

YAMAHA MOTOR TECHNICAL REVIEW

特集テーマ

技術ビジョン楽しさの追求と社会課題の解決で、みんなの未来を創る

ヤマハ発動機は、2023年に策定した技術ビジョンを2024年にブラッシュアップし、「楽しさの追求と社会課題の解決で、みんなの未来を創る」としました。

企業目的である「感動創造企業」を楽しさの追求で実現し、加えて社会課題の解決を楽しさと対立するものとせず、楽しみながら解決するヤマハ発動機らしいソリューションを提供します。人間研究を感動の主体としての人間と感動の作り手としての人間の本質的な理解と捉え、これを新たな価値創造の道しるべを提供するヤマハ発動機の基礎研究と位置づけました。また、知能化、エネルギーマネジメント、ソフトウェアサービスを新たなコア技術とし、当社の培ってきた基盤技術と組み合わせることで、お客さまや当社だけでなく、当社製品が使われるフィールドである自然環境も含めたすべてのステークホルダーに向けて「みんなの未来」を創っていきます。

今号では、技術ビジョン実現に向けた様々な取り組みについてご紹介します。

巻頭言

楽しさの追求と社会課題の解決で、みんなの未来を創る ・・・・・・・・・・・・・・・ 5 小松 賢二

製品紹介

週末と寄り道が楽しい! 「PG-1」 の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
「XSR900GP」の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12 橋本 直親
船外機「F350B」の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17 笠井 慎也 大石 真也 中村 圭佑
フィッシングボート「YFR330」 ・・・・・・・・・・・・・・・・・・・・・・・・ 21 児島 慎平 服部 孝史 勝又 弘貴 八木 美教 チョン ジェフン 山下 航輝 杉山 智哉 伏屋 志緒梨 筒井 健
船位方位保持機能を持つ操船支援システム「Y-FSH」を搭載した「DFR シリーズ」の開発 ・・・・・・・・ 26 池田 拓 福山 美洋 井原 博英 内藤 健司 鶴羽 巧
「WaveRunner FX Series, VX/GP Series」の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
「WaveRunner New JetBlaster」の開発 ・・・・・・・・・・・・・・・・・・・・ 35 森江 厚志 野嵜 歩 袴田 涼介
2025年モデル ROV「WOLVERINE RMAX4」の開発 ・・・・・・・・・・・・・・・・・・・ 40 植木 勇一 日高 史博 田中 大輔
速度監視ユニット「RCX3-SMU」(機能安全認証) の紹介 ・・・・・・・・・・・・・・・・・ 45 上野 賢治 三重野 幸介 磯野 真滋 坪井 康太郎 保科 大樹 荒澤 聖人 堀田 敦 西村 祐樹 中西 菜緒
国内向け電動アシスト自転車「PAS CRAIG」の開発 ・・・・・・・・・・・・・・・・・・・・・ 49 杉山 峻平
電動アシストホースカー「X-Quicker (クロスクイッカー)」 ・・・・・・・・・・・・・ 53 藤井 勲 杉山 和弘 向井 勇貴

技術紹介

走りの幅を広げる 新型「NMAX」用「YECVT」の開発 ・・・・・・・・・・・・・・・・ 56勝山 祐紀 大塚 一樹 水澤 幸司 松島 秀洋 吉村 剛 江口 和也
進化した自動化マニュアルトランスミッション「Y-AMT」の開発 ・・・・・・・・・・・・・・ 60 林田 勇武 鈴木 満宏 福嶋 健司 南 健吾
陸海空の制御・プラントモデルと可視化の連成技術 ・・・・・・・・・・・・・・・・・・・ 64 堀川 雅弘 太田 博康 松清 一樹
社会共創による新価値創造「Town eMotion」Vol. 1 まちなか R&D クリエイティブフィールドの可能性 ・・ 70 榊原 瑞穂
技術論文
フレーム変形が二輪車の運動に及ぼす影響に関する研究(第1報) ・・・・・・・・・・・・・ 75 坂本 和信 草刈 政宏 中谷 友輝 北川 洋
A Study on Optimal Combinations of Winding and Cooling Methods for Downsizing Power Units
in Motorcycles ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 81 大滝 亮太 土屋 照之 酒井 悠 山内 拓也 清水 司
三次元磁路と非対称磁石配置をもつ可変界磁 PM モータの運転特性評価 ・・・・・・・・・・・・・ 95日吉 祐太郎 土井 康太朗 野口 季彦
船外機の市場不具合低減活動(パワーチルト&トリム) ・・・・・・・・・・・・・・・・・ 101 高林 亮介 山下 敏之 青木 崇浩 岡本 守央 山口 淳
平準化・ハイサイクル生産を実現する MC 組立の革新 ・・・・・・・・・・・・・・・・・・・・ 106 友田 祐介 小林 篤史 深澤 伸吾 川口 貴之
Investigation on Degradation Process of PdRuIr/CZ "pseudo-Rh" Catalysts used for Motorcycles · · · 113 茂木 卓也 多々良 俊哉 高本 駿平 土居 航介
Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-cast Cylinders made of Hypereutectic Al-Si Alloy · · · · · · · · · · · · · · · · · · ·
Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
乗り心地の良い「PAS」サドルを設計するための感性設計技術 ・・・・・・・・・・・・・・・ 150 丹羽 將勝 小関 泰子 小林 光司 藤田 英之 古澤 隆志 中林 雄介 伊藤 努 堀 啓一 芳賀 健太
二輪車の操縦訓練方法に関する一検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 158 小島 儀隆 品川 晃徳
感情状態の変化が感動の喚起に及ぼす影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

FEATURE

Technology Vision: Pursuing Fun and Solving Social Issues to Create Our Future

In 2024, Yamaha Motor refined its Technology Vision, originally established in 2023, to "Pursuing Fun and Solving Social Issues to Create Our Future." The Company will realize its corporate mission to be a Kando Creating Company through the pursuit of fun. In addition, it aims to provide solutions unique to Yamaha Motor and help to solve social issues while having fun rather than by making solutions to social issues at odds with it. The Company will position human research as its fundamental research and a guide for new values. It focuses on deep understanding of human beings both as the core of emotional, or Kando experience and as creators of that experience. It has also identified intelligent systems, energy management, and software services as new core technologies. By combining these with Yamaha's foundational technologies, the Company aims to create "Our Future" that benefits not only customers and Yamaha, but also the natural environments where the products are used.

This issue will introduce various initiatives we are undertaking to realize this Technology Vision.

Foreword

Pursuing Fun and Solving Social Issues to Create Our Future •••••••• 5
Kenji Komatsu

New Products

Weekends and Detours are Fun! Development of the "PG-1" · · · · · · · · · · · · · · · · · · ·
Kyohei Yagi Kazuhisa Ito Takanori Kishita Yuki Wakabayashi Yutaka Mine Kenta Yoshimi
Development of the "XSR900GP" · · · · · · · · · · · · · · · · · · ·
Development of the "F350B" Outboard Motor
Fishing boat "YFR330" • • • • • • • • • • • • • • • • • • •
Development of the "DFR Series" Equipped with the "Y-FSH" Steering Assist System Featuring Boat Position and Direction Holding Function Taku Ikeda Yoshihiro Fukuyama Hirohide Ihara Takeshi Naito Takumi Tsuruha
Development of the "WaveRunner FX and VX/GP" $\cdots \cdots \cdots$
Development of the "WaveRunner New JetBlaster"
"WOLVERINE RMAX4" 2025 Model ROV
Introduction of the "RCX3-SMU" Speed Monitoring Unit (Functional Safety Certificated) • • • • • • 45 Kenji Ueno Kousuke Mieno Shinji Isono Kotaro Tsuboi Hiroki Hoshina Masato Arasawa Atsushi Hotta Yuki Nishimura Nao Nakanishi
Development of the "PAS CRAIG" Electrically Power Assisted Bicycle for the Domestic Market • • • • 49 Shumpei Sugiyama
Electric Assist Hose Cart ("X-Quicker") for Firefighting • • • • • • • • • • • • • • • • • • •

New Technologies

Extending the Range of Driving - Development of "YECVT" for the New-"NMAX" · · · · · · · · · · · · · · · · · · ·)
Development of the Evolved Automated Manual Transmission "Y-AMT" · · · · · · · · · · · · · · · · · · ·)
Coupling technology for "land, sea and sky" control and plant models and visualization ••••• 64 Masahiro Horikawa Hiroyasu Ota Kazuki Matsukiyo	
Creation of New Value through Social Co-Creation: "Town eMotion" Vol. 1 Possibilities of Urban R&D Creative Fields	1
Technical Papers	
Effect of Frame Deformation on Motorcycle Dynamics (First Report) • • • • • • • • • • • • • • • • • • •	,
A Study on Optimal Combinations of Winding and Cooling Methods for Downsizing Power Units in Motorcycles • • • • • • • • • • • • • • • • • • •	
Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement • • • • • • • • • • • • • • • • • • •	j
Activities for Reducing Initial Market Failures in the Outboard Motors Market (Power Tilt & Trim) · · · 101 Ryosuke Takabayashi Toshiyuki Yamashita Takahiro Aoki Morio Okamoto Jun Yamaguchi	
Innovation in MC Assembly: Achieving Levelized and High-Cycle Production · · · · · · · · · · · · · · · · · · ·	ì
Investigation on Degradation Process of PdRuIr/CZ "pseudo-Rh" Catalysts used for Motorcycles · · · 113 Takuya Motegi Shunya Tatara Shunpei Takamoto Kosuke Doi	ì
Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-cast Cylinders made of Hypereutectic Al-Si Alloy	
Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System) • • • • • • • • • • • • • • • • • • •	
Kansei Design Technology to Design a Comfortable "PAS" Saddle · · · · · · · · · · · · · · · · · · ·	1
A Study on Motorcycle Riding Training · · · · · · · · · · · · · · · · · · ·	ì
Kando could be evoked by a transition in emotional state	

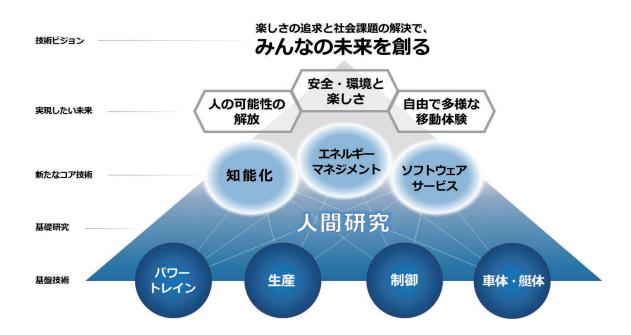
楽しさの追求と社会課題の解決で、みんなの未来 を創る

Pursuing Fun and Solving Social Issues to Create Our Future

小松 賢二

How many years has it been since we were told we were in a "once-in-a-century period of profound transformation"? It is said that this was first said by President Akio Toyoda of Toyota Motor Corporation in 2018, so if that is true, it will be six years. Has this period of great change ended in these six years? We cannot say whether this was a period of change, but drastic changes such as of the environment and diversifying needs continue. How should we adapt to such a period of time? In addition to shortening development time to adapt to rapid changes in the environment and expanding the product lineup to meet diversifying needs, it has recently become necessary to achieve carbon neutrality and comply with various regulations that are becoming stricter year by year. Do we have too many things to do that we do not have enough time to conduct R&D to achieve differentiation?

Last year, the Company has renewed the Technology Vision and newly defined three new core technologies: 1) Intelligent Systems, 2) Software Services, and 3) Energy Management, and added 4) human research as the foundation to support all of the conventional core technologies. Positioning human research as our core of the Technology Vision, we aim to maximize human potential. The results of human research will bring new value to our products and further enhance fun and attachment for users.


I believe that fun and attachment will be more important than ever for Yamaha Motor products in the future. The technology of internal combustion engines, which are the power source, has reached maturity, and the performance of electric powertrains has become more standardized, making differentiation with powertrains difficult. There is a lot of work to be done to adapt to the period of change, but we must pursue new values such as fun and attachment as differentiating technologies more than ever. To achieve this, we must improve the efficiency of conventional core technology development, and at the same time, shift human resources to the development of new core technologies, new value creation, and human research. We engineers must also change our mindset, and we need to challenge ourselves to acquire the skills and technologies needed in the future, instead of remaining at our current levels.

Since the founding of the Company, we have always pursued fun based on the concept of a *Kando Creating Company. Our diverse product lineup includes motorcycles and marine products, as well as robotics and electrically power assisted bicycles, all designed around fun and solving social issues. This fun, and solving societal issues, enriches people's lives, and is a driving force for creating the future. Our motorcycles are loved by people across the globe. Riding a motorcycle has gone beyond simply being a method of transportation; it is the experience of feeling the wind and enjoying the freedom. Yamaha's motorcycles offer the ultimate fun to our riders, both in terms of their design and performance. Boats and personal watercraft also take the fun of leisure activities on the sea and at lakes to another level. We will continue to pursue fun with the unique style of Yamaha and will continue to take on the challenge of creating our future while improving and evolving the value we provide to our customers through the development of new core technologies, the creation of new value, and the results of human research.

*Kando is a Japanese word for the simultaneous feelings of deep satisfaction and intense excitement that we experience when we encounter something of exceptional value

「100年に一度の大変革期」と言われて何年経ったでしょうか? 2018年のトヨタ自動車 豊田章男社長の言葉が最初だと言われていますので、それが本当なら6年になりますね。この6年間で変革期は終わったのでしょうか?変革期と言えるかどうかは分かりませんが、環境やニーズの多様化などの激しい変化は続いていると思います。そんな時代に我々はどう対応していくべきでしょうか?速い環境変化に合わせるための開発期間の短縮やニーズの多様化に対応するための商品ラインナップの拡充などはもちろん、最近はさらにカーボンニュートラルや年々厳しくなる各種の規制対応なども必要になってきました。やることがいっぱいで差別化のための研究や技術開発に費やす時間がなくなっていないでしょうか?

昨年、技術ビジョンを刷新し、新たに3つの新コア技術 1)知能化 2)ソフトウェアサービス 3)エネルギーマネージメント を定め、従来コア技術を含めた全体を支える基盤として 4)人間研究を追加しました。技術ビジョンとして人間研究を中心に据え、人々の可能性を最大限に引き出すことを目指しています。人間研究の成果は、我々の製品に新たな価値をもたらし、ユーザーにとっての「楽しさ」や「愛着」をさらに高めていきます。

今後のヤマハ発動機の商品にとって「楽しさ」や「愛着」は今まで以上に重要になると思います。動力源である内燃機関の技術は成熟期を迎え、電動のパワートレインの性能は画一化しており、パワートレインでの差別化は難しい状況であることから、今後は今までにはない新しい価値での差別化が重要な時代になります。変革期への対応でやることがいっぱいだと思いますが、差別化技術として「楽しさ」や「愛着」などの新しい価値を今まで以上に追求しなければなりません。そのためには従来コア技術開発の効率化を進め、同時に新コア技術の開発や新価値創造、人間研究に人財リソースをシフトしなければなりません。また我々技術者の意識も変えなければならず、現状のスキルや技術に留まることなく、将来必要になるスキルや技術を獲得するためのチャレンジも必要になります。

我々は創業以来「感動創造企業」を基に、常に「楽しさ」を追求し続けてきました。バイクやマリン製品、さらにはロボティクスや電動アシスト自転車など、多岐にわたる製品群は、すべて「楽しさ」や社会課題の解決を中心に設計されています。この「楽しさ」と社会課題の解決は、人々の生活を豊かにし、未来を創造する力となっています。

我々のバイクは、世界中で愛されています。バイクに乗ることは、単なる移動手段を超え、風を感じ、自由を味わう体験です。ヤマハのバイクは、そのデザインや性能において、ライダーに最高の「楽しさ」を提供します。ボートや水上オートバイも海や湖でのレジャーを一層楽しいものにします。これからもヤマハらしく「楽しさ」を追求し続け、新コア技術の開発、新価値創造、人間研究の成果によりお客さまへの提供価値を向上、進化させながら「みんなの未来を創る」ためのチャレンジを続けていきます。

■著者

小松 賢二 Kenji Komatsu 執行役員

製品紹介

週末と寄り道が楽しい!「PG-1」の開発

Weekends and Detours are Fun! Development of the "PG-1"

八木 恭平 伊藤 和久 木下 貴章 若林 優貴 峰 豊 吉見 健太

Abstract

The "PG-1", a newly developed model, features a 114 cm³ air-cooled, 4-stroke SOHC (Single OverHead Camshaft), single-cylinder, 2-valve, fuel-injected engine. Designed around the concept of "weekends and detours are fun!", the "PG-1" made its debut in 2024, with its launch beginning in Southeast Asian markets, starting in Thailand.

The "PG-1" is a model that combines the ease of handling of a moped with the capabilities of a scrambler, allowing it to venture onto unpaved roads. It incorporates a variety of features, such as convenience in the city, off-road capabilities for touring and leisure trips, and a high sense of style, all condensed into one model. The goal was to introduce the users to a completely new genre of model, unlike anything seen before.

はじめに

"週末と寄り道が楽しい!"をキーワードに114cm³の空冷4ストローク・SOHC(Single OverHead Camshaft)・単気筒2バルブ・フューエルインジェクション(以下 FI)のエンジンを搭載したニューモデル「PG-1」の開発を行い、2024年にタイを先頭国に東南アジア各国への導入を開始した。

「PG-1」は、モペットの扱いやすさと、スクランブラーの未舗装路にも踏み入れられる機能を併せ持つモデルである。そこには、街中での利便性、ツーリングやレジャー先での悪路走破性、高いファッション性といった多様な要素を凝縮した。これまでにないジャンルのモデルを、ユーザーの皆さまに送り出すことを狙いにした。

2

開発の狙い

2-1. 本製品の目的

今回開発したのは、既存パッケージでも十分なポテンシャル

を持つ量産中のモペット「Finn」「Sirius」で培った技術を活用し、機能美を感じさせる普遍的なデザインとタフな機能・装備を付与し、楽しさを重視した新しいモペットの世界観を提案することである。

2-2. 技術の狙い

新しいモペットの世界観を提案するため、以下3つの狙いで 開発を行った。

1. デザインインパクト

モペット本来の実用性を保ちながら高い走破性とカスタム性 を兼ね揃えたオシャレな(ファッション性の高い)外観を実現。

2. 非日常での快適性

未舗装路も楽しめる足回りの装備と余裕のある最低地上高、 自由度のあるライディングポジション、過不足のない動力性能 と航続距離を実現。

3. コスト・法規対応

敷居の低い車両価格設定、量産中のエンジンを活用した EURO4対応、フィーチャーの厳選。

図1 フィーチャーマップ

開発の取り組み

前述の開発の狙いを達成するために、利便性と走破性を備え、日常と非日常を自由に行き来できる機能を持ち、さらにタフで普遍的なデザインを実現する外観にもこだわった装備を採用した。

具体的には、図1に示すフィーチャーを採用した。ここでは主要部品の開発の取り組みについて紹介する。

3-1. 前後サスペンション

一般的なモペットのフロントフォークには、上部が一本に集約されるタイプが採用されるが、「PG-1」では左右のフロントフォークがハンドルクラウンまで独立して伸びるタイプかつインナー径 ϕ 30mm を採用した(図2)。これにより、大幅な剛性向上と、高い走行安定性、一般的なモペットとは異なるインパクトあるフォルムを実現した。

リアサスペンションには、ツインショックを採用した。取り付け 方法にもこだわり、上部をフレームの外側にレイアウトし、マウント部分をあえて見せることによって、メカニカルな雰囲気を実現した(図3)。

前後サスペンションは、共に従来モデルよりストローク量とトラベル量を大幅に増やし(表1)、路面の凹凸や大きな荷重変化に対応した。衝撃吸収性に優れ、未舗装路やフラットダートでの走破性、乗り心地の良さに貢献した。

図2 フロントフォーク比較

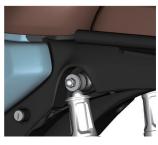


図3 リアサスペンション取付

表1 前後サスペンション性能比較

モデル名	Finn	PG-1
フロントフォーク ストローク量	100mm	130mm
リアサスペンション トラベル量	81mm	109mm

3-2. ブロックパターンワイドタイヤ

前後のタイヤには、90/100-16のワイドタイヤ(専用開発、IRC製GP-22)を装着した(図4)。一般的なモペットはリム径17インチが採用されるが、「PG-1」では小径の16インチを採用し、扁平率を上げることによって、存在感のあるワイルドな印象とした。見た目の力強さと、エアボリュームの増大による乗り心地の良さも備えている。

Weekends and Detours are Fun! Development of the "PG-1"

また、トレッドパターンはブロックとし、"オンロードでのハンド リング"と"フラットダートでの走破性"をバランス良く実現し、 幅広い路面状況への対応が可能である。

図4 ブロックパターンワイドタイヤ

3-3. フレーム&リヤアーム

前述の通り、高剛性のフロントフォークを採用した。それに伴 い、フレームを新規開発し、車体全体の剛性と強度を最適化し た。メインパイプはモナカ構造(図5)を採用し、同エンジン搭載 の従来モデルに対し、質量は1.3kg 増にとどめながら、約2.5倍 の剛性アップにより安定性に寄与した。またエンジンが発する 振動と音を解析し、ヘッドパイプ後方の凹み設定による共振抑 制により騒音を低減、スイングアームピボット部の厚肉化にて 剛性向上と振動低減を実現した。

リヤアームは未舗装路走行やロングトラベルによる高負荷に 備えて、幅広の断面形状に変更した。これにより、フレームと同 様の効果を得られ、相乗効果で乗り心地も向上した。

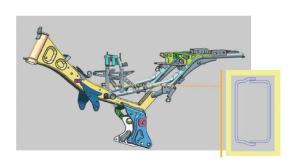


図5 フレーム(メインパイプ断面図)

3-4. 前後分割シート

シートはライダー側とパッセンジャー側の前後2分割タイプ である。ライダー側の前後長を長く設定することで、走るシーン や速度状況に応じた着座位置選定の自由度を高めた。また、ロ ングツーリングの使い勝手を想定し、燃料給油口をライダー側 シート下に設置することで、パッセンジャー側シートへの荷物 積載時においても、そのまま給油が可能になる(図6)。

シート高は従来モデルから20mm アップで燃料タンク容量 を約1L 増加させ航続距離に余裕を持たせた。背反の足付き性 は従来モデルに対し、リアサスペンションのトラベル量とタイヤ の扁平率を単純上乗せで、44mm アップになるところ、関連部 品を効率よくレイアウトすることで20mmアップまで抑制し、足 つき性と航続距離をバランス良く両立した。

