潤滑状態はより 流体潤滑状態に近いと予想され、流体潤滑状態においては油 膜厚さの増大はオイルに作用するせん断抵抗からフリクション ロスを増大する要素になると考えられることから、ディンプル仕 様の方が低フリクションであるという浮動ライナの測定結果と は矛盾する。この点については今回実施していない排気側の 油膜厚さの測定を踏まえて考察を深める必要があると考える。

4 終わりに

テクスチャの異なるアルミ製シリンダを用いて浮動ライナ法 による FMEP の測定を行い、下記の結果を得た。

- シリンダ鏡面化により従来のプラトー仕様比で FMEP が 14.1%低減した。
- 行程中央部、特に吸気側に限定してディンプルを付与することでFMEPが大きく低減し、プラトー仕様比で19.5%低減した。

また、鏡面化とディンプル付与の複合した仕様の油膜厚さは、 フリクションロス低減効果の大きい圧縮、膨張行程にてプラトー 仕様比で増大する傾向が見られた。

■参考文献

[1] Suzuki, H., "Approach to the Piston Friction Reduction(2),"Journal of Japanese Society of Tribologists, 49(10), 763-768, 2004.

[2] Yoshida, N., "Development of New I4 2.5L Gasoline Direct Injection Engine," doi: 10.4271/ SAE Technical Paper 2019-01-1199, 2019.

[3] Noguchi, Y., Chihara, H., Ito, A., Matsumoto, G., Arake, S., "A Study on the Surface Texture of a Cylinder for low Friction and High Reliability," Transaction of Society of Automotive Engineers of Japan 20174840, 1231-1236, 2017.
[4] Urabe, M., Takakura, T., Metoki, S., Yanagisawa, M. et al., "Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore," doi:

10.4271/ SAE Technical Paper 2014-01-1661, 2014.

[5] Higuchi, T., Mabuchi, Y., Nakano, S., Mochida, H., "Friction influence of Surface micro texture and roughness on cylinder bore," Tribology Conference 2018 Spring in Tokyo2018 manuscript(A9).

[6] Ito, A., Iwasaki, H., Kurita, H., Sato, T., "A Study on the Measurement Method for Piston Friction Force of an Aircooled Gasoline Engine under High Engine Speed," Transaction of Society of Automotive Engineers of Japan 20144651, 805-810, 2014.

[7] Kurita, H., Yamagata, H., Arai, H., Nakamura, T., "Hypereutectic Al-20%Si Alloy Engine Block Using High-Pressure Die-Casting," doi: 10.4271/ SAE Technical Paper 2004-01-1028, 2004.

[8] Uhara, T. and Kurita, H., "The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy," SAE International Journal of Materials and Manufacturing, Vol. 7, No. 1 (January 2014), pp. 207-216.

■著者

村瀬 雄太 Yuta Murase 生産技術本部 材料技術部

 伊東明美

 Akemi Ito

 東京都市大学

 内燃機関工学研究室