本稿は，公益社団法人自動車技術会2018年春季大会 学術講演会予稿集 No．28－18 20185118 に掲載された論文を同会の許可を得て転載したものです。本論文の著作権は公益社団法人自動車技術会に属し，無断複製•転載を禁じます。

Abstract

Theoretical and experimental evaluations have been carried out for the straight－line stability during high－speed in motorcycles for many years，and have been also applied to actual development． On the other hand，stability is lost when traveling at extremely low speed，and method of maintaining the stability has also been studied in recent years．In addition，research on two－wheeled vehicles realizing the standing stability control by mounting a large－sized gyroscope has been performed．Here，the improvement results for stability at extremely low speed and standing stability control not by adopting mechanical gyroscope，but by adding flexibility to the structure of the body，are reported．

1 まえがき

二輪車において高速走行中の直進安定性については，長年 にわたつて理論的かつ実験的な解析 ${ }^{[1]}$ が行なわれており，実際の開発にも応用 ${ }^{[2][3]}$ されている。

一方，極低速での走行時は安定性がなく，その結果転倒と いうリスクが存在していることは周知であり，二輪メーカだけで なく二輪ユーザーにとっても大きな課題の一つとも言える。そ こで，その安定性をいかにして保つかも近年では研究され始 めている ${ }^{[4][5]}$ 。また，過去にはフライホイールの回転によるジ ヤイロモーメントを利用したジャイロカーやジャイロモノレール など自立制御を実現したものがある。さらに近年では，フライ ホイールの回転によるジャイロモーメントを用いずに二輪車の自立制御を実現するシステムの研究もされている ${ }^{[6]}$ 。特に巨大で重厚なフライホイールを高速で回転させる方式は，二輪 における軽量という大きなメリットを阻害するものであると言わ ざるを得ない。

そこで，本報では車体の構造に自由度を追加することで車両の重心を制御可能とし，フライホイールの回転によるジャイ ロモーメントなどを用いずに極低速での安定性向上および自立制御を検討した結果を報告する。

2 二輪車の基本運動特性について

2－1．転倒の運動方程式

四輪と異なりロール剛性が＂ 0 ＂である二輪車において，旋

回性と安定性を両立させることは固有の課題であり，固有技術とも言え，それは永遠のテーマとも言える。

特に運動エネルギーが無い車速 $0 \mathrm{~km} / \mathrm{h}$ においては，何かで支えなければ転倒という不安定状態になることは必至である。

そこで，まずは転倒の運動方程式について改めて考察し た。車両の前方から見た z－y 平面で考えると，Fig． 1 のよ うに倒立振子の一自由度と捉えることができる。またここで は説明を簡単にするために，サスペンションはストローク しない，ライダーは動かない，もしくはライダー無しと仮定した。

Fig． 1 Inverted pendulum model
車両の前方から見た場合，時計回りに傾斜した時の角度 θ を一般化座標とすると，重心位置は
$z=h \cdot \sin \theta$
$y=h \cdot \cos \theta$
となり，この時の運動エネルギーは
$\tau=\frac{1}{2} \cdot m \cdot v^{2}$

$$
\begin{equation*}
v=\sqrt{\left(\dot{z^{2}}+\dot{y^{2}}\right)} \Rightarrow v^{2}=\dot{\mathrm{z}}^{2}+\dot{\mathrm{y}}^{2} \tag{3}
\end{equation*}
$$

（3）に（4）を代入
$\tau=\frac{1}{2} \cdot m \cdot\left(\dot{z}^{2}+\dot{y}^{2}\right)$
ポテンシャルエネルギーは
$U=m \cdot g \cdot y$
（6）に（2）を代入
$U=m \cdot g \cdot h \cdot \cos \theta$
（5）に（1）（2）を代入
$\tau=\frac{1}{2} \cdot m \cdot h^{2} \cdot \dot{\theta}^{2}$
ここでラグランジュの運動方程式は
$\frac{d}{d t}\left(\frac{\partial \tau}{\partial \dot{\theta}}\right)+\frac{\partial U}{\partial \theta}=u$
ただし，摩擦損失および空気抵抗，タイヤのプロファイ ルなどは無視する。
（8）から
$\frac{d}{d t}\left(\frac{\partial \tau}{\partial \dot{\theta}}\right)=m \cdot h^{2} \cdot \ddot{\theta}$
（7）から
$\frac{\partial U}{\partial \theta}=-m \cdot g \cdot h \cdot \sin \theta$
よって，
$m \cdot h^{2} \cdot \ddot{\theta}-m \cdot g \cdot h \cdot \sin \theta=0$
となり，整理すると
$\ddot{\theta}=g / h \cdot \sin \theta$
となる。
一般的なオートバイを想定して $m=200 \mathrm{~kg}, ~ h=0.5 \mathrm{~m}$ として，外力 F によるインパルス応答を求める。