図6 給油のしやすさと積載性を考慮したシート構造

3-5. ライディングポジション

従来モデル「Finn」とのシート基準比較(図7)では、「PG-1」 のハンドルは46mm 前方・12mm 上方、ステップは30mm 後 方・50mm下方への移動により、ゆとりあるライディングポジ ションを実現した(図7)。前述のシート前後長も長く確保されて いるため、自由度が高く、タウンユースやツーリングなど、状況 に応じたライディングポジションの変更が容易である。

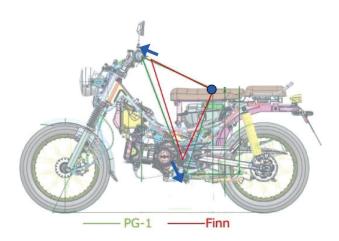


図7 ライディングポジション比較

3-6. ハンドル

未舗装路走行やポジションの自由度を上げるため、ハンドル 幅を広く(+80mm)設定し、グリップ長も延長(+12mm)した。 トップブリッジ、ハンドルクランプ部分、ハンドル最上部との位 置関係は外観に大きく影響するため、開発当初よりデザイン部 門と密接にコミュニケーションを重ねて検討した(図8)。ハンド ル曲げ部の高さや幅を最適化し、スタイリッシュさと自然なライ ディングポジションの両立を図った。

Weekends and Detours are Fun! Development of the "PG-1"

図8 ハンドルの位置関係

3-7. 外装カバー

タンクカバーやサイドカバーの左右への張り出しを抑制する ため、内蔵部品をバランス良くレイアウトした。ライダーの膝か ら下が当たる部分をスリムに仕立てることにより、スタンディン グの姿勢を取っても、足首やふくらはぎが不自然に干渉するこ となく走行できる(図9)。

スリムな外装カバー 図9

3-8. 灯火器・メータ

カスタマイズしたくなるような美しく独立したパーツ構成を 採用した。ヘッドランプ、テールランプは普遍的なデザインを実 現するため丸型とした(図10)。

メータはシンプルなアナログタイプを採用した。サークル状 のスピードメータとオーバル状の燃料計を組み合わせ、他の各 種情報もバランス良く配置し、高い視認性を確保した。ギアポ ジションが分かるシフトインジケーターも装備し、利便性にも配 慮した(図11)。

図10 丸形ヘッドランプ、テールランプ

図11 シフトインジケーター付きメータ

3-9. エンジン

114cm³の空冷4ストローク、SOHC、単気筒2バルブ、FIエン ジンを搭載した。特性として、トルクフルな持ち味と扱いやすさ を備えながら、低燃費も実現した。既存のユニットをベースに排 ガス規制へ対応と、FIセッティングを見直した。

力強い加速とトラクションを実現するため、自動遠心クラッチ 付4段トランスミッションギアの2次減速比のショート化(Finn: 14-40、PG-1:13-40)を織り込んだ。

おわりに

東南アジア諸国を筆頭に世界中で長年、日常の道具として 愛用されているモペットをベースに、日常使用の利便性を維持 したまま、今までにないジャンルの車両を作り出すことができ た。タイ、ベトナムでの製品発表時には多大なインパクトを残し、 その後も SNS などで盛り上がり続けている。

「PG-1」が新しいライフスタイルを提案するバイクとして、広 く根付いて行くことを期待する。

■著者

八木 恭平 Kyohei Yagi PF 車両ユニット PF 車両開発統括部 CV 開発部

伊藤 和久 Kazuhisa Ito PF 車両ユニット PF 車両開発統括部 車両実験部

木下 貴章 Takanori Kishita パワートレインユニット プロダクト開発統括部 第1PT 実験部

若林 優貴 Yuki Wakabayashi PF 車両ユニット PF 車両開発統括部 CV 開発部

峰 豊 Yutaka Mine パワートレインユニット プロダクト開発統括部 第1PT 設計部

吉見 健太 Kenta Yoshimi PF 車両ユニット 電子技術統括部 システム開発部

製品紹介

Development of the "XSR900GP"

橋本 直親

Abstract

The second generation of the "XSR900", developed with the keyword "Racing Heritage," features an orthodox style with round headlights and a bar handle. However, it also incorporates a delta box frame (Yamaha's unique design concept first used in Grand Prix machines of the 1980s), a passenger seat shaped like a tail cowl, and an elongated fuel tank, evoking the spirit of past racing scenes. The "XSR900GP", based on the "XSR900", is designed as "The Embodiment of Yamaha Racing History," equipped with a fairing reminiscent of 1980s Grand Prix machines and matching performance characteristics.

はじめに

"レーシングへリテージ"をキーワードに掲げ開発された2代目 「XSR900」は、丸形ヘッドランプやバーハンドルを装備する オーソドックスなスタイルながらも、デルタボックス(1980年代 のグランプリマシンで初めて採用された当社独自の設計思想 によるフレーム形状を指す)風のフレーム、テールカウルのよう な形状のパッセンジャシート、前後に長い燃料タンク等により 往年のレースシーンを感じられるモデルとなっている。 「XSR900GP」は、「XSR900」をベースに、"The Embodiment of Yamaha Racing History(ヤマハレースヒストリーの体現 者)"をコンセプトとして1980年代のグランプリマシンのような 形状のフェアリングの装備とそれに見合った走行性能を有する モデルとして開発した。

開発の内容

2-1. フェアリング

「XSR900GP」の最も特徴的な部品が、車体前方のハーフ フェアリング(図1)である。コンセプトである1980年代のグラ ンプリマシンのスタイルを体現するため、別体式のナックル バイザーを装備した。スクリーンについても当時に近い形状と しているため、最新のスーパースポーツモデルと比較すると上 端は低い位置となっている。そのような設定においても、CFD (Computational Fluid Dynamics)および実走評価によるナッ クルバイザーやスクリーンの形状調整により、十分なウィンドプ ロテクション性能を有し高速道路での移動時の疲労低減に寄 与している。

図1 ハーフフェアリング

2-2. シートカバー

ひとり乗りであるグランプリマシンの外観フォルムに近づけ るために、パッセンジャー用シートを覆うカバー(図2)を同梱部 品とした(日本市場は別売り)。車両と同時に開発することで一 体感のあるデザインを達成している。また、ライダーが腰を引い た際にストッパーとなるパッドを備えており、機能面でもグラン プリマシンを踏襲している。

図2 シートカバー

2-3. 走行性能

高いスポーツ性を有するモデルとして、以下の2点に重点を 置いて走行性能の開発を行った。

- ・自信を持ってコーナに進入できる。
- ・コーナの立ち上がりで、余裕をもってスロットルを開けられる。 具体的手法は次項に示す。

2-3-1. ライディングポジション

本モデルの開発において最も難易度が高かったのがライディ ングポジションの決定である。モデルのコンセプトおよびスタイ リングの要求からセパレートハンドルの採用は必須であった。 しかし、ハンドルの変更によりライダーが前傾姿勢となることで 重心が前方に移動し、すでに市場でも高い評価を得ている

「XSR900」の操縦性のバランスが大きく変化したところからの 開発スタートとなったためである。加えて、ハンドルとシートの 位置関係もエルゴノミクス(人間工学)面で課題となった。これ らの課題に対応するためにシート座面とステップ位置を含めた ライディングポジション三角形(図3)をすべて見直し最適化を 図った。それぞれの位置は走行評価用の試作パーツを多数用 意し、ミリ単位でのポジション調整を繰り返した。特にハンドル についてはストリート(公道走行)に軸足を置いたモデルとして 過度な前傾にならずツーリングや市街地での快適性とスポー ツ性を高次元でバランスさせるため、位置だけでなく垂れ角も コンマ数度単位での変更とテスト走行を何度も行い最適な仕 様を設定した。

「XSR900」と比較するとライディングポジションの変化量は 以下のとおりである。

ハンドル:93mm 前方へ/114mm 下方へ シート座面:12mm 前方へ/27mm 上方へ ステップ:26mm 後方へ/26mm 上方へ

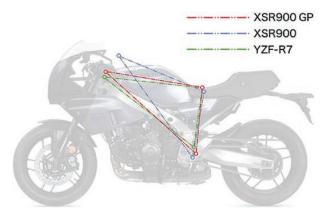
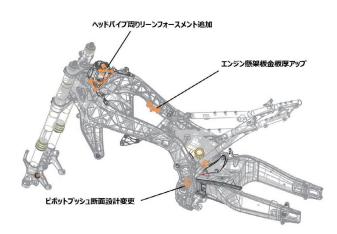
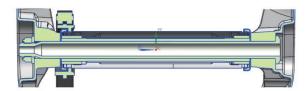



図3 ライディングポジションの比較


2-3-2. 剛性チューニング

プラットフォーム開発モデルの制約としてメインフレームに ついては「XSR900」と同一品を使用する必要があった。一方、 前項で述べたとおりライディングポジションが大きく異なること から目標の操縦性を達成するためにはサスペンションの変更 だけでは十分ではなく、車両挙動に寄与する車体剛性のチュー ニングが必要であった。そこでエンジン懸架ブラケットの板厚 を4mm から6mm へ増加、ヘッドパイプ周辺に左右を連結す るリーンフォースメント(補強部材)を追加、さらにリヤアームピ ボット部のブッシュ外径を2.5mm 増やし締結剛性を上げるこ とで必要な剛性バランスを実現した(図4、図5)。

剛性のチューニング箇所

XSR900GP

XSR900

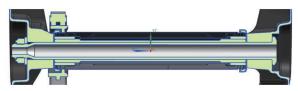


図5 ピボットブッシュの形状比較

2-3-3. サスペンション

前後のサスペンションは、専用の KYB 製のフルアジャスタブ ルタイプを新しく採用した。「XSR900」の既存部品に対して調 整範囲を増やし、前後ともに圧側の減衰力は高速と低速の2系 統で調整可能としている(表1)。

また、ステアリングシャフトには CP3シリーズで唯一アルミニ ウム材を採用した。これはステアリング周りの曲げ剛性および ねじり剛性に作用し、フロントの軽快感向上と車両挙動の前後 バランスの改善が狙いである。

表1 前後サスペンション調整範囲の比較

モデル		XSR900GP	XSR900
	プリロード	無段階 15mm	無段階 15mm
フロント	圧縮	高速 5.5回転	11段
		低速 18段	
	伸び	26段	11段
	プリロード	油圧式 24段	カム式 7段
リア	圧縮	高速 5.5回転	
97		低速 18段	1 -
	伸び	2.5回転	2.5回転

2-4. 質感の向上

所有することで満足感を得られるように随所に質感を向上さ せるための工夫を織り込んだ。

2-4-1. メータ

メータは「MT-09」と同じ5インチフルカラーTFT 液晶を採用 している。ただし、「MT-09」と共通の3テーマに加えて、本モデ ル専用としてアナログ風タコメータを表示するテーマを準備し た(図6)。違和感のない針の動きやスポンジのようなデザイン の背景と合わせて、かつてのグランプリマシンを彷彿とさせる ビジュアルとしている。

ブラック背景:主に夜間用

ホワイト背景:主に昼間用

図6 メータのアナログ風タコメータ表示

2-4-2. "あの頃ステー" とベータピン

フロントフェアリングの固定には、1980年代のレースマシン 同様に燃料タンク前方から立ち上がり、フェアリング後端へつ ながる丸パイプ製のステーを採用した。このステーは開発メン バーからは "あの頃ステー" と呼ばれ、本モデルを特徴づける 代表的な部品のひとつであり、フロントフェアリング固定に採用 したベータピンと合わせてコックピット周りの質感向上と当時 の雰囲気の再現に寄与している(図7)。なお、ベータピン(図8) の採用は当社の公道用市販車としては初である。

図7 コックピット周り

図8 ベータピン

2-4-3. 高意匠ボルト

ハンドル、クラウン周りをはじめ随所にドリル加工の軽量穴 をイメージした意匠性の高い頭部形状を持つボルトを採用し た。また、ナックルバイザの締結には市販モデルでは使用する ことの少ないアルミ製ボルト、サイドカバーの取り付けにはDリ ング付クイックファスナー(「XSR900」と同一)を使用し、小物部 品からもグランプリマシンのようにシリアスなイメージを感じら れるようにした(図9)。

図9 意匠性の高いボルト類

2-4-4. 塗装

車体色シルキーホワイトにはバーミリオン(鮮やかな朱色) を初採用した。ホイールでは他モデルで採用しているが、外装 カバーへの塗装実績はなく、1980年代のヤマハファクトリーマ シンを彷彿とさせるホワイト/レッドの車体色を実現するため に本モデル用に塗料開発を行った。

また、フレームも当時のアルミ地肌のようなイメージとするた めにシルバー色に塗装した(図10)。これによりデルタボックス 風フレームの造形をより際立たせている。

図10 シルバーに塗装されたフレーム

おわりに

「XSR900GP」は、主要なコンポーネントを「XSR900」や 「MT-09」と共通とする派生モデルであるが、ライディングポジ ションの変更と細部の調整により、異なる乗車感を実現した。結 果として、基本骨格以外の操縦性に関わる部品は大部分を専 用設計としており経験豊富なライダーにも満足していただける 仕上がりであると自信を持っている。また、最新技術の中にか つての雰囲気を感じられる外観は、発表直後から国内外問わ ず大きな反響を呼んでおり、個性的かつ魅力的なモデルとし て、幅広い年代のお客さまに気に入っていただけると確信して いる。本モデルを購入されたお客さまには、走る時間と眺める 時間の両方を楽しんでいただけることを期待する。

■著者

橋本 直親 Naochika Hashimoto PF 車両ユニット PF 車両開発統括部 SV 開発部

製品紹介

船外機「F350B」の開発

Development of the "F350B" Outboard Motor

笠井 慎也 大石 真也 中村 圭佑

Abstract

In recent years, boats have been getting larger, leading to the expansion of the market for large outboard motors. As a result, there is a growing demand for a lineup of outboard motors with strong product appeal in this market.

However, due to the recent aggressive strategies of competitors, Yamaha Motor's (hereafter referred to as "the Company") dominance in the large outboard motor segment is gradually being lost. While competitors have expanded their lineup to include models up to 600 horsepower, accommodating a wide range of boats, the Company has discontinued the production of the "F350A" in 2019, creating a gap in its lineup at the 350-horsepower level. Due to the inability to supply 350 horsepower, the Company faces challenges where customers switch to competitors even in the similar horsepower range.

Given this background, the development of this horsepower range has become urgent. However, this horsepower range has unique difficulties: V8 engines are too heavy, and V6 engines lack power. Yamaha Motor has attempted this several times in the past but have given up each time.

Additionally, the performance requirements for outboard motors have changed recently. The market now demands not only "light and powerful" but also better maneuverability and reduced noise for a more comfortable boating experience. In this development, the goal was for an early market launch by tuning up the existing "F300F", which is highly rated for its light weight, high reliability, and maneuverability, to achieve an overwhelmingly light and highly usable 350 horsepower range.

はじめに

近年、ボートの大型化が進行し、大型船外機の市場が拡大している。そのため、この市場において強い商品性をもった船外機のラインナップが求められている。

しかし、昨今の競合他社の攻勢により、大型船外機におけるヤマハ発動機(以下当社)の優位性が失われつつある。他社は

600馬力までのラインナップを整え、多様なボートに対応しているのに対し、当社では2019年に「F350A」が生産終了になり、350馬力にラインナップ上の穴ができてしまっている。当社から350馬力を供給できていないことで、周辺馬力帯においても他社に乗り換えられる課題がある。

これらの背景から、この馬力帯の開発が急務となっている。しかし、この馬力帯は特有の難しさがありV8では重く、V6ではパワー

不足となり、過去何度かチャレンジしたが、断念した経緯もある。

また昨今の船外機へ求められる性能にも変化がみられ、従 来の "軽くてパワフル" だけでなく、操船性や音に対する市場要 求も増え、より快適なボーティングの実現が求められている。

今回の開発では、軽量、高信頼性、操船性などの面で市場か ら高い評価を受けている既存の「F300F」をチューンナップす ることで、350馬力帯において圧倒的に軽量で高いユーザビリ ティを有しながら、早期市場投入を目指した。

開発の狙い

本モデル(図1)は、早期市場投入ニーズに応えつつ、競争力 の高い船外機にすべく下記4項目に取り組んだ。

- 1. ベース機種「F300F」活用による短期集中開発
- 2. 軽量「F300F」エンジンの基本構造を流用した改良で、 圧倒的軽量の実現
- 3. 吸気系の一新による出力向上
- 4. 最小限の改善で効果的な静粛性向上

図1 「F350B」

商品の特徴

開発の狙いでも述べたが、本モデルでは市場で好評を得て いるベース機種「F300F」の良さを踏襲しつつ、さらに磨き上げ た。前モデル「F350A」に対し、操船性含めた高いユーザビリ ティを有しながら、船外機の基本性能として非常に重要な要素 である "重量" においても、約60kg の軽量化を実現し、競合他 社含めた350馬力帯において圧倒的軽量、ハイパフォーマンス を実現した(表1)。

表1 各モデル主要諸元比較

モデル名	F300F	F350A	F350B
エンジン形式	V6	V8	V6
重量	288kg	354kg	293kg
排気量	4,169cm ³	5,330cm ³	4,256cm ³
ボア	96mm	94mm	96mm
ストローク	96mm		98mm
圧縮比	10.3	9.6	11.0
吸気バルブ径	38.5mm		40mm
排気バルブ径	33mm		34mm
点火プラグ径	M14		M10
発電量	70A	54A	74A
ステアリング	電動	油圧	電動
レゾネータ	無し		有り
ロワー	6KA	6AW	6KA 改
			•

- ※全て北米仕様/Xトランサム
- ※「F350A」は2019年度、その他は2024年度の情報

3-1. 出力開発

出力開発は、本モデルの最大の課題の一つであり、開発部門 一丸となり取組みを進めた。なお、開発に際しては、既存の技術 に磨きをかけることで達成を目指した。アプローチは大きく二 つ "吸入空気量の向上"と "駆動ロス低減" である。

3-1-1. 吸入空気量向上

出力向上のためには、多くの空気を燃焼室に入れ、素早く燃 焼させることが基本である。そのため、細径の点火プラグ採用 し、吸排気バルブ径の拡大を行った。これに伴い、吸気管長、 サージタンク容量を最適化するために、1次元解析および3次 元非定常解析(図2)を用いて短期間で精度の高い形状を作り こんだ。さらに並行して実機評価を行い、結果を解析にフィード バックすることで、最適な吸気形状の作り込みを短期間で実現 した。また、シリンダヘッドにおいては、タンブルと流量を両立す る斜めスロート加工を採用した吸気ポート形状により燃焼速度 向上にも貢献した。シリンダヘッド、動弁系、吸気系においては 自動車用エンジン開発部門の協力のもと、開発に取り組んで いったことで、新たな知見も織り込めた。

Development of the "F350B" Outboard Motor



図2 3次元非定常解析モデル

吸気温度を下げる工夫としては、フライホイールマグネット 上部のステーターより発せられる熱をカウル外部に排出する排 熱ファンの構造を採用した(図3右)。また、シュラウド形状の作 り込みにより、吸気温度を約10℃下げる効果が得られた。なお、 ステーター部の温度も下がることで、発電量が上がるという副 次的な効果も得られている。排熱部の構造は「F350B」を象徴 する意匠となっている(図3左)。

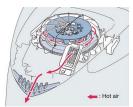


図3 排熱ファン構造 (左:排熱部外観 右:排熱構造)

また、圧縮比も向上させるとともに、クランクシャフトのピン径 を2mm縮小し、その分ストロークを2mm上げることで排気量 も上げた。ピン径縮小による強度への影響は、高強度の材料を 採用することでベースエンジン「F300F」の基本構造を変えず に本改良を成立させ、短期開発にも大きく貢献できた。さらにス トロークアップにより、吸気速度が上がり筒内乱れの改善、吸気 バルブ径アップのポテンシャルを最大限引き出すことができ、 排気量の増加比率以上の出力向上効果があった。

最終的には出力点で体積効率110%を実現できた。

3-1-2. 駆動ロス低減

駆動ロスという視点では、主に二つの取り組みを行った。1点 目は、クランクケースのポンピングロス低減である。これは、クラ ンクケース部を大きく開口(図4)することで、ポンプロスの低減 を図った。

2点目はロワーASSY(以下ロワー)の駆動ロス削減である。 大型のロワーになるとギヤ駆動においても大きなロスとなる。 今回、「F350A」のロワーではなく、「F300F」で開発された小型 高耐久ロワーを採用することで、駆動ロスの低減に寄与した。

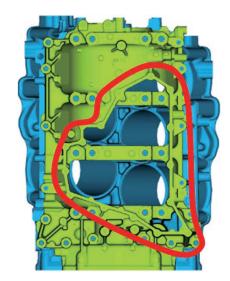


図4 クランクケース形状

その他、上記2点以外にも適合など性能担当者を筆頭にエン ジンのポテンシャルを最大限引き出すべく粘り強く開発を進 め、機能的な課題との背反を見ながら整合させることで、出力 だけでなくエンジン全体で高次元のバランスを実現することが できた。

3-2. 音圧レベル低減開発

昨今の船外機において、騒音レベルが低いことも重要な商 品性の一部である。出力開発が最大の課題ではあったが、船外 機から発生する音圧レベル低減の開発も並行して行った。本船 外機にて発せられる音圧の主要因子を調査し、吸気音の寄与 が特に大きいことが確認された。対策にはレゾネータ機能を含 むサイレンサ追加とした。しかし、サイレンサの吸気抵抗起因に よる出力低下、消音性能を得るための容積確保のレイアウト制 約、複雑な形状に対応する製造的な課題も開発一丸となり各 種要件を成立させた(図5)。

さらに、排熱ファンの出口経路となるモールディングエアダク トとカウルの間に吸音材を入れることで、排熱ファンによる騒音 の低減を図った。また、ボトムカウルに制振材を追加すること で、ボトムカウルの振動により発生する音を抑制した。

音圧レベルについては厳しい制約の中でも商品として成立 する領域まで作りこんだが、今後の開発機種においてはさらに 高い品質が求められていく技術領域である。今回開発で得た静 粛性向上の知見は次の開発に生かし、さらなるレベルアップを 図っていきたい。

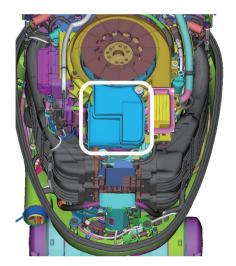


図5 レゾネータ機能付きサイレンサ(白枠内)

3-3. ロワーASSY

ロワーASSY については、3-1-2の駆動ロス低減の箇所でも 触れたが、「F350A」(6AW)ベースか、「F300F」(6KA)ベースの 2択(図6)があったが、6KA ベースの場合は、大きなメリットがあ り、本命案とした。具体的には、"低ロス馬力"、"軽量(約7.5kg)"、 "低コスト"、"新規部品の少なさ"、"プロペラ選択肢の広さ"など である。背反は、ギヤの耐久性であり、"50馬力増"の350馬力 相当のトルクに対する耐久信頼性が要求される。そこで、開発 初期に耐久評価を行い、見極めを行っていった。最終的には、 ギヤ材料の品質バラつきを抑えるために、鋳造手法をインゴッ ト鋳造方式から連続鋳造方式に変更して、非金属介在物の量と サイズを低減させることで、本仕様を採用することができた。結 果として、本鋳造方法の改善手法は、同材料を使用する当社の ギヤ全体の品質向上にもつなげることができた。

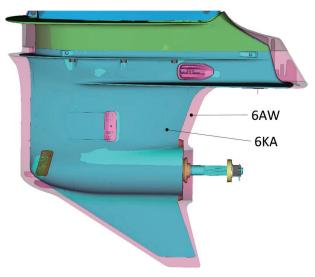


図6 ロワーASSY 比較

おわりに

本モデルは、350馬力帯において圧倒的な軽量、ハイパフォー マンスを実現することができた。今後5年、10年、世界中の人々 に使っていただき、多くの人々のマリンライフに貢献していくこ とになると思う。その時、お客さまが笑顔になっていることを願 うとともに、今後もさらに良い製品を開発していきたい。

■著者

笠井 慎也 大石 真也 Shinya Kasai Masaya Oishi マリン事業本部 マリン事業本部 開発統括部 開発統括部 機能実験部 PJT 設計部

中村 圭佑 Keisuke Nakamura マリン事業本部 開発統括部 機能実験部

製品紹介

フィッシングボート「YFR330」

Fishing boat "YFR330"

児島 慎平 服部 孝史 勝又 弘貴 八木 美教 チョン ジェフン 山下 航輝 杉山 智哉 伏屋 志緒梨 筒井 健

(本稿に掲載する写真や図は試作艇のものであり、生産仕様とは異なる場合がある)

Abstract

Fishing boats are a category that continues to show unwavering popularity in the Japanese pleasure boat market. Yamaha Motor Co., Ltd. (hereinafter Yamaha Motor) has continued to provide attractive products over many years with a rich lineup and technological development. In particular, the "YFR Series" of saltwater lure fishing models equipped with outboard motors is the core of the fishing lineup, and with the huge success of the "YFR-24¹" and "YFR-27²", it has become a major brand recognized by many fishing fans.