その計算結果を Fig． 2 に表した。

Fig． $2 \quad \theta$－TIME

ここで t は θ 度に達するまでに要する時間，α は θ 度に おける角加速度 $(\ddot{\theta})$ ，ω は θ 度における角速度 $(\dot{\theta})$ を示 す。

90 度の横倒しになるには約 1.6 秒要しており，一方，最初の約 5 度程度傾斜するのに約 1 秒もかかっており， この間に回転中心に復元力を与えて安定化できれば転倒 を避けることができる。

2－2．車両の釣り合い

次に，転倒しない状態について考察した。車両を横か ら見たとき，前輪と後輪の接地点と車両重心（ライダー乗車時はライダー含む）の三点を結んでできる三角形を Fig． 3 に示す重心三角形（GC Triangle）と呼ぶ。

Fig． 3 GC Triangle
この時，重心点 $(G C)$ には重力加速度などによる重力ベク トル（GC Vector）がある。

この重心三角形が成す平面と重力ベクトルとが重なった状態であれば安定しているといえ，これがずれた時にモーメン トが発生し車両は傾く。しかし車両走行中にはステアリング機構により前輪の接地点が左右に移動可能となり，例えば右 に傾斜した場合は右に転舵することで，重心三角形の F 点 が移動，その結果重心三角形の平面が重力ベクトルと重な るように移動することとなり，安定する。この操舵入力にはラ イダーやセルフステア，ジャイロモーメントなどが考えられる。

このことからも重心三角形が二輪車両の安定性と密接な関係があることがうかがえる。

しかし，これは二輪が走行中であることが絶対条件であり，前輪の操舵機構では，この重心三角形の F 点のみをコント ロールできるものと言える。従って，残りの R 点と $G C$ 点もコ ントロールできるような機構であれば，車速に関係なく二輪 の車体安定制御ができる可能性があると考えられる。

3 車体構造の検討

3－1．自由度の追加

そこで，車体に自由度を追加することで R 点だけでなく $G C$ 点も制御可能な構造を考案した。その概念を Fig． 4 に示 す。

Fig． 4 AMCES Mechanism
車両に $a-a$ を中心とした回転可能な自由度を追加すること で，車両の後方の重心 $G C_{2}$ を左右に移動させることが可能 となる。ここで，車両の前方の重心が $G C_{1}, ~ G C_{1}$ と $G C_{2}$ の合計が $G C_{0}$（ライダー含む）となる。

重心位置を制御できることから，本機構を AMCES（アム セス：Active Mass CEnter control System）と呼ぶ。

3－2．重心の移動

本機構により，a－a 回転軸（AMCES 軸と呼ぶ）を中心に回動し，$G C_{2}$ を大きく左右に揺動させることで，重心バラン スをとることが可能となる。回転角度によっては，車両がサ イドスタンド状態と同程度傾斜していても重心位置を傾斜と は反対側に移動させることも可能となることを Fig． 5 に示す。

Fig． 5 Center of gravity difference
本機構において，例えば前述した 5 度傾斜するのに 1 秒要するその間に $G C_{2}$ を移動させることによって，自立制御を可能にした。この制御は $G C_{1}$ のロールレイトをフィードバッ

クすることで成立させた。

3－3．後輪（R 点）の舵角について

また，本機構においてもう一つの利点が考えられる。Fig．6 に後輪舵角のイメージを示す。Fig． 4 に示す AMCES 軸（ $a-a$ ） において，α° 回動した場合，θr° 後輪に舵角が付与され， T_{1} から $T_{2} へ$ 後輪の向きが変化する。つまり，車体に回転自由度を追加することで，後輪操舵が可能となる。

Fig． 6 Rear tire direction

4 自立制御

4－1．AMCES 軸を考慮した運動方程式

前輪を含む剛体を Q1，後輪を含む剛体を Q2 とする。水平線と AMSES 軸の開き角を $\mathrm{a} 2, ~ \alpha=\cos (\mathrm{a} 2), ~ \beta=\sin (\mathrm{a} 2)$ と すると AMCES 軸の方向の単位ベクトルは $\mathrm{N} 2=\{\alpha \beta 0\}^{\mathrm{t}}$ と記載できる。Fig． 5 に示すように Q1 の鉛直軸からのねじれ角 を q1，Q1 の重心位置を $\mathrm{P} 1=\{\mathrm{P} 1 \mathrm{x}, \mathrm{P} 1 \mathrm{y}, \mathrm{P} 1 \mathrm{z}\}^{\mathrm{t}}$ ，Q1 の質量を m1，Q1 の慣性テンソルを I1，Q1 と Q2 のねじれ角を $q 2$ ， $Q 2$ の重心位置を $\mathrm{P} 2=\{P 2 \mathrm{x}, ~ P 2 \mathrm{y}, ~ P 2 \mathrm{zt}$ ，Q2 の質量を $m 2$ ， Q2 の慣性テンソルをI2，運動エネルギーを T ，位置エネ ルギーを U ，散逸エネルギーを D ，ラグラジアン $L=T-U$ と置き，外力 Fiとすれば運動方程式が求まる。Fig． 7 に二重倒立振子の模式図を示す。

Fig． 7 Simplified structure

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{l}}\right)-\frac{\partial L}{\partial q_{i}}+\frac{\partial D}{\partial \dot{q}_{i}}=F \dot{I}
$$

AMCES 軸をねじるモータ指示トルクを M とすると Q2 に は M が直接作用し，$Q 1$ には反力の $-M a か ゙$ 作用する。 これを q1，q2 に分けて計算すると以下のようになる。 $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{1}}\right)-\frac{\partial L}{\partial q_{1}}+\frac{\partial D}{\partial \dot{q}_{1}}$
$=\left\{m 1 P 1_{y}{ }^{2}\right.$
$+m 2\left(R^{2} \beta^{2}+S^{2}-S^{2} \beta^{2} \cos ^{2} q_{2}\right.$
$\left.\left.-2 R S \alpha \beta \cos q_{2}\right)+I 1_{x x}+I 2_{x x}\right\} \ddot{q}_{1}$
$+\left\{m 2\left(-S^{2} \alpha+R S \beta \cos q_{2}\right)-I 2_{x x} \alpha\right.$
$\left.+I 2_{x y} \beta \cos q_{1}\right\} \ddot{q}_{2}$
$-\left(m 2 R S \beta \sin q_{2}\right.$
$+\left(-I 2_{y y}+I 2_{z z}\right) \beta^{2} \sin q_{1} \cos q_{1}$
$\left.+I 2_{x y} \alpha \beta \sin q_{1}\right) \dot{q}_{2}{ }^{2}$
$+2\left\{m 2\left(S^{2} \beta^{2} \sin q_{2} \cos q_{2}\right.\right.$
$\left.\left.+R S \alpha \beta \sin q_{2}\right)-I 2_{x y} \beta \sin q_{1}\right\} \dot{q}_{1} \dot{q}_{2}$
$+c_{1} \dot{q}_{1}-g m 1 P 1_{y} \sin q_{1}$
$+g m 2\left(-R \beta \sin q_{1}+S \alpha \sin q_{1} \cos q_{2}\right.$
$\left.-S \cos q_{1} \sin q_{2}\right)=-M \alpha$
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{2}}\right)-\frac{\partial L}{\partial q_{2}}+\frac{\partial D}{\partial \dot{q}_{2}}$