The "YFR330(hereinafter 'this model')" is a newly developed boat equipped with our new flagship outboard motor "F450A" as the largest 30-foot class boat in the "YFR Series". Until now, there have been very few outboard motor fishing boats over 30 feet in the domestic market. It was a great challenge to develop a boat that takes greater advantage of the characteristics of outboard motors and then propose it to the market, but we have been able to introduce a new product to the market by utilizing the synergy between the fishing boat development know-how we have built up over the years and advanced technologies such as propulsion systems.

はじめに

日本国内のプレジャーボート市場において、フィッシングボー トは不動の人気を誇るカテゴリーである。「ヤマハ発動機株式 会社(以下当社)」でも、充実したラインナップと技術開発によ り、長年にわたって魅力ある商品を提供し続けてきた。とりわけ 船外機を搭載する外洋ルアーフィッシングモデルの「YFR シ リーズ」は、フィッシングラインナップの中核を担うものであり、 「YFR-24¹⁾」「YFR-27²⁾」の大ヒットによって、多くのフィッシング ファンから認められる一大ブランドとなった。

そして今回、当社の新しいフラッグシップ船外機「F450A」を

備え、「YFR シリーズ」最大となる30フィートクラスとして新たに 開発したボートが、この「YFR330(以下本モデル)」である。

これまでの国内市場においては、30フィートを超える船外機 フィッシングボートは極めて例が少ない。船外機の特徴を生か したボートを開発し、市場へ提案することは非常に大きな挑戦 であったが、長年にわたって築いてきたフィッシングボートの 開発ノウハウと、推進システムをはじめとする先進技術とのシナ ジーによって、新製品を市場導入するに至った。

1) \[\text{YF-24} \] (2011), \[\text{YFR-24} \] (2015), \[\text{YFR-24} \] EX \] (2018) 2) \[\text{YFR} \] (2014), \[\text{YFR-27 EX} \] (2018), \[\text{YFR-27HMEX} \] (2022)

開発の概要

2-1. ターゲット

本モデル最大のターゲットは、「YFR-27」からのサイズアップ を望むボートフィッシングファンである。日本各地の市場調査を 踏まえ、「YFR シリーズ」がこれまで重視してきた立ち姿勢のル アー釣り(タイラバ・ジギング等)を、本モデルでも引き続きメイ ンの釣法と想定している。一回の釣行人数は、4名から5名以内 が大半である。ユーザーは本格的でハイレベルなフィッシング ボートを志向しており、釣りに特化した"ギア"として本モデル を開発することとした。

2-2. 主要諸元

本モデルの主要諸元を表1に示す。

表1 主要諸元

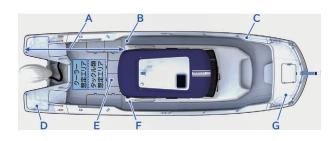
全長	10.10m
全幅	2.99m
搭載エンジン	F450AVT2U
燃料タンク容量	650L
定員	10名
航行区域	限定沿海

本モデルは当社外洋フィッシングボートの中核である「YFR-27」 と「DFR 33」の間を埋めるポジションを担い、30フィートクラス のハル長さを持つ。全長については、船外機両サイドまで張り 出したトランサムデッキにより、33フィート相当のサイズを実現 している。全幅についても「YFR-27」と「DFR 33」の中間付近だ が、これは生産隻数や供給体制と機能性のバランスを求めた 結果であり、陸送面を考慮した寸法となっている。

主機には当社最大出力(330.9kW)の船外機である「F450A」 の一機掛けを選択した。ボート開発視点からの船外機のメリッ トについては後の章にて解説するが、本モデルでは船外機の良 さがフィットする環境のお客さまに向けて、ディーゼル船内機と は異なる新たな選択肢を提供することを重視した。推進器に は、ディーゼル線内機と船外機、さらに船外機の1機掛け、2機 掛けなど、各々の特徴がある。今回のケースでは、大馬力船外 機の一機掛けによる本モデル独自のポジションや特長が、お客 さまにとって良い選択肢になると考えた。

2-3. 開発の狙い

全国の市場調査結果とこれまでの経験・知見を基にユー ザーニーズの分析を進めた結果、本モデルでは、目的地までの "快適な移動"と"釣りやすさ"を製品開発の絶対的な柱とした。 具体的には以下の3点である。


- 1. 外洋を速く快適に走ることができる
- 2. 風・波・暑さ・降雨など、外的要因による心身の負担が 少ない
- 3. 釣り場での煩わしい作業やストレスを軽減できる

これらの特性を高めることで、様々なシチュエーションでも安 心して出航でき、短い移動時間でポイントに到達し、疲労感や ストレスなく釣りに没頭する時間をより多く提供できるボートが 実現可能と考えた。一方で、小型艇中心に船外機が普及してい る日本の市場においては、30フィート以上のクラスに求められ る "快適な移動" と "釣りやすさ" を船外機艇で実現することは 困難、との見方も存在している。我々開発陣に課せられた使命 は、この常識を覆すボートを具現化することとも言えた。

「YFR330」の特徴

3-1. デッキレイアウト

本モデルにおいてデッキレイアウトが担う役割は、"釣りやす さ"の実現である。そのポイントを図1に示す。

部位	達成レベル/フィーチャー
A アフト釣り座	・上位船内機艇比150%の前後長 ※当社フィッシングボートで最長
B サイド通路	・段差レスにより通行性を向上 ※「YFR/DFR シリーズ」を通じて初
Cブルワーク	・オープンガンネル ³⁾ をバウまで拡大し、立ちやすさと 艤装性を向上 ※「YFR/DFR シリーズ」を通じて初
D トランサムデッキ	・ 既存艇比135%の広さ ・ホールド性と乗降性を向上した新形状のアフトレール ・ロッドホルダーを多数艤装可能なモータウェルレール (オプション)
E アフトデッキ	・イケスハッチ2枚化による動線確保および開閉性改善 ・クーラーやタックル類を並べやすいレイアウト
F アフトステーション	・航海計器や操船機器の艤装性と操作性に優れる レイアウト
G バウデッキ	・スクエアバウ ⁴⁾ ・既存艇比138%の広さ

- 3)舷端部材の裏が開放されており、蹴込みを有する構造
- 4)船首平面形を角型とし、デッキ面積を拡大する形状

図1 デッキレイアウトの特徴

今回、主な被代替艇となる「YFR-27」の評価は非常に高く、 その最大の理由が船外機両側に配置されたトランサムデッキ であった。従って本モデルも、この "船外機一機掛け+大型トラ ンサムデッキ"の形式を採用している。結果、本モデルは当社 フィッシングボートで最長のアフトデッキ釣り座を有するに至っ た。これはアングラー同士が距離を保って立てることにつなが るため、ラインが交錯するなどのトラブルを避けやすく、より釣 りやすい環境を提供できる。

そのほか、各部の機能・配置・形状を細部にわたって見直 し、どこに立っても使いやすく、どこを通っても安心で動きやす い、当社フィッシングボートの集大成と言えるレイアウトを実現 している。

3-2. 室内レイアウト

本モデルでは、主要想定人数である4~5名の"快適な移動" にフォーカスして室内の機能向上を図った(図2)。

図2 室内レイアウト

ポイントは大きく三点ある。

1点目が、座席の快適性である。特に奥行き方向の寸法に注 目し、背中を預けてリラックスした姿勢で座れるスペース確保 に、5名全ての席で配慮した(図3)。

図3 座席レイアウトの改善点(右舷後席の例)

2点目は、冷房能力の強化である。「F450A」の高い充電能力 を生かしてエアコンの冷房能力を強化したほか、ボート側にも 冷房効果をサポートする工夫が盛り込まれている(図4)。

図4 エアコン効果を高める艇体の工夫

3点目が、視界である。操船席・助手席については前方視界 が良好なのはもちろんのこと、リンク式ワイパー5)採用によって 荒天時の払拭範囲を広げ、収納時の視界阻害範囲を無くすこ とで、あらゆる状況での視界ストレス軽減に努めた(図5)。後席 に関しても外の様子を見やすい窓のデザインを採用し、乗員の 快適性を高めている(図3)。

5)左右を機械的リンクにより同調させて作動するワイパー

図5 リンク式ワイパーのメリット

また、"快適な移動"と"釣りやすさ"に集中すべく、バウバー ス6)は収納の役割に特化させ、最小限のスペース配分とした。 とはいえ船外機艇ならではの配置として左舷シート下にミドル バース7)を設けることで、1名が横になったり長物を収納したり できる場所を補完し、使い勝手を確保している(図6)。

6)フロント窓より前方にあるバース。一般に「バース」は就寝場所の役割を持つ 区画を指すが、プレジャーボートでは多機能スペースとして使われる場合も多い。 7)船体中央の床下に設けたバース

ミドルバース(左舷シート下) 図6

3-3. 船型 • 航走特性

本モデルが狙う"快適な移動"と"釣りやすさ"を実現するた め、船型開発を重点領域の一つに位置付け、徹底的な取り組み を行った。本モデルの船型の特徴を図7に、主要な航走特性と 開発結果を図8に、風流れ特性の詳細を図9に示す。

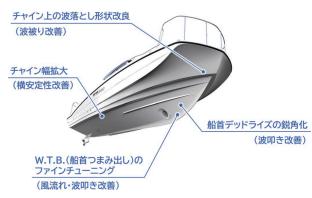


図7 船型の特徴

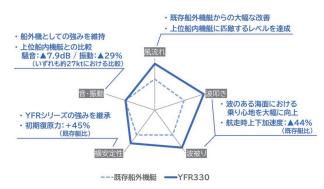


図8 主要な航走特性と開発結果8)

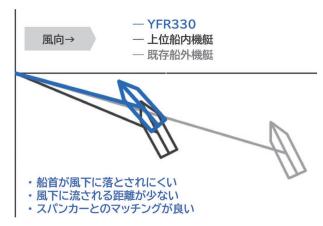


図9 風流れ特性(スパンカー装着時)⁸⁾

波のある海面をより乗り心地良く走るには、"波叩きの小ささ" と"波被りの少なさ"が重要な特性である。本モデルでは、従来 から「YFR シリーズ」の強みであった横安定性の良さを維持し つつ、凌波性⁹⁾の飛躍的向上を果たしている。船外機の良さで ある"素直で安心感のある操船性"や、"追い波でも不安を感じ にくいフィーリング" "良好な巡航時の振動・騒音特性" とも併 せ、軽快かつ自然で快適な乗り心地を実現した。また、釣り場に おいて重要な風流れ特性は、上位船内機艇に匹敵するレベル を達成した。

これらの成果は、既存船外機船型の拡大のみでは達成不可 能であったと言える。30フィート級のボートでは、乗り心地と安 定性など各種特性のバランスのとり方が、既存の小型ボートと は異なるためである。

我々は航走特性開発用のプロトタイプを建造し、"海を走っ ては直す"を繰り返すことで、この課題に対応してきた。ベース 船型の完全刷新に始まり、細部形状に至るまで改善を繰り返し た取り組みが、この結果につながっている。船外機のメリットは、 ここでは船型の自由度として生かされた。つまり、エンジンス ペース・シャフト・舵・プロペラなどの制約を受けず、目指す特 性を追求した船型を存分に作り込むことができたのである。

8)ある一条件における計測結果であり、参考値である。

9)波のある海面を安心快適に航走できる特性。波叩きの小ささと波被りの少な さから構成される。

3-4. その他の特徴

快適装備の増加や、各種電子デバイスの統合制御が進む昨 今のトレンドにより、ボートに搭載されるバッテリーや電子機器 は増加の一途を辿っている。

本モデルでは、船外機ならではの床下配置性を生かし、新た にバウ側にバッテリースペースを設け、電装区画も配置するこ とで、重量重心の適正化や配線ルートの合理化、メンテナンス の容易化を図っている。当社船外機の「HM-EX」をはじめとす る今後の進化にも対応できるよう、各スペースにはさらなる余 裕も残している(図10)。

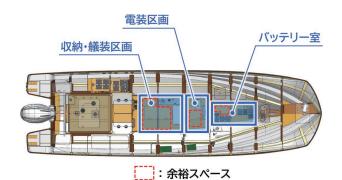


図10 フロア下区画の活用

また、当社マリン事業では "海の価値をさらに高める企業へ" と いうビジョンの下に、環境負荷の低減を積極的に進めている。 2022年から導入が始まっているバイオマス樹脂を使用したハッチ は、その一例である。本モデルではこのハッチの採用をより積極的 に進めることで、環境負荷のさらなる低減に取組んでいる(図11)。

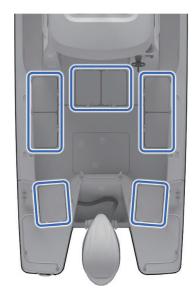


図11 バイオマス樹脂ハッチ採用箇所

おわりに

推進器をはじめとする各種デバイスの進化・統合により、 ボートの在り方は大きく変わりつつある。それは "先進アイテム を載せさえすれば、どのボートも同じ"という意味ではない。こ れからは、先進アイテムを生かし、艇体とのシナジーで価値を 最大化していくボートが求められると考える。多様な推進器そ れぞれに良さがある中、本モデルでは、最新船外機ならではの 特徴を生かした "快適な移動" と "釣りやすさ" が、ユーザーの 新たな選択肢につながると想定して開発を進めてきた。本モデ ルが、船外機とヤマハボートに対する理解をさらに深めていた だくきっかけとなることを願う。

また、「YFR330」は成熟したフィッシングボート市場のニーズ に応える商品であるため、一見するとディテールの小改善や単 なるサイズアップに終始した商品と見られてしまうかもしれな い。本稿によって、推進器・デバイスの進化へ対応し、この先の さらなる進歩も見据えた外洋向けフィッシングボートのフロント ランナーたる姿を知っていただけると幸いである。今後も艇体 と推進器のシナジーによる価値を創造し、マリンフィールドにお ける感動創造の場を提供していきたい。

■著者

児島 慎平 Shimpei Kojima マリン事業本部 企画統括部 事業企画部

服部 孝史 Takafumi Hattori マリン事業本部 国内事業推進部 開発部

勝又 弘貴 Hiroki Katsumata マリン事業本部 国内事業推進部 開発部

八木 美教 Yoshinori Yagi マリン事業本部 国内事業推進部 開発部

チョン ジェフン Jung Jaehoon マリン事業本部 国内事業推進部 開発部

山下 航輝 Koki Yamashita マリン事業本部 国内事業推進部 開発部

杉山 智哉 Tomoya Sugiyama マリン事業本部 国内事業推准部 開発部

開発部

筒井 健 Takeshi Tsutsui ロボティクス事業部 技術統括部 先行開発部

製品紹介

船位方位保持機能を持つ操船支援システム 「Y-FSH」を搭載した「DFR シリーズ」の開発

Development of the "DFR Series" Equipped with the "Y-FSH" Steering Assist System **Featuring Boat Position and Direction Holding Function**

池田 拓 福山 美洋 井原 博英 内藤 健司

Abstract

Fishing culture is deeply ingrained in Japan, and Yamaha Motor Co., Ltd. (hereinafter referred to as "the Company") has long been supported by boat users throughout the country. Among our product lineup, the "DFR Series", equipped with a diesel inboard motor, stands as the flagship model for fishing boats. It is widely recognized by many users for its exceptional navigability and fishing functionality.

In boat fishing, it is essential to drop traps at precise locations, but the boat's position and direction often shift due to wind and currents. To maintain the boat's position and direction at the targeted spot, users must constantly steer and shift, a complex and cumbersome task requiring frequent adjustments based on the changing wind and currents. To address this issue, the Company, in collaboration with Toyota Motor Corporation, developed the "Y-FSH" steering assist system, which uses rapidly advancing electric and automated technology. This system features a function that maintains the boat's position and direction, allowing users to focus more on fishing. The Y-FSH system is installed in all three "DFR" models¹⁾.

1) "DFR-33" (2017), "DFR-36HT" (2019), "DFR-36FB" (2019)

はじめに

日本には釣り文化が深く根付いており、ヤマハ発動機株式会 社(以下、当社)のボートは全国のボートユーザーから支持を 頂いている。中でも、ディーゼル船内機を搭載する「DFR シリー ズ」は卓越した航走性と釣り機能性の高さから多くのユーザー に広く認知されるフィッシングボートのフラッグシップである。

ボート釣りでは狙ったポイントに仕掛けを落とすことが求め られるが、風向・潮流の影響で船位・方位は変化し続ける。狙っ たポイントで船位・方位を保持するためにはユーザーによる操

舵・シフト操作が求められるが、風向・潮流によっては頻繁に調 整を行わなければならない煩雑な操作であった。

近年、急速に進化する電動・自動化技術を活用し、ユーザー が今まで以上に釣りに没頭できる船位方位保持機能を持つ操 船支援システム「Y-FSH(ワイ・フィッシュ)」をトヨタ自動車株式 会社(以下、トヨタ)と共同開発し「DFR」全3モデル^{1)[1][2]} へ搭 載した。

1) \[DFR-33 \] (2017) \, \[DFR-36HT \] (2019) \, \[DFR-36FB \] (2019)

Development of the "DFR Series" Equipped with the "Y-FSH" Steering Assist System **Featuring Boat Position and Direction Holding Function**

開発の狙い

国内のボート釣りは釣り場を固定せず潮とともに流す "流し 釣り"と、釣り場を固定した"かかり釣り"が主流である。

まず "流し釣り" では図1矢印のスパンカーを船尾に装着し、 その向きを調整することで船首を目標方位で保持する。図2で 示す当社独自の微速操船装置 FSR(フィッシングサポートリモ コン)/SSR(スーパースローリモコン)を組み合わせることで、 風速にかかわらず船を流す速度を調整することが可能である が、スパンカー使用の際は以下の動作が必要であり、操作性の 向上が求められていた。

- ・釣り場を移動する際のスパンカーの開閉
- ・船首向き調整のためのスパンカーの調整
- ・高架下を航走する際のスパンカーの着脱

図1 船尾に立てる帆 スパンカー

図2 微速操船装置 FSR(左)/SSR(右)

次に、"かかり釣り"では図3のように風向潮流より船位を予 測して10kgを超えるアンカーを投入する。アンカー投入には 以下の課題を抱えていた。

- ・熟練者でも狙った漁場にピンポイントにアンカリングでき ない
- ・重いアンカーの揚げ降ろしで体力を消耗する
- ・アンカーが岩場に噛み付く、またはロープが異物に巻き付 くリスクがある

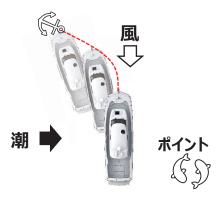


図3 ポイントを狙ったアンカー投入時の船の流れ

Y-FSH は、以下2点による "さらなる釣りへの没頭" を狙い開 発した。

- 前述の操作性向上および課題解消
- ・スパンカーレス/アンカーウインチレスによるデッキ上の 釣りスペース増加

開発の取り組み

3-1. Y-FSH システムと機能

Y-FSH システムのベースには技術交流のあるトヨタの操船 支援システム「TVAS」を採用し、船内機である「DFR シリーズ」 へ制御設計を実施した。各海象での風速/風向/潮流データ を取得解析し、台上試験と実地評価を繰り返すことで「DFR」の 船型・機関・釣りでの使い方に合わせた図4のシステムを構築 した。

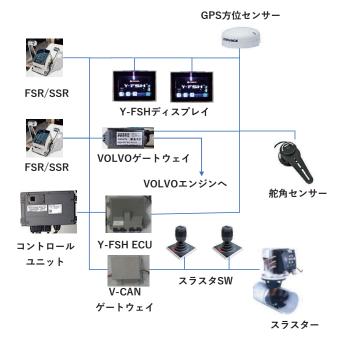


図4 Y-FSH システム図

Development of the "DFR Series" Equipped with the "Y-FSH" Steering Assist System **Featuring Boat Position and Direction Holding Function**

潮流に合わせた "流し釣り" ができるよう FSR/SSR との連携 も考慮した。全操船席に Y-FSH 操作パネルを用意しユーザー の使い勝手を向上するとともに、部品・配置を「DFR」 3モデル 共通化することで材料費・加工費低減に加え品質安定を図っ

Y-FSH の機能は e-COMPASS(コンパス)モードと e-ANCHOR B/S(アンカー)モードに大別される [3]。

e-COMPASS モードは船首を指定した方位に保持する機能 であり、流し釣りでのスパンカーに相当する。GPS・スラスターを 用いて方位を制御するため、気象条件やモデルの制約なく方 位を360°設定・調整可能である。図5に e-COMPASS モードで の操船画面を示す。操作画面は直感的に理解できるアイコンと しタッチパネルによる操作性も考慮した。

図5 e-COMPASS モード 操作画面

図6に e-COMPASS モードでの船の動きを示す。スパンカー では方位保持ができない海象においても指示した方位保持が 可能となり、FSR/SSRと組み合わせることで誰でも簡単に流し 釣りを楽しむことができる。

図6 e-COMPASS 設定時 船の動き

e-ANCHOR B/S モードは、B(船首)またはS(船尾)を一定範 囲内で船位を保持する機能であり、従来の"かかり釣り"におけ るアンカー投入に相当する。容易に任意の位置で船を固定でき るため、釣りのみでなく花火鑑賞等にも利用可能である。 e-ANCHOR モードは B(船首)を立てるモードと S(船尾)を立 てるモードを用意し、図7の通り、使い分けを考慮した操作画面 図7に示すように、B/Sを一目で判断できるアイコンとした。

e-ANCHOR B モード 操作画面

図8に e-ANCHOR Bモード設定時、風・潮流変化による船の 動きを示す。アンカー投入によっても同様の効果は得られるが、 e-ANCHOR はボタンを押すだけでアンカー同等の機能を発揮 する。

風,潮の向きの変化合わせ 位置はそのままに 方位を変える

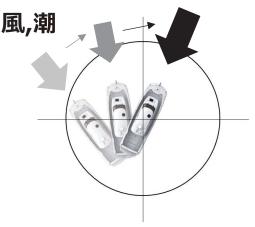


図8 e-ANCHOR B 設定時 船の動き

3-2. Y-FSH の「DFR シリーズ」実装評価

当社では台上評価に加え、評価艇を用いて100項目を超え る定型評価を実施している。「DFR」から初実装となるY-FSHの

Development of the "DFR Series" Equipped with the "Y-FSH" Steering Assist System Featuring Boat Position and Direction Holding Function

性能検証のため、前述の定型評価に加え、図9の海域において 広範囲かつ長期間にわたる実地評価を実施した。その結果、各 海域で Y-FSH が目指す機能を発揮できることが確認された。



図9 「DFR36FB」 評価ポイント

また新機能の Y-FSH と、現行機能であるスパンカーやアンカーを同等条件で比較した。スパンカーの目的は風上へ船首を向けることであり、スパンカーを備えた「DFR」の航跡(図10)からはスパンカーだけでは船首方位を保持できない海象が存在することが分かる。図11の新機能の e-COMPASS モードでは図10と同日・同海象での評価において、船首を狙った方位に保持し続けていることが分かる。

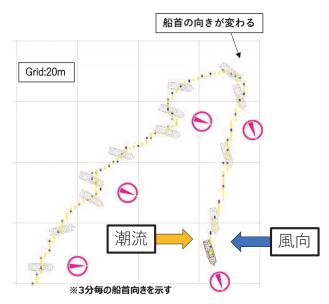


図10 スパンカーでの船首向きの変化

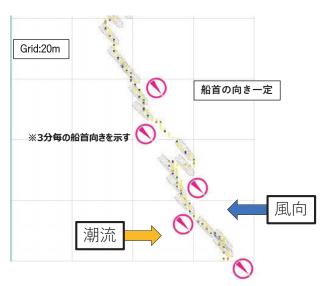


図11 e-COMPASS での船首向きの変化

3-3. 評価艇の建造と開発日程

通常、船の建造は10mクラスでは連続生産で2カ月半、評価艇では3カ月程度の期間を要する。「DFR33」「DFR36HT」「DFR36FB」は同工場/同ラインで生産するため同時生産ができず、1隻ずつ評価艇を建造すれば、製造に加え評価も長期間になることが明白であった。

また、開発評価艇と現行生産艇も同工場/同ラインで生産 するため、3隻の評価艇を建造すれば市場へ供給する現行生 産艇の数が減少することにつながる。

そこで、開発部門で保有する「DFR33」「DFR36HT」を改造し 先行評価を行うことで、必要な開発評価艇の建造数を減らし、 効率の良い開発かつ計画通りの市場供給を行うことができた。

4 おわりに

今回開発した Y-FSH は当社が長期ビジョンに掲げるマリン版 CASE^[4]を国内ボート製品へ展開した第一弾の商品である。全国のボートショーでの展示会/試乗会での販売店様・お客さまの声より、Y-FSH によるスパンカーレス、アンカーウインチレスがユーザーの"さらなる釣りへの没頭"につながることを確信した。これからもボートユーザーがさらなる感動を体験できる製品やシステムの開発を続けていく。

■参考文献

[1] 馬上 隆之:フィッシングボート DFR, DFR-FB;ヤマハ発動 機技報 2014 No. 50 https://global.yamaha-motor.com/jp/ design_technology/technical/publish/pdf/browse/50ss05.pdf [2] 福山 美洋:フィッシングボート「DFR-33」;ヤマハ発動機技

Development of the "DFR Series" Equipped with the "Y-FSH" Steering Assist System **Featuring Boat Position and Direction Holding Function**

報 2017 No. 53 https://global.yamaha-motor.com/jp/ $design_technology/technical/product/pdf/browse/53ss09.$ pdf

[3] Y-FSH 機能紹介; https://www.youtube.com/watch?v= k8sPt9KyrHo&t=120s(アクセス日:2024/06/10)

[4] ヤマハ発動機企業サイト 新中期経営計画(2022-2024) https://global.yamaha-motor.com/jp/profile/mtp/pdf/2022/ 2022medium-plan.pdf

■著者

池田 拓 Taku Ikeda マリン事業本部 国内事業推進部 開発部

福山 美洋 Yoshihiro Fukuyama マリン事業本部 開発統括部 先行開発部

井原 博英 Hirohide Ihara マリン事業本部 国内事業推進部 開発部

内藤 健司 Takeshi Naito マリン事業本部 国内事業推進部 開発部

鶴羽 巧 Takumi Tsuruha マリン事業本部 国内事業推進部 開発部(執筆時)

製品紹介

「WaveRunner FX Series, VX/GP Series」の開発

Development of the "WaveRunner FX and VX/GP"

原田 直樹 鈴木 正吉

Abstract

In recent years, the usage of PWC (Personal Water Craft) has diversified, with an increasing number of customers focusing on convenience and enjoying music while cruising. As a result, expectations for LCD meters and speakers have risen. To meet these needs, the 2025 models will feature added functionality in the meters and high-volume, high-quality speakers in the flagship "FX Series" (hereafter referred to as "FX") and the recreational/performance "VX/ GP Series" (hereafter referred to as "VX/GP"). By collaborating with Yamaha Corporation on the speakers, we aim to provide customers with additional value through a premium music experience.

はじめに

近年 PWC (Personal Water Craft) においては、使われ方が 多様化しており、特に利便性や音楽を楽しみながらのクルージ ングを重視するお客さまが増加しているため、液晶メーターや スピーカーへの期待が高まっている。こうしたニーズに応えるた め2025年モデルでは、フラッグシップモデルの「FX Series」(以 下「FX」)ならびにレクリエーション/パフォーマンスモデルの 「VX/GP Series」(以下「VX/GP」)にメーターの機能追加と大 音量・高音質のスピーカーを搭載した。スピーカーについては ヤマハ株式会社と協業することで、プレミアムな音楽体験を通 してさらなる価値をお客さまに提供することを目指した。

開発の狙い

前述のとおり市場でのメーターやスピーカーに対する要求 の高まりを受け、2025年モデルの「FX」ならびに「VX/GP」では 電装装備に焦点をあてた開発を行った(図1)。

「FX」ではメーターに対するソフトウェア機能の追加により、

市場で好評を得ている7インチメーターに、画面デザインの追 加とオーディオ音量自動調整を追加することでレベルアップを 目指した。

「VX/GP」ではメーターに Bluetooth を搭載することで、オー ディオ操作や着信通知機能など近年のトレンドとなる機能を追 加した。

また「FX」ならびに「VX/GP」ではヤマハ株式会社と協業する ことで、大音量・高音質でワンランク上の音楽体験を提供する。

図1 モデル概要

3 メーター開発

3-1. 「FX Series」

「FX」は2022年モデルから7インチタッチパネル式の液晶 メーターを採用し、視認性と操作性の高さから市場で好評を得 てきた。2025年モデルではさらなる使い勝手の向上を目指し、 従来モデルをベースに以下の機能を追加した。

- 1. 選択可能な画面デザイン(図2)
- 2. オーディオ音量自動調整

2025年モデルではメーター表示のデザインを Modern、 Sports、Classic の3種と Dark、Light の2つのカラーの計6種 を搭載し、走行シーンやお客さまの好みに合わせて選択可能と した。

図2 「FX」ホーム画面

オーディオ音量自動調整はエンジン回転数に応じて音楽の 再生音量を変化させる。これにより高速時には大きな音量に、 低速時には小さな音量に調整されるため、手動による音量調整 の頻度を低減できる。

3-2. 「VX/GP Series」

「VX/GP」では2021年から4.3インチ液晶メーターを採用し てきたが、2025年モデルでは主に以下の機能を追加した。

- 1. Bluetooth によるオーディオ操作
- 2. スマートフォンからの着信・SMS 通知
- 3. 電源管理機能/アクセサリーモード

これらの機能は上位モデルである「FX」に2022年から搭載 したところ、利便性の高さなどが市場で好評だったため本モデ ルにも採用した。画面サイズや地図機能の有無で上位モデルと の差別化をしつつも、2025年モデルのセールスポイントであ るオーディオ関連機能は上位モデルと同一とし、音量自動調整 機能も採用した(表1)。

表1 「FX」と「VX/GP」のメーター機能比較

モデル名	FX	VX/GP
画面サイズ	7インチ	4.3インチ
タッチパネル	0	_
GPS スピードメーター	0	_
地図	0	_
通話	0	_
着信·SMS 通知	0	0
オーディオ操作	0	0
音量自動調整	0	0
電源管理機能	0	0
アクセサリーモード	0	0

機能の追加にあたり、視認性・操作性のポイントである画面 デザインにも注力して開発した。このモデルでは1つのメーター で、ファミリーユースが中心の「VX」とスポーツモデルの「GP」 の2モデルに使用するため、「VX」にはフレンドリーで視認性の 高いデザインを、「GP」にはモーターサイクルのイメージを取り 入れたスポーティーなデザインを採用した(図3)。

図3 「VX」(左)と「GP」(右)のホーム画面

さらにホーム画面以外も一新し、クルーズコントロール機能 にあたる「Drive Control」は従来モデルより容易に設定できる ように配置や操作感を工夫した(図4)。

図4 オーディオ画面(左)と Drive Control 画面(右)

スピーカー開発

4-1. 開発背景

PWC では昨今スピーカーの純正搭載が進んでおり、当社も 2021年モデルからスピーカー搭載モデルを導入してきた。 2025年モデルでは、さらなる大音量・高音質化を狙い、ヤマハ 株式会社との協業で「WaveRunner」専用のスピーカーを開発 した。

市場で求められている大音量・高音質なスピーカーを実現 するために、以下の2点を重点課題とした。

- 1. 艇体意匠と調和した大型の筐体・スピーカーユニット
- 2.「WaveRunner」に最適化した音質を実現するための Digital Signal Processor(以下 DSP)とチューニング 次項ではこれらを実現するために取り組んだ内容を紹介する。

4-2. デザイン

屋外で高速走行する PWC では、特性上低音域の音が聞こ えにくくなるため、迫力ある低音を実現するには大型の筐体が 必要となる。意匠と性能を両立するために、デザインはヤマハ 株式会社デザイン研究所が担当した。

外観はスピード感を表現するために、製造上の難易度は上 がるもののエッジをアピールした形状を取り入れた。また性能 を最大化するために平行面がない形状とすることで内部共振 の発生を抑える設計とした。

グリル中央部のツイーターカバーには "YAMAHA" のプレミ アムオーディオを訴求するためにシルバーのヤマハ株式会社 の音叉マークを配置した(図5、図6)。

図5 スピーカー単品イメージ

図6 「GP」用スピーカー

4-3. ハードウェア設計

スピーカーを開発するにあたり、高い信頼性の確保と大音 量・高音質の実現を重点開発ポイントとした。

4-3-1. 高い信頼性の確保

転覆時の水没等を想定して、筐体全体でシールする完全防水 構造を採用した。また水没による温度変化や内部圧力変化に 耐えられるように、ウーファーの振動板やダンパーなどの内部 部品も専用設計し、使用する材料も複数の試験の上で決定した。

耐衝撃性を向上するためにはウーファーの軽量化が重要で あるため、マグネットには通常使用されるフェライトではなくネ オジムを採用した。その結果フェライトの約半分の重量で同等 以上の性能を達成した(図7)。

図7 設計当初の仕様と軽量化仕様のウーファー比較

4-3-2. 大音量・高音質を実現する基本設計

大音量・高音質を実現するためにウーファーの直径を従来 の4.5インチから6.5インチに大型化した(図8)。

また電力消費を抑えるために高効率アンプ基板を開発した ことで、消費電力を増やすことなく大音量化を実現した。

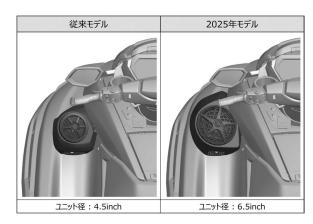
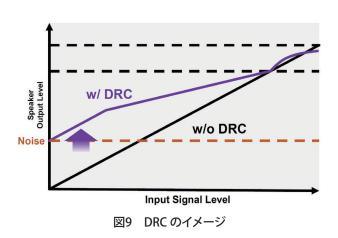


図8 従来モデルとのサイズ比較


4-4. ソフトウェアとチューニング

スピーカーの音質は筐体やユニットなどのハードウェアと、 それらを活かしコンセプトにあった音作りを実現するチューニ ングによって決定される。

ヤマハ株式会社と協業することの強みとして、以下の2点が 挙げられる。

- 1. ヤマハ株式会社製 DSP「AVP-3」の採用
- 2. 認定されたチューニングエンジニア"サウンドマイスター" によるチューニング

「AVP-3」を搭載することで様々な音作りが実現でき、特に走 行環境下で聞き取りにくくなる小さな音を Dynamic Range Control(以下. DRC)によって増幅することで走行中でも聞き取 りやすい音作りを実現した(図9)。

屋外を高速走行するモビリティのチューニングはヤマハ株式 会社にとって初めての試みであったが、認定されたチューニン グエンジニア "サウンドマイスター" が繰り返し走行することで 最適な音質を作りこんだ。メーターのオーディオ操作画面には ヤマハ株式会社が手掛けたサウンドが再生される証として、 "sound by YAMAHA" のロゴを表示した(図10)。

図10 オーディオ操作画面の "sound by YAMAHA"

おわりに

近年のメーターやスピーカーといった付加装備への関心の 高まりを受けて、メーターの機能追加などによりトレンドを取り 入れた今回の開発は「WaveRunner」の商品性向上に寄与でき たと考える。

スピーカーにおいては、過酷な条件下で使われる PWC 部品 の開発経験がないヤマハ株式会社との協業であったが、両社 の技術を結集することで高い信頼性とヤマハ株式会社でしか 実現できない大音量・高音質スピーカーを開発することができ た。

2つの "YAMAHA" がコラボレーションしたからこそ実現でき たプレミアムな音楽体験をお客さまに提供できることを誇りに 感じる。

■著者

原田 直樹 Naoki Harada マリン事業本部 開発統括部 WV/海外ボート開発部

鈴木 正吉 Masakichi Suzuki YMMC¹³ Tech Portfolio Development Division

1) YMMC: Yamaha Motor Manufacturing Corporation of America

製品紹介

「WaveRunner New JetBlaster」の開発

Development of the "WaveRunner New JetBlaster"

森江 厚志 野嵜 歩 袴田 涼介

(本稿に掲載する写真や図は試作艇のものであり、生産仕様とは異なる場合がある)

Abstract

The entry-level model of the watercraft "WaveRunner", known as the "EX", was added to the lineup in 2017 as the new compact platform following the "FX" and "VX series". Subsequently, in 2019, a lightweight and highperformance variant "EXR" was introduced as a derivative model, and in 2022, it was upgraded to the "JetBlaster" to enhance maneuverability by adding a nozzle trim mechanism that allows for adjustments to the watercraft's position while navigating. To date, the model has been well received in the market, offering user-friendly features appropriate for an entry-level model while also delivering sufficient performance and high reliability. However, due to changes in market trends, a full model change including a platform renewal for the first time in eight years was implemented to further evolve the fundamental performance and expand design possibilities. This paper introduces the newly transformed "New JetBlaster series".

はじめに

水上オートバイ「WaveRunner」のエントリー向けモデル 「EX」は、「FX」「VX シリーズ」に続く新規小型プラットフォーム として2017年にラインナップに追加された。その後、2019年に は軽量かつ高出力版の「EXR」を派生モデルとして追加し、 2022年にはノズルトリム機構追加により航走時の艇体姿勢を 変更できるようにすることで、運動性を高めた「JetBlaster」に アップグレードした。これまで、エントリーモデルに相応しい使 い勝手の良い部分もありながら、十分な性能と高い信頼性で 市場に受け入れられてきた。しかし、市場トレンドの変化から、

さらなる基本性能の進化とデザインの可能性を広げるため、8 年ぶりにプラットフォームの刷新も含めたフルモデルチェンジ をした。本稿では、新しく生まれ変わった「New JetBlaster シ リーズ」について紹介する。

開発の狙い

2-1. 企画概要

コンセプトとしては、従来モデルに対して守りと攻めの観点か ら大きく2種類の方向性を目指した。守りとしては、従来の強み である使い勝手や安定性をさらに高めた "Evolution of EX" を コンセプトに掲げたLTD/DLX/ベースモデルの3タイプを 設定した。 攻めとしては、"Fresh style and More Fun" のコン セプトのもと、次世代の「JetBlaster」に相応しい魅力的なスタ イリングと運動性を高めた PRO モデルを設定した。さらに幅広 い市場要求に対応するために、エンジン出力と定員の仕様組 み合わせを変更することにより、計6種類(表1)のラインナップ とした。また、「EX」という名称を廃止し、すべて「JetBlaster」に 統合した。

丰1	モデル	,
বছ।	モナル	レー 見.

モデル名称	定員	エンジン
JetBlaster PRO	3 2	TR-1 HO (80.9kW)
JetBlaster LTD	3	(60.5kW)
I-+DI+- DIV	3	
JetBlaster DLX	2	TR-1 (74.6kW)
JetBlaster	2	(11.0KVV)

2-2. デザイン

プラットフォーム初となるフルモデルチェンジでは、市場ト レンドを鑑み、"Sleek and Lightweight""Tough and High-Performance""Scalability" をスタイリングコンセプトとした (図1)。

キャラクターラインは直線を基調とした構成で、大きくダイナ ミックな流れを感じさせる造形とした。ステアリング下部を大き く貫通させることで、軽量で軽快なイメージを表現した。また、 デッキ間を大きく前後につなぐフレームは剛性感を表現してお り、Lightweight と Tough を両立させたデザインとした。

上位の PRO モデルにおいては、従来の「JetBlaster」同様 に、アルミを露出させたネイキッドスタイルのステアリングを採 用し、専用のメタリック調フレームがそのスタイルを強調してい る。さらに、着色ボルトやグリップエンドなどの装飾品が、他バリ エーション以上のプレミアム感を演出している。

図1 初期スケッチ

2-3. 開発目標

企画コンセプトを達成するために、以下の3項目を開発目標 と定めた。

- 1. 従来の SMC(Sheet Molding Compound)デッキをベー スとしたスタイリングを一新し、軽快感と剛性感を両立さ せる。
- 2. 旋回特性を向上させながら、テールスタンドなどの運動 性を進化させる。
- 3. モデルバリエーション間の仕様差を広げることで、幅広い 顧客層を獲得する。

下記にフィーチャーマップを示す(図2、3)。



図2 フィーチャーマップ (JetBlaster LTD)

図3 フィーチャーマップ (JetBlaster PRO)

艇体開発の取り組み

3-1. デッキ

本モデルでは、革新的なデザインを実現させるために、形状 の自由度に制限のある SMC 工法を用いた一体成型のデッキ 構造から、インジェクション成型を用いたバウ(前側)、ミドル(中 央)、スタン(後側)の三分割デッキ構造に変更した。(図4)。

図4 新旧デッキ比較(左:従来、右:新)

インジェクション成型による利点は、デザインだけではなく、 エルゴノミクスの改善にも寄与している。フットウェルの深さを 従来モデルよりも深くすることで、操船者は窮屈感を感じること なく、快適なライディングを楽しめるようにした。また、リボーディ ンググリップ(図5)をスタンデッキ部に一体形状で設けること で、水面から乗船が容易にできるように配慮した。

従来機種ではデッキとハル(船体部品)は接着されており、そ れにより防水と固定の両機能を持たせていたが、本モデルでは 利便性の向上を目的に、発泡フォームによるシールと、ボルト ナットによる締結構造を採用した。これにより、従来モデルでは できなかったデッキの取り外しが可能になっている。ミドルデッ キを取り外すことで開口部を大きく確保できるため、エンジン などの艇体内にある部品に対しての作業性が改善している。さ らに、ミドルデッキ側面にはアクセスホールを設けてあり、ヒュー ズ交換等の作業は、デッキの取り外しなしでも行えるように考 慮されている。なお、構造変更後においても水入りに対する信 頼性では従来機種同等のテスト基準をクリアしている。