$$
\begin{aligned}
& =\left\{m 2\left(-S^{2} \alpha+R S \beta \cos q_{2}\right)-I 2_{x x} \alpha\right. \\
& \left.+I 2_{x y} \beta \cos q_{1}\right\} \ddot{q}_{1} \\
& +\left\{m 2 S^{2}+I 2_{x x} \alpha^{2}+I 2_{y y} \beta^{2} \cos ^{2} q_{1}\right. \\
& +I 2_{z z} \beta^{2} \sin ^{2} q_{1} \\
& \left.-2 I 2_{x y} \alpha \beta \cos q_{1}\right\} \ddot{q}_{2} \\
& -\left\{I 2_{x y} \beta \sin q_{1}\right. \\
& +m 2\left(S^{2} \beta^{2} \sin q_{2} \cos q_{2}\right. \\
& \left.\left.+R S \alpha \beta \sin q_{2}\right)\right\} \dot{q}_{1}^{2} \\
& +2\left\{\beta^{2}\left(-I 2_{y y}+I 2_{z z}\right) \sin q_{1} \cos q_{1}\right. \\
& \left.+I 2_{x y} \alpha \beta \sin q_{1}\right\} \dot{q}_{1} \dot{q}_{2}+c_{2} \dot{q}_{2} \\
& +g m 2\left(S \alpha \cos q_{1} \sin q_{2}\right. \\
& \left.-S \sin q_{1} \cos q_{2}\right)=M
\end{aligned}
$$

ここで $R=P 2 x \alpha+P 2 y \beta, ~ S=P 2 x \beta-P 2 y \alpha$ と置いた。
これを状態方程式にするために，q1 と $q 2$ が微小であると仮定して三角関数を近似し，さらに高次の項を無視する。そ の後，$q 1$ と $q 2$ の加速度について解くと 2 階の運動方程式

が求まる。

$$
\begin{aligned}
\ddot{q}_{1}=\frac{1}{D}\left\{-J_{22} C_{1} \dot{q}_{1}\right. & +\left(-J_{22} G_{1}-J_{21} g m_{2} S\right) q_{1}+J_{12} C_{1} \dot{q}_{2} \\
& \left.+g m_{2} S\left(J_{22}+J_{12} \alpha\right) q_{2}+\left(-J_{22} \alpha-J_{12}\right) M\right\}
\end{aligned}
$$

$\ddot{q}_{2}=\frac{1}{D}\left\{J_{21} C_{1} \dot{q}_{1}+\left(J_{21} G_{1}+J_{11} g m_{2} S\right) q_{1}-J_{11} C_{2} \dot{q}_{2}\right.$

$$
\left.+g m_{2} S\left(-J_{21}-J_{11} \alpha\right) q_{2}+\left(J_{21} \alpha+J_{11}\right) M\right\}
$$

ここで係数は以下のように置いた。
$J_{11}=m 1 P 1_{y}{ }^{2}+m 2\left(R^{2} \beta^{2}+S^{2}-S^{2} \beta^{2}-2 R S \alpha \beta\right)+I 1_{x x}+I 2_{x x}$
$J_{12}=m 2\left(-S^{2} \alpha+R S \beta\right)-I 2_{x x} \alpha+I 2_{x y} \beta$
$J_{21}=m 2\left(-S^{2} \alpha+R S \beta\right)-I 2_{x x} \alpha+I 2_{x y} \beta$
$J_{22}=m 2 S^{2}+I 2_{x x} \alpha^{2}+I 2_{y y} \beta^{2}-2 I 2_{x y} \alpha \beta$
$G_{1}=g m 2(-R \beta+S \alpha)-g m 1 P 1_{y}$
$D=J_{11} J_{22}-J_{12} J_{21}$

さらに状態量を $\left\{q_{1} \dot{q}_{1} q_{2} \dot{q}_{2}\right\}^{t}$ と置き，自明な項を加えて 1 階の微分方程式（状態方程式）に書き直す。

$$
\left\{\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{2}
\end{array}\right\}=
$$

$\frac{1}{D}\left[\begin{array}{cccc}0 & D & 0 & 0 \\ -J_{22} G_{1}-J_{21} g m_{2} S & -J_{22} C_{1} & g m_{2} S\left(J_{22}+J_{12} \alpha\right) & J_{12} C_{2} \\ 0 & 0 & 0 \\ J_{21} G_{1}+J_{11} g m_{2} S & J_{21} C_{1} & g m_{2} S\left(-J_{21}-J_{11} \alpha\right) & -J_{11} C_{2}\end{array}\right]\left\{\begin{array}{l}q_{1} \\ \dot{q}_{1} \\ q_{2} \\ q_{2}\end{array}\right\}$

$$
+\frac{1}{D}\left\{\begin{array}{c}
0 \\
-J_{22} \alpha-J_{12} \\
0 \\
J_{21} \alpha+J_{11}
\end{array}\right\} M
$$