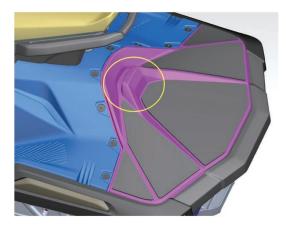


図5 リボーディンググリップ

3-2. ハル

航走時の軽快感を高めるために、従来の「EX」ハルの航走特 性を残しつつ、全長を115mm 短くした(図6)。

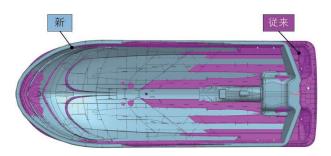


図6 新旧ハル全長比較

PRO モデルでは、電動トリムの角度を6度大きくしたことによ り、横旋回だけではなく、テールスタンド(図7)などの3次元的 な動きもできる軽快な艇体に仕上がっている。

図7 テールスタンド航走

3-3. ステアリング

PRO 以外のモデルでは、エントリーモデルに適したマイルド なハンドリング特性にするために、ステアリングケーブルの可動 範囲を変更した。これにより、PRO モデルのアグレッシブな乗り 味との差別化をした。

ステアリングシャフト部には、すでに「FX」で採用されている 係留用フックを設けることで、桟橋等で保管する際の利便性を 向上させた(図8)。

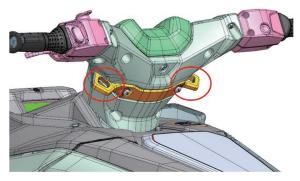
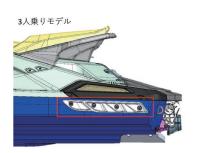
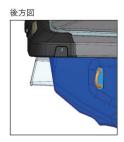




図8 係留フック

3-4. モデルバリエーション

従来の「EX」の強みでもあった航走時の安定性を保つため、 3人乗りモデルにおいては、Body Stabilizer と呼ばれる部品を 新規に導入した。2人乗り仕様の Sponson に比べ、全長と全幅 を広げて排水量を増やすことで、動的・静的ともに安定性の向 上に寄与している(図9)。

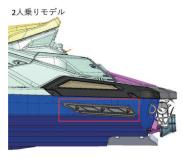


図9 Body Stabilizer (3人乗り)と Sponson (2人乗り) 形状比較

LTDモデルでは、サイドストレージ(図10)を追加することで、 約20L のストレージ容量を増やした。DLX(3人乗り)でも採用 されているバウストレージと併せて、総容量としては、従来の 「EX」に対して約4.5L 大きくなっている。

図10 サイドストレージ

3-5. ジェットポンプ

航走性能を達成するだけではなく、軽量化とサービス性の改 善を行った。軽量化に関しては、部品構造の変更と材料構成を 最適化することで、従来の「JetBlaster」と比較して3.8kg(従来 比22%)の軽量化を達成した。サービス性においては、従来ま ではシリコンで防水していた部品合わせ面を、ゴムシールに変 更することで組立性と交換性を改善した(図11)。

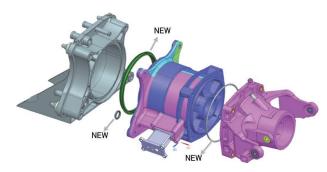


図11 ジェットポンプ構造

3-6. メーター

上位モデルである PROとLTD では、すでに「GP」と「VX」で 導入されている4.3インチカラー液晶を採用することで、エント リーモデルでありながら、高い視認性と操作性に寄与している。 さらに新規 GUI (Graphical User Interface)を導入することで、 よりスポーティーな印象に仕上げた(図12)。

図12 メーター画面

3-7. 制御

PRO モデルでは、エンジン保護の目的でテールスタンド制 御を新たに追加した。これにより、テールスタンド航走を規定時 間続けると、自動的にノズルトリム角を変更することで艇体姿 勢も下がるため(図13)、操船者はエンジンの状態を気にする ことなく、ライディングに集中することができる。

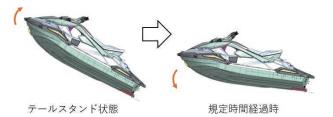


図13 テールスタンド制御

おわりに

「JetBlaster シリーズ」として生まれ変わった初の「EX」プラッ トフォーム更新において、従来の「EX」のよい部分を進化させつ つ、一方で、今までとは違う新しいデザインを確立するというコ ンセプトに沿った製品を開発することができた。デッキの開発 においては、従来通りのSMCを採用するという議論もあったが、 樹脂インジェクションデッキという新しい挑戦をすることで、お 客さまへの価値提供の幅を広げるだけでなく、今後の製品開発 の拡張性の幅も広げることができた。今後も既存の手法にとら われず、お客さまから選ばれるような商品開発をしていきたい。

■著者

森江 厚志 Atsushi Morie YMMC1) Product Development -Water Vehicle

野嵜 歩 Ayumu Nozaki マリン事業本部 開発統括部 WV /海外ボート開発部

袴田 涼介 Ryosuke Hakamata マリン事業本部 開発統括部 WV /海外ボート開発部

1)YMMC: Yamaha Motor Manufacturing Corporation of America

製品紹介

2025年モデル ROV 「WOLVERINE RMAX4」 の開発

"WOLVERINE RMAX4" 2025 Model ROV

植木 勇一 日高 史博 田中 大輔

Abstract

The ROV (Recreational Off-Highway Vehicle) market has strong demand across a wide range of applications, including agricultural work, dairy farming, recreation activities like hunting and trail driving, as well as sports driving, particularly in North America. Its demand is expected to continue growing in the future. Yamaha Motor Co., Ltd. (hereafter referred to as "the Company") has been developing and releasing the "VIKING", "WOLVERINE", and "YXZ series" since 2013 to cover these diverse applications. The Company promotes ROVs under the brand slogan "The Ultimate Outdoor Adventure Partner" and focuses on helping customers "Realize Your Adventure" through the best three Cs: Capability, Comfort, and Confidence. The "Wolverine RMAX(hereinafter "RMAX") series" ("RMAX2" and "RMAX4 Compact") was launched in 2020 for recreational use and received positive feedback from customers. As a minor change model for 2025, the Company has updated it to enhance functionality and comfort while ensuring durability. Additionally, the Company has introduced the "RMAX4", which improves rear-seat comfort and off-road capability on rugged terrains and steep inclines, as a model focused on enhancing Capability and Comfort. Here, the Company will present the development details of the "RMAX4" along with the improvements incorporated into the 2025 "RMAX series" models. The series is shown in Table 1.

はじめに

ROV (Recreational Off-Highway Vehicle) 市場は、北米を 中心に農作業や酪農作業、狩猟やトレイルドライブなどのレク リエーション、スポーツ走行など幅広い用途で高い需要があり、 今後も需要の拡大が見込まれている。ヤマハ発動機株式会社 (以下当社)は、この幅広い用途をカバーするため、2013年から 「VIKING」「WOLVERINE」「YXZ シリーズ」を開発・発売してい る。 当社は、ブランドスローガン "The Ultimate Outdoor Adventure Partner"を掲げ、ROVをプロデュースしている。 Best 3C (Capability、Comfort、Confidence)でお客さまの

"Realize Your Adventure" に取り組んでいる。

「Wolverine RMAX(以降「RMAX」)シリーズ」(「RMAX2」、 「RMAX4 Compact」) は2020年にレクリエーション用途で発 売され、お客さまから好評を博した。今回、2025年のマイナー チェンジモデルとして、耐久性を確保しつつ、機能性と快適性 を向上させてアップデートした。さらに後席快適性と波状路や 急坂登坂の走破性を向上させた「RMAX4」を Capability/ Comfort の向上モデルとして新たにラインナップに追加した。 ここに「RMAX4」の開発内容とともに、2025年「RMAX シリー ズ」に織り込んだ改良点を合わせて紹介する。同シリーズを表1 に示す。

夷1	2025年「	RMAX	シリーズェ	
4X I	ZUZJ II '		77 AI	

RMAX4	RMAX2	RMAX4 Compact
ロングホイールベース 4シートモデル	2シートモデル	ショートホイールベース 4シートモデル

ハイ/ロー/リバースギヤ切替

図1 パワートレインレイアウト

開発の狙い

主に US 東海岸に多いタイトな林間トレイルを家族で快適に 楽しめる従来の「RMAX4 Compact」に対し、「RMAX4」では US 西海岸に多い、広いトレイルや急坂にて大人4名が乗車し ても余裕をもって快適に走行できるモデルを目指した。"Serious pursuit of outdoor adventure with friends and RMAX at the west coast."を本モデルのコンセプトとして設定し、従来の 「RMAX シリーズ」を使用しているお客さまからの改良要望に ついて対応を織り込んだ、下記項目を主要な狙いと定めた。

- 1. 友人との最高のアドベンチャー体験を提供できる
- 2. 冒険欲を刺激する多種多様なトレイルを不具合なく自信 を持って走破できる
- 3. 高い所有感を持てる

開発の取り組み

前述の開発の狙いを達成するため、主に下記4項目に取り組 んだ。

- 1. フロント駆動システムの差動機構の切り替え性能向上
- 2. リヤ駆動システム変更によるターフ機能の追加
- 3. 後席快適性向上と走破性向上
- 4. ユーザーインターフェースの改良

3-1. パワートレイン概要

従来の「RMAX シリーズ」の駆動系は、フロントにスイッチ 操作で切り替えられるデフロック機構を備えたデファレンシャ ルアセンブリと、リヤには常時直結式のギヤアセンブリを搭載 している。本モデルでは、これらのシステムに大幅改良を加え、 車両としての機能性・快適性を向上させた(図1)。

3-1-1. フロントデファレンシャルアセンブリ

フロントデファレンシャルアセンブリは、2WD/4WD/デフ ロックの3モードを以前より搭載している。悪路や登り急勾配の 斜面では必要に応じてドライバーがデフロックモードへスイッ チを切り替えることで、内部メカシステムがデフロック状態へと 遷移する。これは、スプライン嵌合により左右車軸の差動を制 限することで実現しているが、機構保護を目的として、切り替え 時に車速の制約を設けている。この制約により、ドライバーの モード切り替え意志にシステムが即座に対応できず、切り替え に時間を要する場面があった。

この差動機構の切り替え性能における課題に対し、本モデル では新システム開発により、切り替え条件の制約を大幅に緩和 することで、ドライバーの意志に限りなく近い切り替えを実現し た。具体的な手段として、スプライン仕様を大きく見直すことに より強度と嵌合性能を向上させた。これにより切り替え時の車 速制約の大幅な緩和が可能となり、切り替えシステムとしての 性能を高めている。

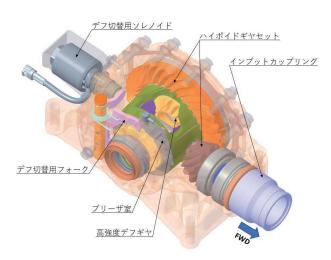

上記の車速設定にあたっては、開発において市場での切り替 え状況やドライバーマインドを解析した。ここから適切な評価 条件を作り込み(図2)、これに合致する設計仕様を選定した。 結果として、本システムでは十分な信頼性を確保したままで、従 来のモデルに対して差動機構の切り替え性能を飛躍的に向上 させた。これにより、ドライバーは、よりテクニカルな路面へも自 信や安心感をもってトライできるモデルとなっている。

図2 想定切り替え状況の一例

3-1-2. リヤデファレンシャルアセンブリ

従来モデルでは、リヤ駆動システムには差動機構がなく、オ フロード走行には適していたが、最小回転半径や芝生(ターフ) 等のデリケートな路面への対応の観点では改良の余地があり、 市場からの改善要望でもあった。また、本モデルでのロングホ イールベース化による最小回転半径の増大への対応も必須で あるため、差動機構を有するリヤデファレンシャルアセンブリを 新規開発し、リヤのみの駆動でかつ左右差動が可能なターフ 機能を追加した。当社のRVモデルとして初となる本リヤデファ レンシャルアセンブリは、従来モデルのリヤギヤアセンブリと同 等のサイズ/車体レイアウトで実現した。特に内部ギヤ/ケー ス強度、ブリーザ機能の作り込みにおいては CAE (Computer Aided Engineering)解析/単体台上評価を活用し、限定され たレイアウトの中で十分な信頼性を持つシステムを成立させた (図3)。

内部構造透視図

3-2. 車体概要

"後席の快適性"と"走破性向上"のために、従来の「RMAX」 のプラットフォームを活用しつつ、車両サイズや各コンポーネン

トの見直しを行った。その結果、"Proven off-road"を高次元で 達成し、お客さまがより過酷なオフロードで快適に冒険を楽し める車両となった。

3-2-1. 後席シートレイアウトおよび車両サイズ

「RMAX4」については、人間工学に基づいたシートレイアウ トおよびフートレストレイアウトを実現することで、走行時のみ ならず、乗降性の向上にも寄与した(図4)。

図4 3D モデルを用いたレイアウト検討

特に、足元のスペースの拡大は、走行時の快適性に大きく寄 与していると考える(図5)。フートレスト形状では、靴底での踏 ん張りを効きやすくするために足先が上がる傾斜面を広く設 け、さらに凹凸形状を追加することでグリップ力を強化した。ハ ンドホールドは、フロントパッセンジャー用を採用し、新レイア ウトに応じて、ポジションの最適化を行った。これらにより、走行 時の快適性とともに、大きな安心感を提供することができてい ると考える。

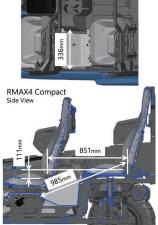


図5 シートおよびフートレストレイアウト

リヤのベッドエリアは、「RMAX2」を流用し、部品の共通化を 極力図ることで、金型費用の低減に貢献した。また、その流用に よって、リヤサスペンション固定位置が後席シートより後方に移 動した。これにより、「RMAX4 Compact」に比べ、サスペンショ ンのボトム時の突上げ感が軽減され、快適性を大幅に向上で きている。

また、「RMAX2」に比べてホイールベースを800mm延長し、 ロングホイールベースにしたことで、直進安定性の向上、ピッチ ングの抑制、険しいトレイルでの信頼性も得ることができた (図6)。

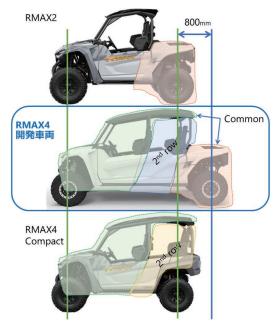


図6 車格比較

3-2-2. EPS (Electric Power Steering)

従来の「RMAX」に対して、EPS性能を示す一つであるアシス トトルクの大幅アップ(29.8Nm → 66Nm)を図った。岩場やデ フロックが必要な走行シーンにおいても、軽いステアリング操 作とポジティブなフィードバックを実現し、ドライバーの疲労軽 減とともに、車両のコントロール性向上に大きく寄与している。

選択可能な3つのモードは、オフロード走破性を最大限に引 き出すとともに、ドライバーの好みに合わせたステアリング フィーリングを選択できる柔軟性を持つ(図7)。

HIGH MODE では、ドライバーがリラックスして走行できるよ う、超軽量フィーリングを作り出し、操舵の負担を軽減した。STD MODE では、軽量フィーリングとタイヤからのフィードバックの バランスを重視し、様々なシチュエーションで使いやすくした。 LOW MODEでは、スポーツ走行時の選定を想定し、直進走行 時のタイヤからのフィードバックを感じやすいようにした。

図7 手元で切り替え可能な EPS モードスイッチ

3-2-3. BRAKE

前述の通り、快適性と走破性の向上のために行った車両サイ ズの見直しにより、車両重量が増加する結果となった。これに見 合ったブレーキ効力を実現するべく、ブレーキシステムの見直 しを行った(図8)。新規ブレーキキャリパーの採用により、キャ リパー単体の剛性アップ、ブレーキパッドの適正化を実施した。 新システムは、十分なブレーキ効力を確保するとともに、ファー ストタッチのフィーリング向上、ブレーキノイズの低減をもたら した。これらは、快適性と走破性の向上にも大きく寄与している。

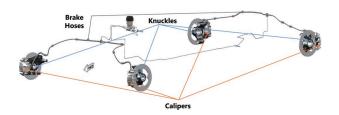


図8 ブレーキシステム概要

3-3. ユーザーインターフェース概要

品質感や所有感の向上を目指し、センターディスプレイや オーディオのアップデートとともに、スピードメーターに TFT 液 晶 (Thin-Film Transistor Liquid Crystal Display)を採用し た。

3-3-1. TFT スピードメーター

4.3-inch のフルカラーの TFT 液晶を新規に開発し、LE (Limited Edition)仕様に設定した。表示スタイルをお客さまの 好みや気分に合わせて "Classic" "Sports" "Adventure" の3種 類から、色についても "Light" "Dark" "Blue" から選択することが できる(図9)。操作ボタンの構成/配置についてもお客さまが 直感的に簡単に操作できるよう再検討し、操作時のボタンのク リック感にもこだわりながら開発した。

図9 TFT メーター表示スタイル

おわりに

米国の開発拠点との協力により、「RMAX4」は後部座席の 快適性と、波状路や急坂の走破性を大幅に向上させたモデル として開発されシリーズに追加された。そして、2025年の 「WOLVERINE RMAX シリーズ」は、全モデルにおいて信頼性 を損なうことなく、より快適で走破性の高いシリーズモデルと なった。

その結果、これら2025年「RMAX シリーズ」は多様なトレイ ルを快適に走破し、家族や友人とともに自信を持って冒険を楽 しむことができるようになった。

変化する市場の要求に応え、お客さまの期待を超えるモデル を提供できるよう、市場の声を常に聞きながら開発を継続して いく。今後の新製品および改良モデルにご期待いただきたい。

■著者

植木 勇-Yuichi Ueki PF 車両ユニット PF 車両開発統括部 OV 開発部

日高 史博 Fumihiro Hidaka PF 車両ユニット PF 車両開発統括部 OV 開発部

田中 大輔 Daisuke Tanaka パワートレインユニット プロダクト開発統括部 第2PT 設計部

製品紹介

速度監視ユニット「RCX3-SMU」(機能安全認証) の紹介

Introduction of the "RCX3-SMU" Speed Monitoring Unit (Functional Safety Certificated)

上野 賢治 三重野 幸介 磯野 真滋 坪井 康太郎 保科 大樹 荒澤 聖人 堀田 敦 西村 祐樹 中西 菜緒

Abstract

Yamaha Motor Co., Ltd.'s Robotics Business Unit (hereafter referred to as "the Company") has introduced a range of industrial robots to the market, including SCARA robots developed for the in-house production lines of motorcycles, single-axis robots, Cartesian robots, and the next-generation transport robot Linear Conveyor Module, which is based on the concept of "minimizing idle time in transport processes to zero." These robots have consistently contributed to the automation of production equipment in various industries, including the assembly of electronic components and the transportation of automotive parts. In recent years, due to factors such as labor shortages and rising labor costs across various industries, the demand for automation has rapidly increased, leading to continuous growth in the demand for industrial robots. Along with this trend, the market's demand for safety from robot manufacturers has intensified. In response, the Company is introducing the "RCX3-SMU" Speed Monitoring Unit, the first of Yamaha's industrial robot products to receive functional safety certification, developed to support the design of production equipment with enhanced safety features.

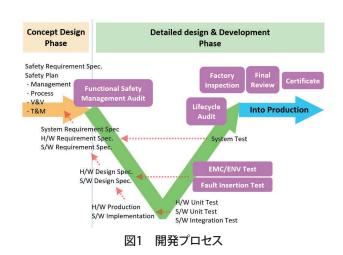
1

はじめに

ヤマハ発動機(株)ロボティクス事業部(以下、当社)では、モータサイクルの社内生産ライン向けに開発したスカラロボットをはじめ、単軸ロボット、直交ロボット、そして"搬送工程の無価値時間を限りなくゼロへ"をコンセプトとした次世代搬送ロボットである「リニアコンベアモジュール」といった産業用ロボットを世に送り出している。これらのロボットは、電子部品の組み立てや車載部品の搬送など、様々な業界における生産設備の自動化に貢献し続けている。

近年、様々な業界で労働力不足や人件費の高騰などの理由 から、自動化のニーズが加速し、産業用ロボットの需要は増大 の一途をたどっている。それに伴い、市場からのロボットメーカーへの"安全性"の要求がより一層高まっている。このような状況を受けて、より安全性の高い生産設備設計を支援するために開発した、当社の産業用ロボット製品として初めての機能安全認証取得製品である速度監視ユニット「RCX3-SMU」について紹介する。

2


機能安全

危険源そのものを取り除きリスクをゼロにすることを "本質 安全" と呼ぶのに対し、付加的な機能によって人や環境へのリ スクを除去、もしくは許容できるレベル(=安全な状態)まで低

Introduction of the "RCX3-SMU" Speed Monitoring Unit (Functional Safety Certificated)

減することを"機能安全"と呼ぶ。機能安全対応には、安全な状態を達成または保持するための"安全機能"と、Fail-Safe のための"診断機能"が必要とされる。その性能はパフォーマンスレベル(以下 PL)¹⁾やセーフティインテグリティレベル(以下 SIL)²⁾など、国際規格で定義されている。

「RCX3-SMU」は認証機関 TÜV SÜD による機能安全認証を取得している。「RCX3-SMU」が備える安全機能は PL d / SIL 2の安全性能を有しており、ISO 13849-1 3 や IEC 61508 4 といった国際規格の要件に則ったプロセス(図1)、技法や措置を用いて開発されている。

- 1)パフォーマンスレベル(PL):ISO 13849-1で定義される安全度を表す数値 2)セーフティインテグリティレベル(SIL):IEC 61508で定義される安全度を表 す数値
- 3)ISO 13849-1:制御システムの安全関連部に関する国際規格
- 4)IEC 61508:電気・電子・プログラマブル電子システムの機能安全に関する国際規格

3

製品の概要

当社の産業用ロボット製品は、お客さまが設計、製作する生産設備の部品として使用される。生産設備には十分な安全性が要求されるが、「RCX3-SMU」はその安全性実現を支援するための製品である。

「RCX3-SMU」は、当社のロボットコントローラ「RCX340」と 3軸以上のロボットと組み合わせた構成で使用する。「RCX3-SMU」と「RCX340」の間は専用通信ケーブル、ロボット位置信号ケーブル、電源ケーブルにて接続する。非常停止ボタンや安全 PLC(Programmable Logic Controller)などの周辺安全機器の信号は「RCX3-SMU」に入力されるように配線する(図2)。

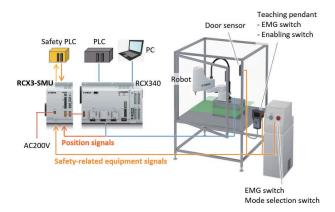


図2 「RCX3-SMU」を用いた生産設備構成例

「RCX340」がロボット動作を制御するのに対し、「RCX3-SMU」は、ロボットの動作速度と位置、また周辺安全機器の状態を、「RCX340」の制御とは独立して監視する。

以下に「RCX3-SMU」の主な機能(安全機能、診断機能)の概要について説明する(図3)。

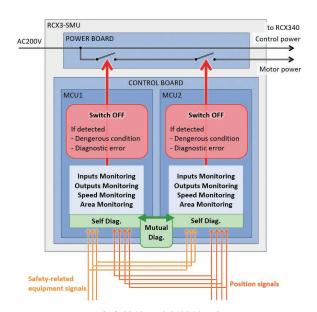


図3 安全機能と診断機能の概略図

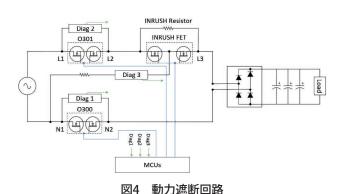
【安全機能】

「RCX3-SMU」内の MCU (Micro Controller Unit) は、設定速度に対するロボット速度の超過、設定領域(位置)に対するロボット可動部の逸脱、および安全柵扉センサ信号の OFF(安全柵扉の開放)といった危険状態を検知すると、「RCX340」へのモータ動力電源を遮断することでロボットを停止させ、安全な状態に移行させる。

なお安全性の実現のためには、生産設備のリスクアセスメント、また「RCX3-SMU」の安全機能にて作業者のリスクが十分に低減される生産設備の設計を、お客さまにて実施していただく必要がある。

Introduction of the "RCX3-SMU" Speed Monitoring Unit (Functional Safety Certificated)

【診断機能】


「RCX3-SMU」は2つの MCU を備えており、内部で2系統に 冗長化された入力信号を、各 MCU が独立してかつ相互に診 断することで、Fail-Safe を実現している。電源電圧、動力遮断回 路、RAM、ROM などの自己診断、MCU 間での相互診断で異常 検知すると、「RCX340」へのモータ動力電源を遮断することで ロボットを停止させ、安全な状態に移行させる。

以降に、安全機能と診断機能により作動する動力遮断機能、 また代表的な安全機能として、速度監視機能と領域監視機能 について説明する。

動力遮断機能

モータ動力電源を遮断しロボットを安全な状態に移行させ る動力遮断機能は、作業者の安全において最も重要な安全機 能であり、十分な信頼性を備えている必要がある。また、機能安 全に対応していない生産設備の場合、生産設備全体を停止さ せる "非常停止" での動力遮断が主な安全な状態への移行手 段であるのに対し、機能安全に対応した生産設備では、安全機 能での動力遮断により、生産設備全体は稼働継続させつつ一 部分の設備のみ安全な状態に移行させるシステムを、比較的 容易に設計することが可能となる。そのため生産性向上などを 目的として安全機能による動力遮断が実行される頻度が多く なることが想定される。

「RCX3-SMU」では、動力遮断回路、および電源投入時に発 生する大電流から後段回路を保護するための突入防止回路の スイッチとして、一般的なメカニカルリレーではなく半導体リ レーを使用しており、動力遮断回数の制限を実質的になくして いる。その上で、各半導体リレーの ON 状態と OFF 状態が、ス イッチングシーケンスに応じて正しく変化することを確認するこ とで、動力遮断回路の故障診断を実現しており、動力遮断機能 に要求される信頼性を満たしている(図4)。

速度監視機能、領域監視機能

速度監視機能は、ロボット動作位置の教示などの作業者が 安全柵内で行う作業の際に、ロボットが高速動作して作業者に 接触するリスクを低減するための安全機能である。各ロボット アームの先端と、エンドエフェクタ(長方形で定義)の頂点を速 度監視点として設定が可能で、速度監視中は全ての速度監視 点について設定速度(最大250mm/s)に対する速度超過を監 視する(図5)。速度超過を検知すると、動力遮断機能により口 ボットを停止させる。

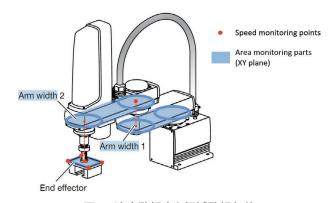


図5 速度監視点と領域監視部位

領域監視機能は、安全柵内の作業者にロボットが接近して 作業者に接触する、作業者が挟まれる、といったリスクを低減 するための安全機能である。各ロボットアームとエンドエフェク タを可動部として設定、またロボットの可動領域を設定でき、領 域監視中は可動領域に対する可動部の逸脱を監視する(図5、 図6)。領域逸脱を検知すると、動力遮断機能によりロボットを 停止させる。

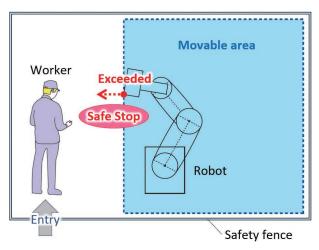


図6 領域監視

Introduction of the "RCX3-SMU" Speed Monitoring Unit (Functional Safety Certificated)

人とロボットの協働

「RCX340」で制御可能なロボットは、人と同じ(安全柵で仕 切られていない)空間で一緒に作業できるように設計されてい る "協働ロボット" ではないため、基本的には稼働中の生産設 備の安全柵内で、作業者とロボットが一緒に作業することはで きない。しかし、「RCX3-SMU」の速度監視や領域監視などの安 全機能を用いることで、お客さまにて設計していただく生産設 備が、作業者のリスクが十分に低減される設計になっていれ ば、例えば稼働中に扉を開けて NG 品を抜き取るといった、限 定的ではあるが作業者とロボットの協働作業を行うことが可能 である(図7)。

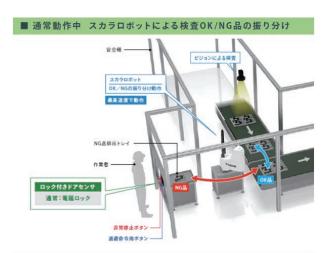
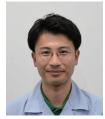


図7 人とロボットの協働作業(NG 品抜き取り)


おわりに

当社の産業用ロボット製品としては初めての機能安全対応 ということで、知見が少なく開発には大いに苦労したが、最終的 に第三者認証を取得して、想定される市場要求を可能な限り満 たした仕様でお客さまに製品を届けることができた。今後も産 業用ロボット製品への安全性の要求はより高まっていくことが 想定されるが、今回の開発の経験を糧とし、安全性はもとより、 よりお客さまに喜ばれる商品性を備えた製品を開発し、ロボッ ト産業界の発展に貢献していきたい。

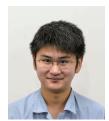
■著者

上野 賢治 Kenji Ueno ロボティクス事業部 技術統括部 FA 商品開発部

三重野 幸介 Kousuke Mieno ロボティクス事業部 技術統括部 FA 商品開発部

磯野 真滋 Shinji Isono ロボティクス事業部 技術統括部 FA 商品開発部

坪井 康太郎 Kotaro Tsuboi ロボティクス事業部 技術統括部 FA 商品開発部


保科 大樹 Hiroki Hoshina ロボティクス事業部 技術統括部 FA 商品開発部

荒澤 聖人 Masato Arasawa ロボティクス事業部 技術統括部 FA 商品開発部

堀田 敦 Atsushi Hotta ロボティクス事業部 技術統括部 FA 商品開発部

西村 祐樹 Yuki Nishimura ロボティクス事業部 技術統括部 FA 商品開発部

中西 菜緒 Nao Nakanishi ロボティクス事業部 技術統括部 FA 商品開発部

製品紹介

国内向け電動アシスト自転車「PAS CRAIG」の開発

Development of the "PAS CRAIG" Electrically Power Assisted Bicycle for the Domestic Market

杉山 峻平

Abstract

Sales of electrically power-assisted bicycles are on the rise, with domestic shipments reaching 795,000 units in 2022. This figure is double that of 2012, and the market is expected to continue expanding in the future. As the market grows, the demand for electrically power assisted bicycles is also diversifying. In 2023, marking 30 years since the release of the first "PAS" model, the Company announced the launch of the "PAS CRAIG", designed for urban riders who prefer a more stylish look. The concept behind the "PAS CRAIG" is to offer a bike that enables riders to ride smoothly through the city with specs sufficient for urban riding and a sleek, minimalistic design. To achieve this stylish design, the Company collaborated with a new supplier specializing in the production of steel frames made from thin pipes, bringing the concept to life.

1

はじめに

電動アシスト自転車の販売台数は増加傾向にあり、2022年の国内の電動アシスト自転車の出荷台数は79.5万台に達した。10年前の2012年と比較すると2倍に増加しており、今後もさらに市場は拡大していくものと予想される。市場の拡大に伴い、電動アシスト自転車に対するニーズも多様化している。初代「PAS」発売から30年の節目の年である2023年に、街乗り向けでスタイリッシュなデザインを好む方へ向けた新製品である「PAS CRAIG」の発売を発表した。そのコンセプトは、街中の走行に十分なスペックと、シンプルで無駄のないデザインにより、颯爽と都会を駆け抜けられる車体とした。また、スタイリッシュなデザインを実現するため、鉄製の細身のパイプを使用したフレームの製作が得意な新規のサプライヤへ製造を委託し、コンセプトを具現化した。

2 開発の狙い

新モデルの開発にあたり、電動アシスト自転車購入者のおよそ7割強が、電動アシスト自転車を初めて購入される方であるということに着目した。また、購入意向者やユーザーのヒアリングにより、スペックは軽快車1)と同じ日常使用や街乗りに十分なレベルで、デザインはスポーティ過ぎずスタイリッシュという、現在の「PASシリーズ」のラインナップではカバーできていないニーズがあることが判明した。そこで本モデルはメインターゲットを、電動アシスト自転車を初めて購入する都市部在住の30代から40代の男性とし、さらにシンプルで上質なものに惹かれ普段の生活でも身の回りのアイテムに統一感をもたせる等、自分の価値観を大切にされる方を想定した。また、電動アシスト自転車の使用シーンは、天気のよい日の通勤や休日の散策での使用を想定し、不要な機能を排したデザインを目指した。

1)軽快車とは、主に日常の交通手段およびレジャーに用いる短中距離、低中速 走行用自転車。

Development of the "PAS CRAIG" Electrically Power Assisted Bicycle for the Domestic Market

これらの想定のもと商品コンセプトとして、"Urban Outrunner" を掲げ、開発の主な目標は以下の7項目に設定した。

- 1. 鉄製の細身のパイプを使用したダイヤモンド形フレーム と700Cの大径タイヤを採用した、シンプルで無駄のない 軽快感とスピード感のあるデザイン
- 2. スマートパワーアシスト²⁾を採用し、毎日の片道5kmの 通勤を楽にこなせるアシスト性能
- 3. 男性が乗りやすいフレームサイズ
- 4. 街乗りで素早く楽に走れるクロスバイクに近いポジション とギヤ設定

- 5. メンテナンスの頻度が少ないコンポーネントパーツの採用
- 6. 初めて電動アシスト自転車を購入される方が手の届きや すい価格の実現
- 7. アクセサリーのフェンダーとフロントキャリアおよびバス ケットが装着可能な構造とすることで、急な雨や通勤バッ グの積載に対応

2)スマートパワーアシストとは、乗る人のこぎ方や道路の傾斜などに応じて、自動 でアシストモードを切り替えする機能。

本モデルのフィーチャーマップを図1に示す。

図1 フィーチャーマップ

新たなサプライヤの開拓

本モデルはデザインを重視しながら価格を抑えたモデルを 目指していた。これには鉄製パイプを使用したフレームが必須 となるが、取引中のサプライヤでは鉄製フレームの新規開発が 困難であるため、新たなサプライヤの開拓に取り掛かった。そこ で、サプライヤ選定条件として、開発力・製造能力・価格競争力・ 品質管理体制の4つを定め、開発部門が主体で製造工場の視 察・試作品評価、市販品ベンチマーク等を経て、技術力を有す るサプライヤを選定した。結果として、サプライヤの選定からモ デルの開発開始への移行がスムーズに進み、新たなサプライ ヤによるモデル開発でありながら短期間での開発を実現した。

製品の特長

4-1. フレーム

「PASシリーズ」ではアルミ製フレームが主流だが、前述の通 り本モデルでは鉄製パイプを採用した。鉄製パイプを採用する ことで、コストメリット以外にも、アルミ製フレームに対し断面形 状の小径化が可能となり、すっきりとしたシルエットにも寄与し た。さらに、サークル錠やリアキャリアの取付穴を排することで、 無駄のないシンプルなデザインとした。しかし、デザイン性とフ レーム強度確保の両立が課題であった。アルミ製フレームはパ イプ径が太いため、パイプ同士の接合部に補強部材が設けら れていても目立ちにくいが、一方で鉄製フレームではパイプ径 が細いため、補強部材を設けると目立ちやすく、すっきりとした シルエットが損なわれてしまう。そのため、応力解析と試作評価 を繰り返し、接合部の形状やパイプ肉厚、溶接工程の最適化に より、必要な強度を満たした(図2)。

Development of the "PAS CRAIG" Electrically Power Assisted Bicycle for the Domestic Market

図2 フレームの応力解析モデル

4-2. タイヤ&ホイール

街乗りで遭遇する段差を快適に走行できるように、クロスバ イクにおいて主流のタイヤサイズである700Cと、幅広な38mm を新たに採用した。その採用に際しホイールの強度やリムブ レーキの制動力などの評価を実施し、特にリムとブレーキに関 しては数十通りの組合せから最適な制動性能となるようなもの を選定した。意匠面においては、リムの内側を黒色とすること で、他のコンポーネントパーツとの統一感をもたせている。

4-3. チェーンケース

ペダルの回転軸を中心に円形状のデザインとし、コンパクト なサイズとすることで軽快で洗練された印象を表現した。また、 細身のフレームに合わせ、引き締まった印象を与える黒色で塗 装した(図3)。

図3 チェーンケース

4-4. サドル&ハンドル

細身でスポーティなサドルとフラットなバーハンドルを採用 し、クロスバイクに近い上体がやや前傾した快適なポジション を設定した。

4-5. 変速

電動アシスト自転車を初めて購入する方にとって操作の負担

とならないように、「PAS シリーズ」で採用実績の高い内装3段 変速を採用した。変速機構がハブ内部に内蔵されていることか らスプロケットやディレイラーのメンテナンスが不要となり、メ ンテナンスの頻度の低減に貢献している。

4-6. アクセサリー開発

車体全体のデザインにマッチしたフロントキャリア、前後セッ トのフェンダーを専用アクセサリーとして設定することで、汎用 性およびデザイン性を高めている。純正のアクセサリーとして フロントバスケットを用意し、通勤バッグの積載にも対応してい る(図4)。

図4 専用アクセサリー

4-7. メーター

本モデルでは、「PAS シリーズ」の2023年モデルから導入さ れている、時計機能付きのデジタルメーター付きメインスイッ チであるスマートクロックスイッチを採用した(図5)。シンプル な形状とハンドルバーに沿ったコンパクトなサイズで、細身の フレームデザインとの一体感が得られている。操作頻度の高い アシスト上下ボタン操作はブラインドタッチが可能となるように 配置を工夫した。また、視認性を確保するため、操作頻度の低 い電源ボタン、ライトボタン、セレクトボタンは筐体側面に配置 した。新機能としてバッテリ残量が低下した際はブザー音と LED ランプで充電忘れを防止する機能を搭載した。消費カロ リー、残りアシスト走行可能距離、電池残量の表示はセレクトボ タンで切り替えが可能である。

図5 スマートクロックスイッチ

車両カラーリングデザイン

カラーリングはマットラベンダーをイメージカラーとし、定番 色のマットジェットブラックに加え、明るい印象をもたせるアー スカラーのマットグレイッシュベージュの3色を設定した(図6)。 トップチューブに配置した製品名のロゴは3色共通でクロム調 を採用し、知的で洗練されたシンプルさを表現した。(図7)。ハ ンドルやサドルだけでなく、ペダルやクランク、ヘッドランプやベ ルなどのコンポーネントパーツは黒系でまとめ、統一感をもた せた。

図6 カラーリング

図7 クロム調のロゴ

おわりに

本モデルは、走っている時も、止まっている時も、街に溶け込 むような統一感のあるデザインと、細身のフレームや無駄のな いコンポーネントパーツでスマートな雰囲気を作り出すことを 狙った。街乗りで使い勝手がよく、シンプルでスタイリッシュな デザインが、身の回りのアイテムと車体の雰囲気に統一感をも たらし、ユーザーの所有欲を高めてくれるはずである。「PAS CRAIG」が、「PAS シリーズ」の新たなファン層の拡大につなが ることを期待している。

■著者

杉山 峻平 Shumpei Sugiyama ランドモビリティ事業本部 SPV 事業部 第2開発部

製品紹介

Electric Assist Hose Cart ("X-Quicker") for Firefighting

藤井 勲 杉山 和弘 向井 勇貴

Abstract

Yamaha Motor Engineering Co., Ltd. (hereinafter referred to as "the Company") has been developing and selling products for firefighting agencies since 1985 to date, starting with the electric hose cart jointly developed with the Tokyo Fire Department. This range of products includes ride-on electric hose layers, hose carts with handles, firefighting motorcycles (commonly known as "red bikes"), and lightweight dual-focus portable floodlights, among others. The electric assist hose cart (product name: "X-Quicker") introduced in this article is mounted on the rear of a fire truck (Figure 1). After arriving at the scene, it is used to carry up to 120 kg of equipment, such as fire hoses, and allow hoses to be extended to the fire source or water supply as part of firefighting operations. This article introduces the development and features of this product.

1

はじめに

ヤマハモーターエンジニアリング株式会社(以下、当社)では、1985年に東京消防庁と共同開発した電動ホースカーから現在に至るまで、乗用式電動ホースレイヤー、手引きホースカー、消防活動二輪車(通称:赤バイ)、軽量二焦点型可搬式投光器など、消防機関向け製品の開発、販売を行なっている。今

回紹介する電動アシストホースカー(商品名:「X-Quicker」)は、消防自動車の後方に搭載され(図1)、現場到着後に消防ホースなど、最大120kgの機材を積載し、火元や水利までホースを延長するための消防用資機材である。本稿では、その開発概要と製品の特徴について紹介する。

図1 搭載状態

2 商品の企画

昨今の消防業界課題として消防自動車の軽量化、隊員の高 齢化、女性隊員の増進に伴う省力化の要望がある。

「X-Quicker」は、当社が得意としていた乗用方式から、隊員が牽引する操縦方式に変更することで、車体の小型軽量化を図り、電動アシスト化により機動性、操作性を向上することを企画の骨子とした。そして"迅速、確実、安心"をキーワードとして、過酷な現場で活躍できる力強さと扱いやすさの両立を目指した。

3 開発企画と達成方法

企画コンセプトに基づき3つの開発項目を示す。

- 1. 迅速:消火活動の最前線で一分一秒でも早く放水を開始 するため、消防自動車から降車後に、ハンドル展開と電源 オンの2アクションのみで走行準備を完了させる。
- 2. 確実:パワフルなモーターで素早く発進加速し、力強く坂

Electric Assist Hose Cart ("X-Quicker") for Firefighting

道を上る。また、大径タイヤの採用により、ホースや路面 段差を乗り越え、未舗装路などのさまざまな悪路も走破す る。

3. 安心: スロットル操作が不要で、直感的かつシンプルな "引くだけアシスト"で、消防隊員とホースカーの動きを連 動させ、消防隊員の体力および、精神的な負荷を軽減す る。主なフィーチャーを以下に示す(図2)。

3-1. アシスト駆動システムの概要

図3に示す通り、隊員が歩き出すと、B:ストロークセンサーで ハンドルが軸方向にストロークする値を検出し、C:コントロー ラーで必要なモーター出力を演算し、E:モーターに電流値を 指示しアシスト力を発生させる。ハンドルがストロークしている 時だけアシスト力が発生し、歩く速度を落としたり、止まったり するとアシスト力は発生しない。コントローラーと左右のモー ターは CAN(Controller Area Network)通信で指令値の受け 渡しを行う。コンポーネントについては、モーターサイクルのエ ンジン制御ユニットのハードウェアをコントローラーとして流用 し、制御仕様は「X-Quicker」専用としている。モーターは E-Bike で採用されている240Wのモーターを二基搭載、D:バッテリー は密閉式の鉛蓄電池を直列に3個接続して36Vを供給する。

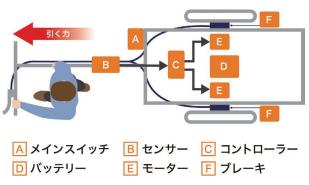


図3 システムの構成

制御仕様の主な特徴を3つ示す。

- 1. 発進時の力強さと、飛び出し挙動を抑えるため、アシスト力 の立ち上がり時間と、モーター出力の適合値を最適化した。
- 2. ホースカーを牽引する際には、歩くステップによる引き力 (=ハンドルにかかる荷重)の脈動が発生する。脈動が大 きいとハンドルの持ち上がりが大きく、操縦性が悪化する ため、モーター出力の増減方法を最適化し、操縦性を向 上させている(図4)。
- 3. フェールセーフの機能として、片輪が脱輪、もしくは障害 物でロックした場合や、センサーに不具合が起きた際に アシスト力を強制的にカットする。

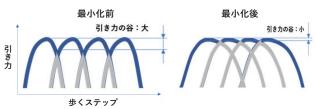


図4 引き力の谷の最小化

3-2. 車体構成

車体構成は、ステアリング部、メインフレーム部、サブフレー ム部に大別される。ステアリング部にはストロークセンサーを 配置し、そのスライド機構にはカムフォロアー(軸付きベアリン グ)の採用により、スムーズな動作と操縦時の剛性を確保して いる(特許出願済)(図5)。メインフレーム部は、ホース10本 (200m分)を積載できる容量を確保し、構造に角形鋼管を採 用することで、従来の乗用式電動ホースレイヤーの丸形鋼管フ レームから、重量軽減と剛性アップを図っている。サブフレーム 部は、バッテリー、モーター、ホイールなどの電源、動力系をユ ニット構造でまとめており、製造性とメンテナンス性の向上によ る今後のバリエーション展開も考慮している。