Fig． 8 Standup simulation
制御設計は車体全体を安定化させるように考え，Q1 のみ に適当な重みを設定し ${ }^{[7]}$ ，線形 2 次レギュレータ設計を行っ た。その結果 12 度傾斜したサイドスタンド状態から，Fig． 8 に示すように q 1 が 0 に収束して自立できた。また，非線形

シミュレーション結果の 2.5 秒以降と線形シミュレーション結果の 1.2 秒以降の波形をずらすと波形が一致しており，自立 する $\mathrm{q} 1 \fallingdotseq 0, \mathrm{q} 2 \fallingdotseq 0$ 付近では非線形式と線形式に差異がな いことが確認できた。

さらに，サイドスタンドから自立できる重量バランスの検討 や，そのときに必要なモータトルクの推定ができた。

4－2．実験同定による状態方程式の精緻化

原理試作機を作成して加振動実験を行い，挙動を計測す ることで状態方程式を精緻化した。机上にて求めた運動方程式に，さらに実機で求めたフィードバックゲインを加味し自立状態を実現したうえで，周波数と振幅でランダムな M 系列加振 ${ }^{[8]}$ を与え，$q 1$ と $q 2$ の角度と角速度，およびそのとき の指示外乱トルクを 0.5 ms のサイクル周期で 60 秒計測しデ ータを採取した。その原理試作機 2 台を Fig． 9 に示す。

Fig． 9 Principle prototype
その後，制御サイクル周期で欠落しているデータに対して前後の計測データを内挿して復活させるリカバー処理と計測 データの平均を 0 にするトレンド除去処理の 2 つの処理を行 った。その整備させた計測データの後半分の結果のみを用 いて MATLAB のシステム同定機能 ${ }^{[8]}$ を用いて状態方程式 を導出した。同定結果の妥当性検証は前半の計測データを含めた全時間で行った。整備された計測データと計測データ の開始時間状態変数を初期値として同定された状態方程式 に次々に代入して計算した同定データは Fig． 10 に示すように殆ど重なり，山に形もよく再現されており状態方程式が精度良く同定できている。

さらに同一条件試験を 5 回実施し，Fig． 11 に示すように別の実験データにも再現性が高い状態方程式を選択した。相互相関係数も 98% と高い同定精度の状態方程式を導出で きた。

また， 5 回個別に計算された状態方程式の極が Fig． 12 に示すように，無周期運動を示す実固有値 1 つと減衰運動を示す複素固有値 2 つの合計 3 つの固有値が一致しており，計測と同定のミスがないことを再確認した。

Fig． 10 Identification

Fig． 11 Cross check

Fig． 12 Original pole

4－3．ロールフィードバック制御

フィードバック制御は，加振実験したものを Fig． 13 に示す ようにベースフィードバックに追加フィードバック R を追加す ることとした。後輪を揺らすことで車両を安定させるために Q1 の重みを大きく，Q2 の重みを 0 とし，線形 2 次レギュ レータ設計により最適ゲイン R を導出した。
線形 2 次レギュレータ設計での重みは，直立自立付近で実機を押し倒してみて応答性がいいものを選択し，制御結

果の状態方程式の極位置でも評価して決定した。制御の有無での極の結果を Fig． 14 に示す。

特に， 0.7 Hz での運動を示す減衰特性を示す固有値の実数部が－ 0.5 から -5 付近に移動しており，揺れが 1 秒で収ま る制御となっている。
線形 2 次レギュレータ設計で求まったフィードバック量 R と状態量 X の内積（ur）を追加トルク指令値としてフィード バックさせた。不安定な車両を安定化させる弱いフィードバ ック量 Kに対する指令トルク（ul）とは別に計算して追加フ ィードバック量 R をオン・オフすることで有効性を確認した。