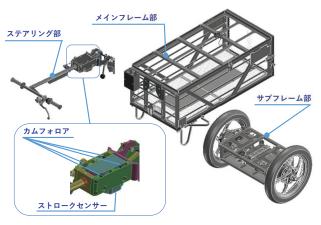


図5 車体構成とスライド構造

3-3. 走行評価・強度・信頼性

評価項目、実施方法、判断基準については、隊員の使用状況 を確認し、当社のモーターサイクルの開発経験を生かした、 「X-Ouicker」独自の実験企画を立案している。一例として、走行 機能評価では、ホースカーを牽引する速度や登坂角度に応じ て、最適なアシストフィーリングとなる制御パラメーターの適合 を実施し、災害現場でホースや路面段差の乗り越し性能確認 に加え、山間部や河川敷での使用を想定し、悪路での走行機能 確認、および走行耐久を実施した。強度確認では、障害物への 衝突後も走行が継続できるよう、フレームや駆動系の強度確 認、および現場に散乱するホースの乗り越しを想定した走行耐 久試験を実施した。また、大型加振機を用いて、消防自動車搭 載時の走行振動を模擬した加振耐久も実施し、必要とされる信 頼性を漏れなく確認している。

3-4. アシスト効果

アシスト効果の検証例として、ハンドル取り付け部にロードセ ルを装着し、アシスト有無でハンドルに掛かる荷重を計測した 結果、7°登坂路における登坂範囲の平均値で、約80%の負荷 が軽減され、アシストによる力強さを感じることが確認できた (図6)。

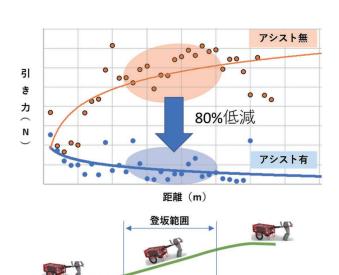


図6 アシスト効果

販促活動

「X-Quicker」の販促活動として、アシストによる負荷軽減効 果を体感していただくことが一番であるため、各地の消防署へ デモンストレーション活動を実施している。併せて、消防署員の 方々に認知していただくために、展示会への出展、業界誌への

広告掲載、Webでの開発者トークなどの動画コンテンツ等を 実施し、製品の良さを訴求する活動を展開している。

参考資料として、仕様諸元を下記に示す(図7)。

什様諸元

17/18/19/10		
製品名		X-QUICKER
型式		E055
A =	使用時	2,140mm
全長	収納時	1,241mm
全	福	858mm
全高	使用時	880mm
土间	収納時	829mm
トレ	ッド	708mm
最低地	上高	150mm
装備	重量	100kg
最大程	載量	120kg
荷室ホース和	f載本数 ※1	10 本
登坂カ	1 %2	10°
原動機	型式	ブラシレス DC モーター
	定格出力	240W× 2 個
	型式	LPX12-9.0
バッテリー	種類	密閉式鉛蓄電池
	容量	12V8.6Ah(20 時間率)×3 個
一充電走行距離(平坦舗装路)※2,3		約 20km(約 4 時間)
一充電走行距離(10°登坂舗装路)※2,3		約 1.5km(約 30 分)
タイヤサイズ		2.75-14_41P(チューブ入り)
タイヤ空気圧		280kPa
ブレーキ方式		ドラム式 (左右)
駐車ブレーキ方式		手ブレーキロック式
使用環境温度		-5℃~ 40℃

^{※1} ホース径 65mm

図7 仕様諸元

おわりに

「X-Quicker」は、老若男女を問わず、すべての消防隊員の皆 様にご使用いただけるよう、力強さと扱いやすさを兼ね備え、従 来は困難であった走行環境での運用を可能とし、消防活動の 省力化と活動範囲の拡大を実現した。40年にわたり、重要な社 会インフラのための消防製品を市場に提供し続けてきた当社 の経験と信頼が結集された成果である。

■著者

Isao Fujii ヤマハモーターエンジニアリング㈱ 事業企画推進部

杉山 和弘 Kazuhiro Sugiyama ヤマハモーターエンジニアリング㈱ 事業企画推進部

Yuki Mukai ヤマハモーターエンジニアリング(㈱ システム開発部

^{※2} 最大積載量 120kg積載時

^{※3} 測定条件:満充電された新品パッテリー、20°Cの環境下で連続走行した場合の電流値に基づいた計算値

技術紹介

走りの幅を広げる 新型「NMAX」用「YECVT」 の開発

Extending the Range of Driving - Development of "YECVT" for the New-"NMAX" 勝山 祐紀 大塚 一樹 水澤 幸司 松島 秀洋 吉村 剛 江口 和也

Abstract

Yamaha Motor Co., Ltd. (hereafter referred to as "the Company") has developed the "NMAX", a compact premium scooter, which is favored by many customers for its outstanding design, convenience, and driving performance. However, the ASEAN (Association of Southeast Asian Nations) region, the Company's primary market, is rapidly evolving, making it essential to develop products that adapt to changes such as market maturity, the diversification of consumer preferences, and increased competition from similar products. As a result, the demand now is for unique new value, distinct to the Company, in addition to daily-use convenience.

To further enhance the acceleration performance of the new "NMAX" and deliver the added value of riding enjoyment, the Company developed a new transmission mechanism, "YECVT", by leveraging the electronically controlled YCC-AT (Yamaha Chip Controlled Automatic Transmission) initially created for the 2007 "Majesty" model.

This paper discusses the features and the structure of YECVT.

はじめに

ヤマハ発動機株式会社(以下当社)の小型プレミアムスクー タ「NMAX」は、優れたデザイン、利便性、走行性能などにおい て多くのお客さまから支持を受けている。しかし、主力市場であ る ASEAN (東南アジア諸国連合) 地域は発展著しく、市場の成 熟化、価値観の多様化、競合他社の追随などの変化に対応した 商品開発が重要である。そのため、日常使いの利便性に加え て、当社らしい新たな価値を提供することが求められている。

今回、新型「NMAX」において加速性能をさらに進化させると ともに、走る楽しさという付加価値を提供すべく、2007年「マ ジェスティ」において開発された電子制御式無段変速機構である YCC-AT (Yamaha Chip Controlled Automatic Transmission) を応用した新しい変速機構「YECVT」の開発を行った。

本稿では、YECVT の特徴と構造について紹介する。

開発の狙い

今回当社が開発した YECVT は、小型スクータに搭載可能な システムを目指した電子制御式無段変速機構である。日常使い の利便性を損なうことなく、走る楽しさを追求することを狙いに 開発、実用化したものである。

YECVT はコンパクトな構造の変速機構により、既存モデル 同等の車両レイアウトに搭載可能である。また、モータ制御に よって自在に変速することが可能となり、無段階変速に加えて、 シフトダウンによる力強い加速走行、エンジンブレーキの利用、 走行モードによる異なる走行性能特性の切り替えを可能とし た。

YECVT の特徴

3-1. YECVT とは

新開発の YECVT は、電子制御により CVT (Continuously Variable Transmission)の変速比をライダーの操作に応じて 変更することが可能となり、機械式 CVT では体感することが難 しかったMT(マニュアルトランスミッション)車のような走行体 験を得ることができる。YECVT は変速比セッティングの自由度 が高く、低回転領域を使用すれば燃費性能を向上させることが でき、高回転領域を使用すれば強い加速やエンジンブレーキ を利かせたメリハリのある走行が可能となる。

「NMAX」に搭載するにあたり、走行状況に応じて選べる "Driving mode" 切り替えと、加速/減速量を好みや走行状況 に応じて調整できる "Shift down" 機能を実装した。

3-2. Driving mode 切り替え

駆動系の変速用マップを切り替えることにより、異なる変速 特性を任意に選択することが可能である。

「NMAX」においては、2つの Driving mode を選択でき、 "T-Mode" は市街地でのスムーズな走行、"S-Mode" はワイン ディングロードでのレスポンスの良い走行を提供する(図1)。

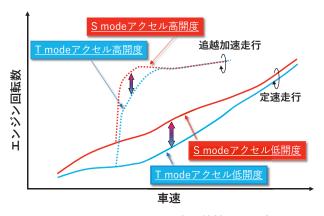


図1 Driving mode の走行特性イメージ

3-3. Shift down 機能

Shift down 機能は、ボタン操作によって任意に変速比を変 更することで、MT 車のギヤシフトダウンのような走行特性を実 現する。"前走車を鋭い加速で追い抜きたいとき" "長い下り坂 でエンジンブレーキを利用して安全に減速したいとき" "コー ナー進入の減速から脱出時に気持ちよく加速をしたいとき"な どのシーンでライダーの操作の幅を広げ、操る楽しさを提供す る。SHIFT ボタンの操作により加速/減速状態に応じ最大3段 階までシフトダウンが可能である(図2)。

また、ライダーの加速要求に応えるために、スロットルを急開 した場合は車両側が走行状況を判断し、自動で1段階シフトダ ウンする機能も備える。

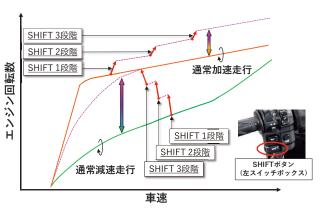


図2 Shift down の走行特性イメージ

3-4. 環境性能

冷機状態からのエンジン始動において、排出ガス浄化装置 の触媒活性まで、ある程度の暖機運転時間が必要である。そこ で、YECVTの変速比制御により、冷機時は通常運転時よりもエ ンジン回転速度を引き上げることで、排出ガス流量を増大させ て触媒活性を促進する。この制御により、冷機始動後の排出ガ スを低減させている。

構造

4-1. 全体レイアウト

スクータに搭載するエンジンは、幅/高さともに制約が大き いことに加え、今回の開発では従来の機械式 CVT エンジンと 共通の車体フレームに搭載する必要があった。そこで新機構を 検討するにあたり、コンパクトに収めることに重点をおき開発を 行った。

図3は YECVT のシステム全体図である。制御を担うコント ロールユニットと変速機構を示す。

Extending the Range of Driving - Development of "YECVT" for the New-"NMAX"

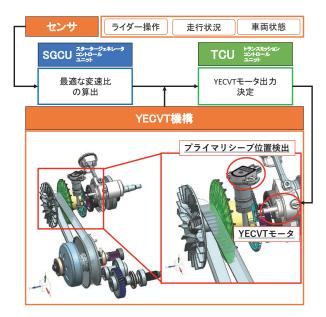


図3 YECVTシステム全体図

4-2. 制御システム

YECVT の電子制御は、"ライダー操作、走行状況、車両状態 の認知"→"最適な変速比の算出"→"YECVTモータ駆動によ る変速"の一連の処理を専用の制御システム(コントロールユ ニット、センサ、モータ)により実行している(図4)。

新型「NMAX」に YECVT を搭載するにあたり、コンパクトか つ軽量な制御システムの開発を行った。特にコントロールユ ニットに関しては、エンジンと駆動装置のユニットを分けること で、駆動系コントロールユニットを小型化(約90×60mm、 165g)した。

これにより、従来の「NMAX」同等の車両レイアウトでYECVT 制御システムの搭載を可能にするとともに、エンジンコントロー ルユニットを共通とすることで YECVT 非搭載モデルとの仕様 変化を最小限にした。

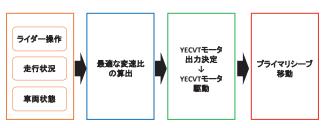


図4 制御フローのイメージ

4-3. メカニカル構造

コンパクト化に寄与した構造について、以下の3項目を紹介 する。

1. プライマリスクリュ

変速時のプライマリシーブの直線運動を回転運動に変換す るため、プライマリスクリュという送りねじ機構の部品を採用し た。ギヤ配置は当社で採用実績のある始動システムのレイアウ トを踏襲しており、モータの回転トルクをギヤを介して送りねじ に伝達するとともに、必要な変速速度と保持推進力が得られる 構造である。クランク軸同軸上に送りねじをレイアウトすること で小型化し、摺動オイルシールを新規開発することで油中レイ アウトを実現した(図5)。

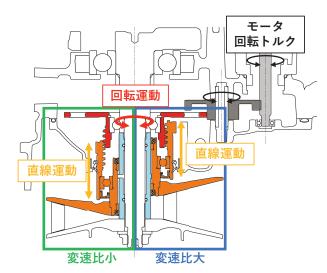


図5 プライマリスクリュ周りの動力伝達機構

2. プライマリシーブ

プライマリシーブがエンジン回転トルクを伝達しながら直線 運動するために、スプライン嵌合による動力伝達機構を採用し た。全長が長い軸側のスプラインを短くし、穴側に長いスプラ インを持たせることで、変速に必要な作動量を確保しながら本 機構の軸方向全長を抑制した(図6)。

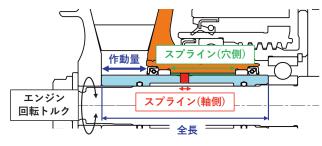


図6 プライマリシーブ構造

3. プライマリシーブ位置検出機構

プライマリシーブの直線運動を回転運動に変換し、角度変化 として位置検出する機構を採用した。角度センサとプライマリ

Extending the Range of Driving - Development of "YECVT" for the New-"NMAX"

シーブをつなぐセンシング用のシャフトは、CVT 室の外から油 室内までを貫通するレイアウトとなっており、プライマリシーブ と一体で直線運動するプライマリスクリュをセンシングすること で正確な位置検出を可能とした。

長尺の軸受をステーに圧入することにより、片持ち支持構造 でもシャフトの倒れを抑制し、良好なセンシング精度を実現し た。シャフトとカムは圧入され、最小限の部品点数で小型な構 造とした(図7)。

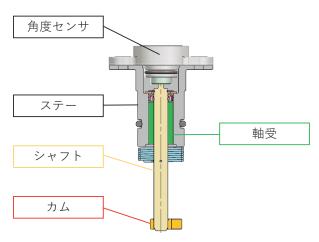


図7 プライマリシーブ位置検出機構

以上の通り、コンパクトな構造で YECVT を作ることで、従来 の機械式 CVT に対し重量/コストの増加を最低限に抑え、小 型スクータとしての取り回しや収納スペースを保ちつつ、走行 性能の進化を実現している。

おわりに

新開発の「YECVT」は、150cm³クラスの小型スクータにも搭 載可能なコンパクト構造で、排気量アップという手段に頼らな い性能向上手法として、原動機のポテンシャルを最大限に引き 出すシステムである。新型「NMAX」から初搭載し、"Driving mode"や "Shift down"機能の実装により、快適性とスポーツ 性の異なる走行特性を1台のスクータで実現した。これが私た ちの考えた当社らしい新たな価値の訴求である。

2024年6月インドネシアにて YECVT を搭載した新型 「NMAX」の発表イベントが開催され、参加者による SNS への 投稿が瞬く間に広がり、YECVT に対する高い関心をうかがうこ とができた。

初代「NMAX」から9年余り、今回我々が目指した"進化"が多 くのお客さまに日常の走る楽しさを提供できると確信している。

■著者

勝山 祐紀 Yuki Katsuyama パワートレインユニット プロダクト開発統括部 第1PT 設計部

大塚 一樹 Kazuki Otsuka パワートレインユニット プロダクト開発統括部 第1PT 設計部

水澤 幸司 Koji Mizusawa パワートレインユニット プロダクト開発統括部 第1PT 実験部

松島 秀洋 Hidehiro Matsushima パワートレインユニット プロダクト開発統括部 第1PT 実験部

吉村 剛 Go Yoshimura パワートレインユニット プロダクト開発統括部 第1PT 実験部

江口 和也 Kazuya Eguchi PF 車両ユニット 電子技術統括部 システム開発部

技術紹介

進化した自動化マニュアルトランスミッション 「Y-AMT」の開発

Development of the Evolved Automated Manual Transmission "Y-AMT"

林田 勇武 鈴木 満宏 福嶋 健司 南賢吾

Abstract

The "YCC-S (Yamaha Chip Controlled Shift)" was commercialized^[1] from the 2006 "FJR1300AS" model as the world's first AMT (Automated Manual Transmission) for motorcycles. Since then, it has undergone refinement, including the addition of a stop mode that automatically shifts down to first gear when decelerating to a stop, as well as the integration of an electronic throttle control. This continuous development led to its adoption in the "YXZ1000R SS" model ROV (Recreational Off-highway Vehicle) [2]. Currently, in the motorcycle sector, other companies have also introduced AMT vehicles, such as those with DCT (Dual Clutch Transmission), leading to an increase in the number of models available. In the automotive sector, two-pedal vehicles without a clutch pedal are becoming more common, with some examples showing better acceleration performance than three-pedal vehicles. In this context, the performance and functionality of the YCC-S has evolved, integrating enhanced sportiness and convenience, and has been renamed "Y-AMT (Yamaha Automated Manual Transmission)". This new system has been installed in the 2024 "MT-09 Y-AMT" road sports model.

はじめに

「YCC-S (Yamaha Chip Controlled Shift)」は、世界初の モーターサイクル用自動化 MT (Manual Transmission)シス テムとして2006年型「FJR1300AS」から市販化 [1] した。その 後、減速停車時に自動で1速までシフトダウンするストップモー ドや、電子スロットル連携制御の追加など熟成を重ね、ROV (Recreational Off-highway Vehicle)の「YXZ1000R SS」にも 採用 [2] するなど継続的に開発してきた。現在では、二輪車では 他社からも DCT (Dual Clutch Transmission) タイプなどの自 動化 MT 車両が実用化され、機種数も増えてきており、四輪車 でもクラッチペダルがない2ペダル車が増え、3ペダル車よりも 2ペダル車の方が加速性能がよい例も珍しくない。このような 中、今回 YCC-S の性能・機能を進化させ、高いスポーツ性と利 便性を兼ね備え、名称も一新した「Y-AMT (Yamaha Automated Manual Transmission)」を開発し、ロードスポーツモデル 2024年型「MT-09 Y-AMT」に搭載したので紹介する。

開発の狙い

Y-AMTは、「MT-09」が持つ高いスポーツ性を維持したまま、 ライダをクラッチ操作とシフトペダル操作から解放することで、 走りへの没入感を引き出すことに主眼をおきつつ、AT(自動変 速)機能付加による利便性向上も目指した。

システムおよび構造

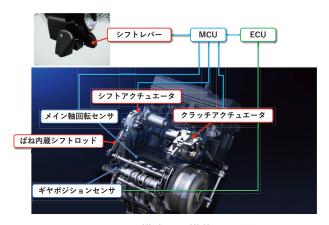


図1 システム構成図&搭載レイアウト

3-1. システム構成

基本構成は「FJR1300AS」の YCC-Sと同様に、エンジン本体 への大きな変更を加えることなく、クラッチ、シフタをそれぞれ のアクチュエータで動かすことによって自動化するシステムで ある(図1)。以下に変更点を解説する。

3-2. アクチュエータ搭載レイアウト

「FJR1300AS」搭載の YCC-S では、油圧を発生させるクラッ チアクチュエータ、シフトシャフトと連結したシフトアクチュエー タを共にフレームに搭載していたが、「MT-09 Y-AMT」では2 つのアクチュエータをエンジン背面スペースに並べてレイアウ トした。これは、「MT-09」のスリムでコンパクトなディメンジョ

ン、足つき性を含む乗車姿勢に影響を与えないためであり、ま た質量増加による車両運動性能への影響も最小限とした。な お、Y-AMT のシステム質量はクラッチレバー、シフトペダル廃 止による軽量化の効果も含め2.8kgである。

3-3. アクチュエータ

「FJR1300」の油圧式クラッチに対し、「MT-09」はワイヤ式ク ラッチであるため、クラッチアクチュエータも油圧式からリンク 式に変更した。クラッチアクチュエータには、素早くクラッチ容 量を制御する応答性、低消費電力性能、故障時の車両挙動抑 制機能が求められる。これらを解決するために、クラッチ位置を 保持する機能と、クラッチスプリング荷重をばねの力で相殺する アシスト機構を備えている。「FJR1300AS」では、油圧機構部の 摩擦によって位置保持機能を実現していたが、リンク式に変更 すると位置保持機能を失う。そこで、フリクション機構を内蔵して 同機能を実現した。またアシスト機構もメカニズムを変更し小型 化した(図2)。なお、シフトアクチュエータは「YXZ1000R SS [2] の構造を踏襲し内部部品は共用している。

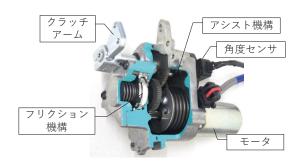


図2 クラッチアクチュエータ

3-4. ばね内蔵シフトロッド

シフトアクチュエータとシフタ機構を繋ぐシフトロッドが通常の ロッド(リジッド)の場合、シフタ機構部品の加速に時間がかかり、 シフトアップ時に駆動力が得られない時間(以下駆動抜け時間) が長くなる課題がある。そこで、ばね内蔵シフトロッドを開発した (図3)。エンジントルクを低減する前にシフトアクチュエータを動 作させてシフトロッドのばねに蓄力しておき、エンジントルクを低 減してドッグ(トランスミッションギヤに設けられたトルクを伝達 する凸部)を抜くときにばねに蓄力したエネルギを利用してシフ タ部品を加速させることで、駆動抜け時間の短縮を図った。

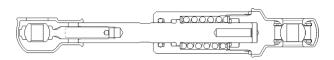


図3 ばね内蔵シフトロッド

3-5. トランスミッションギヤ

トランスミッションギヤ側でも駆動抜け時間の短縮のため、 ドッグ本数を5本から6本へ増やすことで、ドッグ同士が突き当 たりから噛み合いまでの最大回転角を17%縮小させた。

3-6. シフトレバー

当社独自のシーソー式シフトレバーをハンドルスイッチ一体 式で新開発した(図4)。レバーは人差し指のみでのシフトアッ プ、シフトダウン操作も可能としている。シフトペダル操作が不 要になることにより乗車姿勢の自由度や下半身のホールド性 が向上する効果があり、ペダルレスならではの車体との一体感 を狙い、ハンドシフトに集約した。

図4 シフトレバー

新機能

新機能として AT 機能を紹介する。

ライダがシフト操作を行う "MT" モードと、市街地でのコ ミューティングやツーリングに適した AT モード "D"、D よりもス ポーティな走行に適した AT モード "D+" を選択できるように した。MT モードと AT モードは右手側のスイッチで切り替えら れる。またATモードは、モード設定や車速、エンジン回転数、ア クセル開度情報などから最適なタイミングで自動変速を行う。 具体的には、加速中にはライダのアクセル操作からライダの意 図を判断しシフトアップ、キックダウンをする。一方、減速時に は、車両の減速度に応じてシフトダウンすることで、加減速の駆 動力が十分に出せるギヤ選択をできるよう制御を行っている。 なお、AT モード中でもシフトレバーによる介入操作が可能であ る。