Fig． 13 Feedback control

Fig． 14 Controlled pole
制御性能は，釣り合い位置からの起き上がり性能評価を 3 秒間， 0.5 秒で 2 度の強制変位からの戻り性能を 3 秒間， 0.5 秒の適当なトルク外乱を与えた時の応答性を 3 秒間の合計 9 秒間のシミュレーションで評価した。

Fig． 15 に示すように起き上がりや外乱に対して揺れの収束 が早くなり，速度変化が収まっていることからも制御性能向上が確認できた。

Fig． 15 Feedback simulation
減衰特性を決めるのは角速度であるが，路面の摩擦係数 やモータの減衰係数などは計測が困難であることに加えて利用環境や利用状況で変化する。それに対応するために摩擦係数変化をモデル化誤差と考えて野波らが推薦しているスラ イディングモード制御 ${ }^{[9]}$ を適用した。

スライディングモード制御の有効性は，Fig． 16 に示すよう に，スライディング平面からの状態量の離れ距離で評価した。 スライディングモード制御の追加によってより早い時間で距離 0 に収束している。この状況はスライディングモード制御 により，状態量が一旦平面に拘束されるとスライディング平面を滑り原点に収束することを意味している。

Fig． 16 Sliding plane distance
また，人員乗車状態の実験同定より状態方程式を改めて求めて，その求まった状態方程式に無人時と同じ重みを適応 して人員乗車時のフィードバックゲインを求めた。人員の有無でゲインを切り換えるゲインスケジュールを行い，Fig． 17 に示すように人員乗車も可能となった。

Fig． 17 Testing

まとめ

（1）二輪の車体に回転自由度を追加することで，車両の重心を大きく二つに分けて考えることができるようになっ た。
（2）回動しない側（ $G C_{1}$ ）のロールレイトをフィードバックし，回動側の重心位置（ $G C_{2}$ ）をコントロールすることで，自立制御させることができる。
（3）運動方程式と実験同定を併用して状態方程式を導出し これを基に現代制御を適用することで，静止時の自立安定制御を実現した。
（4）さらに，後輪も操舵することで重心三角形の全頂点が制御可能となり，二輪車体運動特性の考え方を大きく飛躍させる提案ができた。
（5）一方で，高速で回転するフライホイール構造に比べる とコンパクトで軽量な構造であるが，新たに追加された自由度を制御するためのアクチュエータや制御ユニット による重量増は否めず，軽量化も今後の課題と言える。

参考文献

［1］R．S．Sharp：The Stability and Control of Motorcycles， Journal Mechanical Engineering Science，Vol． 13 No． 5 （1971）
［2］浅野俊二，大富部寿一：FEM 車両モデルを用いた二輪車運動特性解析：自動車技術会 学術講演会前刷集 No．69－01，326，（2001）
［3］J．Ootombe，A．Hasegawa：Experimental Analysis of Sense of Stability in Motorcycle，SAE Technical Paper Series SAE－891993（1989）
［4］木村哲也：低速走行二輪のライダー操縦モデルに関 する検討：自動車技術会 学術講演会前刷集 No．335－ 20075396
［5］井口雅一：前後二輪操舵二輪車の操安性についての基礎研究：自動車技術会論文集 No．32， 1986 。
［6］辻井栄一郎：自動二輪車の低速走行時における安定性評価：自動車技術会 学術講演会前刷集 No．384－ 20105078
［7］野波健蔵：MATLAB による制御系設計：東京電機大学出版局 ISBN4－501－31940－2
［8］足立修一：システム同定の基礎：東京電機大学出版局 ISBN978－4－501－11480－0
［9］野波健蔵：スライディングモード制御：コロナ社 ISBN978－4－339－03157－7

■著者

土屋 光生（写真 ${ }^{(1)}$
Mitsuo Tsuchiya
先進技術本部
技術企画統括部
デジタルエンジニアリング部

寺山敬（写真 ${ }^{(3)}$ ）

Takashi Terayama先進技術本部技術企画統括部 デジタルエンジニアリング部

辻井 栄一郎（写真（2））
Eiichirou Tsujii
先進技術本部
NV事業統括部
NV企画部

鶴見 尚（写真（4））
 Nao Tsurumi
 先進技術本部
 技術企画統括部 デジタルエンジニアリング部