AT モードでは、制御プログラムに応じたタイミングで変速さ れることになるため、ライダが自ら変速操作を行うMT モードよ りも変速時の車両挙動が不快なものと捉えられやすい。そのた め、快適性確保の視点で車両挙動の許容代は小さくなる。これ

に対し、上述した構造変更による駆動抜け時間短縮に加え、エ ンジン制御、クラッチ制御、シフト制御の協調方法を車両状況 に応じて切替える新変速アルゴリズムを導入するなど、 1/1.000秒単位の時間短縮を突き詰めた結果、車両挙動を大 幅に抑えることができた。また、クラッチの摩耗や個体差の影響 を抑えるために、走行中にクラッチの状態変化を学習し補正す る制御を追加することで、上述の車両挙動安定性を長期にわた り維持可能とした。

性能

2022年式「FJR1300AS」と比較すると、駆動抜け時間は 60%以上短縮し、「MT-09」の高いスポーツ性に十分対応でき る性能を得ることができた(図5)。

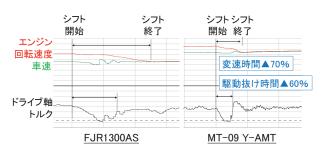


図5 「FJR1300AS」と「MT-09 Y-AMT」の駆動抜け時間比較

クイックシフタを搭載した「MT-09」(以下クイックシフタ車 両)と、「MT-09 Y-AMT | (MT モード) (以下 Y-AMT 車両)を比 較する。

はじめに、テストコースで実験ライダが全開加速を行ったと きの0-400m 加速タイム(表1)を示す。加速タイムは同等であ ることから、「MT-09」の加速性能を損なっていないことが分か る。実験ライダからは、クラッチ操作が不要になることによる全 開発進の容易さと安定性の高さに加え、ペダル操作が不要に なることによる前傾姿勢の取りやすさにも効果があると評価さ れた。

表1 クイックシフタ車両と Y-AMT 車両の加速タイム比較

クイックシフタ	Y-AMT
10.9秒	10.9秒

次にテストコースのあるコーナを脱出加速中、1速から2速に シフトアップした時の車両挙動(図6)を示す。

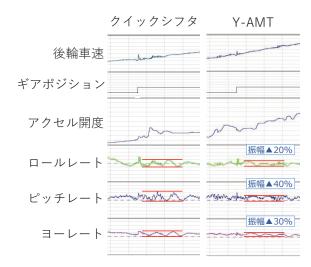


図6 テストコース走行時車両挙動

Y-AMT 車両は、変速時の車両挙動(ロール、ピッチ、ヨーの 振幅)がクイックシフタ車両に比べて減少している。これはク ラッチ制御による挙動緩和に加え、ペダル操作が不要になった ことにより、ライダは下半身のホールドを維持したままシフト アップできるためである。そのためアクセルをより大きく開けら れ、より高い車速でコーナを脱出できている。また、実験ライダ からは、コーナリング姿勢が取りやすくなると評価された。

おわりに

以上のように Y-AMT は、基本構成や基本技術は YCC-S か ら大きく変わらない。しかし、その名称を一新したのはその性能 と機能が新たなステージに上がったと言えるほど進化したこと を強く表現するためである。具体的にはペダル操作が不要にな ることによって下半身ホールド性向上、コーナリングやS字の 切り返し時のライディングポジション自由度向上という変化が あり、それによりブレーキ操作、リーニング、アクセル操作に集 中でき、従来にない "走りへの没入感" が得られる人機官能* の価値につながっている。

また、本開発においてレイアウト、制御関連で14件の特許を 出願している。これは社内外の関係者が妥協せず一丸となって 新機能を具現化し製品化まで努力した結果である。

Y-AMT は「MT-09 Y-AMT」だけでなく、他機種にも広く展開し ていく予定である。AT 機能は初心者用機能と思われる傾向もあ るが、Y-AMT はスポーツ走行にも適した機能と性能を有しており、 初心者からベテランまで様々なライダにこの価値を感じていただ きたい。また今後も開発を継続し、さらなる進化をさせていく。

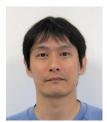
※「人」と「機械」を高い次元で一体化させることにより、「人」の悦び・興奮をつく りだす技術で、当社独自の開発思想

Development of the Evolved Automated Manual Transmission "Y-AMT"

■参考文献

[1] 小杉 誠,善野 徹:「モーターサイクル用自動化マニュアル トランスミッションの開発」、ヤマハ発動機技報 2006-12 No. 42 [2] 鈴木 孝典, 砂廣 一雄, 田中 大輔, 福嶋 健司: 「2017年モ デル ROV YXZ1000R SS」,ヤマハ発動機技報 2016-12 No. 52

■著者


林田 勇武 Isamu Hayashida パワートレインユニット プロダクト開発統括部 第2PT 設計部

鈴木 満宏 Mitsuhiro Suzuki パワートレインユニット 先行企画開発統括部 先導開発部

福嶋 健司 Kenji Fukushima PF 車両ユニット 電子技術統括部 システム開発部

南 賢吾 Kengo Minami PF 車両ユニット 電子技術統括部 電子技術企画部

技術紹介

陸海空の制御・プラントモデルと可視化の連成技術

Coupling technology for "land, sea and sky" control and plant models and visualization

堀川 雅弘 太田 博康 松清 一樹

Abstract

Model-Based Development (MBD) refers to a method where models that behave in the same way as the real world are created on a computer, allowing for desk-based verification before producing actual prototypes. By using this approach, the number of physical prototypes can be reduced, leading to lower development costs and shorter development periods.

At Yamaha Motor Engineering (hereinafter referred to as "the Company"), the acquisition of MBD technology is being advanced. This includes not only control and dynamics for mobility across all domains of land, sea, and sky, handled by the Yamaha Motor Group, but also the development of models capable of calculating disturbances like wind and tidal currents under environmental conditions. However, one challenge with applying MBD to mobility is that the simulation results are expressed in numerical form, making it difficult to understand the behavior as an actual phenomenon. As a unique initiative, the Company has developed a simulation system called the "1D Virtual Viewer," which visualizes MBD simulation results as animations of 3D-CAD data, making it easier to understand the behavior of mobility. This paper will first explain about the MBD technology and the 1D Virtual Viewer that was developed, using drones as a case study, and then introduce examples of how this technology has been applied to the marine and land domains.

はじめに

MBD (Model Based Development)とは、コンピュータ上で 現実と同じ振る舞いとなるモデルを作成し、実機試作前に机上 検証する手法である。この手法を用いることで、実機の試作回 数を削減でき、開発コストの削減と開発期間の短縮につなが る。

ヤマハモーターエンジニアリング(以下、当社)ではヤマハ発 動機グループで扱う陸海空全ての領域におけるモビリティの制 御や運動だけでなく、環境条件に関する風や潮流といった外乱 の演算が可能なモデル開発を行いながら、MBDの技術獲得を 進めている。

しかし、モビリティに適用した MBD では、シミュレーション結 果が数値で表現されるため、その挙動を実際の現象として理解 しがたいことが課題である。

そこで、当社独自の取り組みとして、MBD によるシミュレー ション結果を3D-CAD データのアニメーションとして可視化す ることで、モビリティの挙動をより理解しやすくするシミュレー ションシステム「1D Virtual Viewer」を開発した。

本稿では、はじめに当社の MBD 技術と開発した1D Virtual Viewer についてドローンを題材に説明し、次にマリンおよびラ ンド領域への本技術の展開事例について紹介する。

MBD 技術

本章では当社で取り組んだ内容についてマルチロータ型ド ローンを事例に紹介する。システム概要図を図1に示す。ここで はプロペラと制御について詳細を解説する。

図1 ドローンシステム構成概要図

表1 図1の記号と定義

記号	定義
x	地上座標系 x 方向位置
у	地上座標系 y 方向位置
z	地上座標系 z 方向位置
φ	Roll 角
θ	Pitch 角
ψ	Yaw 角

	記号	定義
	$F_{x,y,z}^d$	外乱(風)による並進方向の力
	$M_{x,y,z}^d$	外乱(風)によるモーメント
	$F_{x,y,z}$	プロペラによる並進方向の力
	$M_{x,y,z}$	プロペラによるモーメント

2-1. プロペラモデル

一般的に、プロペラの回転による推力は式(1)で算出される。

$$F = k\omega^2$$
 ···(1)

表2 式(1)の記号と定義

記号	定義
k	変換係数
ω	プロペラ回転数

しかしプロペラを用いた回転翼機では大気速度、姿勢変化、 外乱(風)の影響で式(1)では精度が不十分であり、プロペラが 発生させる推力やモーメントの精度を高めるために、翼素理論 をベースにした数式から力とモーメントを算出した[1][2]。風洞 にて様々な角度から風をプロペラに与えた際の3軸方向の力 やモーメントを計測し、数式の一部パラメータを適合した上で モデルに織り込んだ。図2にパラメータ適合のための同定試験 の様子を示す。

図2 プロペラモデル同定試験の様子

3軸の力は式(2)で実装する。

$$F_{x,y,z} = \rho SR^2 \Omega^2 \times C_{Tx}, C_{Ty}, C_{Tz} \qquad \cdots (2)$$

3軸のモーメントは式(3)で実装する。

$$M_{x,y,z} = \rho SR^3 \Omega^2 \times C_{Mx}, C_{My}, C_{Mz} \qquad \cdots (3)$$

表3 式(2)、(3)の記号と定義

記号	定義
ρ	空気密度
S	プロペラ回転面積
R	プロペラ半径
Ω	プロペラ回転数
C_{Tx}	x 軸推力係数(進行率、流入比等を用いて算出される)
C_{Ty}	y 軸推力係数(進行率、流入比等を用いて算出される)
C_{Tz}	z軸推力係数(進行率、流入比等を用いて算出される)
C_{Mx}	x 軸モーメント係数(進行率、流入比等を用いて算出される)
C_{My}	y 軸モーメント係数(進行率、流入比等を用いて算出される)
C_{M_2}	x 軸モーメント係数(進行率、流入比等を用いて算出される)

比較結果の代表例を図3、4に示す。

回転数に対するz方向推力 実験とシミュレーション結果の比較

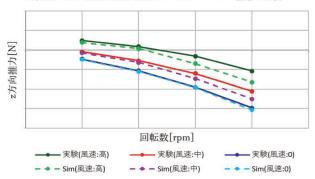


図3 回転数に対する z 方向推力 比較結果

回転数に対するx方向推力 実験とシミュレーション結果の比較

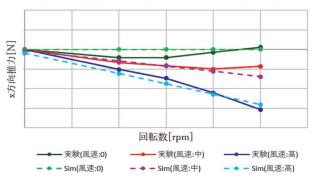
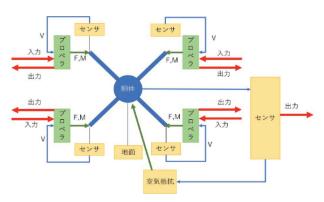


図4 回転数に対する x 方向推力 比較結果

実機で計測した結果と同定結果がおおむね一致しているこ とが確認できる。

このプロペラモデルを織り込むことで、様々な外乱(風)のあ る環境下での飛行試験が可能となり、実機試験のリソースを低 減できると考えられる。


2-2. 機体モデル

また、外乱(風)はプロペラだけでなく機体への影響も大き い。そこで外乱(風)による機体への影響を織り込むために図5 に示す風洞前のロボットアームに機体を固定し、様々な角度か ら風を与えた際の力とモーメントを計測する機体抵抗試験を 実施した。

図5 機体抵抗試験の様子

プロペラや機体などのプラントモデルは Modelica*ベース の非因果モデルで作成した。因果モデルでの作成も可能であ るが、機体全体を数式化する必要がないこと、可読性や今後の カスタム、拡張性を鑑みて非因果モデルを採用した(図6)。

プラントモデル全体概要図

※Modelica は Modelica Association の商標

2-3. 制御モデル

外乱(風)のある環境下で、ホバリングが比較的容易な位置 制御を開発した。制御構成(代表例として x 軸、Pitch 軸のみ) を図7に示す。

制御は古典制御のフィードバック(以下 F.B.)制御を採用し、 姿勢制御(角度 F.B.+ 角速度 F.B.)の上流に速度 F.B. を設置す る構成とした。詳細は式(4)~(10)に示す。

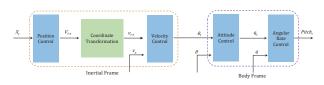


図7 位置制御構成図

$$V_{t-x} = K_{p1}(X_t - X) \qquad \cdots (4)$$

$$v_{t-x} = f(V_{t-x}, \varphi, \theta, \psi) \qquad \cdots (5)$$

※関数f:地上座標系速度から機体座標系速度への変換関数

$$e_{vx} = v_{t-x} - v_x \qquad \cdots (6)$$

$$\theta_t = K_{P2}e_{vx} + K_{I2}\frac{1}{s}e_{vx} - K_{D2}\frac{s}{\tau s + 1}v_x \qquad \cdots (7)$$

$$Q_t = K_{P3}(\theta_t - \theta) \qquad \cdots (8)$$

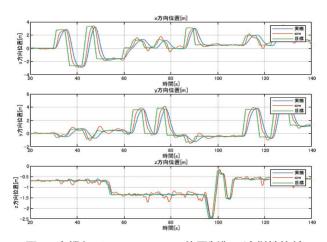
$$e_q = Q_t - q$$
 $\cdots (9)$

$$Pitch_c = K_{PA}e_q + K_{I4}\frac{1}{s}e_q - K_{D4}\frac{s}{\tau s + 1}q$$
 ...(10)

表4 式(4)~(10)の記号と定義

記号	定義
K_{P1}	位置制御の P ゲイン
K_{P2}	速度制御の P ゲイン
K _{P3}	角度制御のPゲイン
K_{P4}	角速度制御の P ゲイン
K_{I2}	速度制御のIゲイン
K_{I4}	角速度制御のIゲイン
K_{D2}	速度制御のDゲイン
K_{D4}	角速度制御の D ゲイン
τ	微分フィルタ時定数

記号	定義
$X_{\rm t}$	x 軸目標位置
X	x 軸現在位置
V_{t-x}	x 軸目標速度(グローバル座標系)
$v_{ m t-x}$	x 軸目標速度(機体座標系)
v_{x}	x 軸実速度
$e_{ m vx}$	x 軸速度の偏差
$\theta_{ m tgt}$	Pitch 角目標値
θ	実 Pitch 角
$Q_{\rm t}$	Pitch 角速度目標値
q	実 Pitch 角速度
$e_{ m q}$	Pitch 角速度の偏差
Pitch _c	Pitch 軸の制御量


2-4. 実機とシミュレータの比較

制御モデルとプラントモデル(プロペラモデルや機体モデル など)を統合した環境を構築した。モデルの全体図を図8に示 す。

図8 ドローンのモデル全体像

この環境を用いて実機飛行試験と同条件でシミュレーション を実施した。比較結果を図9に示す。

実機とシミュレーションの位置制御の追従性比較

実機と同様に、シミュレータも目標位置に対し追従する傾向 にあり、本シミュレータは実機と同様な振る舞いを再現できて いる。

シミュレーションの姿勢角のグラフを図10に示す。

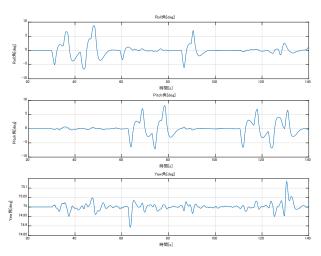


図10 位置制御で飛行させた際の姿勢角

図9、10のグラフだけでは、機体の挙動を想定することが難 しい。飛行中の機体の挙動によらず目標が不変な場合は影響 ないが、機体の挙動に応じて目標を補正操作する場合にはオ ペレータモデル(認知・判断・操作に相当するモデル)を織り込 む必要があり、その開発に多くのリソースが必要となる。

これらの問題を解決するために、当社独自の取り組みとして 機体挙動のシミュレーション結果をアニメーションとして視覚 的に可視化するシミュレータ1D Virtual Viewer を開発した (図11)。

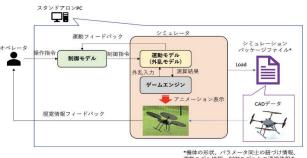


図11 改善前後の結果表示および操作方法イメージ図

1D Virtual Viewer

当社開発の1D Virtual Viewer は、制御モデルやプラントモ デルなどの各要素モデルとゲームエンジンを連成させながら、 シミュレーション結果をモビリティの挙動として3Dアニメーショ ンで可視化する。これによりオペレータはモビリティの挙動を直 感的に理解しながら、補正操作が可能となる。

1D Virtual Viewer のアーキテクチャを図12に示す。

*機体の形状、パラメータ同士の紐づけ情報、 運動モデル情報、制御モデルとの通信情報を 内包した当社独自のファイル形式

図12 1D Virtual Viewer のアーキテクチャ

次項で技術的な特徴を紹介する。

3-1. 制御、運動、外乱、ゲームエンジンのリアルタイム連携

各要素モデルは、FMU(Functional Mockup Unit)などの多 様な形式で生成され、それぞれが異なる時間スケールで動作 するため、これを調整する必要がある。

1D Virtual Viewer では、それらを統合したシミュレーション を行うため、システムを構成する要素モデル全てを同じ時間ス ケールで動作するよう同期を取りながら実行可能とする時間同 期メカニズムを織り込んだ。

これにより、異なる時間スケールで動作する各モデルの実行 タイミングを調整しながら、同じペースで計算できるため、足並 みが揃ったシミュレーション結果をゲームエンジン上で確認で きる。

3-2. 連成シミュレーション設定

複数の要素モデルを連成する場合、その組み合わせパター ンに応じて、相互でやり取りするパラメータを都度プログラミン グしながら設定していく必要があり、多くの時間を要していた。

これを解決するため、1D Virtual Viewer では制御や運動等 の各要素モデルが持つパラメータ情報を読み込み、関連付け するパラメータ同士を容易に設定することが可能なユーザー インターフェース(以下 UI)を導入した(図13)。

この UI を活用することによって、様々な要素モデルの連成パ ターンをプログラミングせずに素早く設定できるため、モデル の仕様に変更があった場合でも新たな仕様でのシミュレーショ ンが早期に実施可能となる。

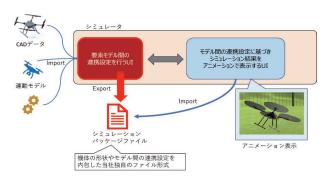


図13 連携設定 UI の活用イメージ

1D Virtual Viewer を適用した マルチロータシミュレータ環境

ドローンの MBD 環境と1D Virtual Viewer 環境を統合した 環境のメイン画面を図14に示す。

図14 ドローンシミュレータのメイン画面

メイン画面には姿勢角、速度、各軸の回転数、位置等の機体 情報が表示され、操縦者目線や機体後方からの視点といった カメラ視点の変更も可能である。

このシミュレータ環境ではゲームエンジン側に風向、風量の 設定機能を持たせており、周辺環境の構築と合わせた設定が 容易となる。

また、外乱(風)要素の織り込みにより、実機では評価が難し い突風や、風が時々刻々と変化する環境下でもシミュレーショ ン評価が可能になる。最適な機体・モータ・プロペラの諸元、制 御ロジックや定数の提案が実機試作前に可能になり、開発期 間短縮に貢献できる。

他フィールドへの展開

5-1. マリン領域

マリン領域にも同様の効果を適用するために、船外機を1基 搭載した船舶を題材にシミュレータ環境を構築した。本取り組 みでは、実艇ではなく全長約1.5mの模型船を対象とした。図15 にシステム概要図を示す。ここでは、マリンシステムを構成する要 素の代表例として「船外機」と「外乱」モデルについて記載する。

図15 マリンシステム構成概要図

船外機モデルの出力をプロペラ推力とし、式(11)で実装した。

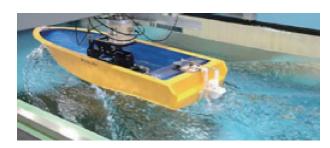
$$T = \rho n^2 D^4 K_T \qquad \cdots (11)$$

表5 式(11)の記号と定義

記号	定義
ρ	密度
n	プロペラ回転数
D	プロペラ直径
K_T	推力係数

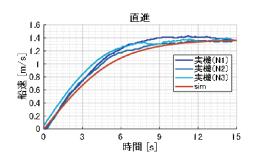
推力係数 Kr は図16のプロペラ単独性能試験により取得し た。プロペラ模型を一定回転数で回転させながら一定速度の 流速を与え、プロペラの推力とトルクを計測する。

図16 プロペラ単独性能試験の様子


外乱モデルは、風や潮流の向きと大きさを考慮し、船体に与 える力を式(12)で実装した。

$$F = \frac{1}{2}\rho V^2 SC \qquad \cdots (12)$$

表6 式(12)の記号と定義


記号	定義
ρ	密度
V	外乱の速度
S	代表面積
С	抵抗係数

抵抗係数 C は図17の抵抗試験により取得した。模型船に一 定速度の流速を与え、模型船に発生する抵抗を計測する。

抵抗試験の様子 図17

モデルの計算精度を確認するため、模型船とモデルそれぞ れで直進や定常円旋回などの基本的な運動の振る舞いを比較 した。図18から、模型船と同等の振る舞いを再現できていると 考えられる。

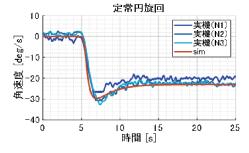


図18 実機とシミュレーションの模型船の挙動比較

1D Virtual Viewer 環境とドローンと同様に上記モデルを統合 した環境のメイン画面を図19に示す。メイン画面には、船外機 の推力や回転数、船体姿勢、操船情報などが表示されている。

図19 マリンシミュレータのメイン画面

5-2. ランド(二輪)領域

ランド領域にも同様の効果を適用するために、パワートレー ン(モータ)をプラントモデルとした1D Virtual Viewer 環境を 構築した。そのメイン画面を図20に示す。

図20 ランド(二輪)シミュレータのメイン画面

本環境を用いて段差乗り越し時の走破性や、登坂時の必要 駆動力の検証に活用した。

おわりに

当社で取り組んでいる MBD、それに可視化を連成させた技 術について紹介した。これは陸海空のモビリティ全てに適用で きる技術である。1D Virtual Viewerの活用により、実機では評 価が難しい様々な条件のシミュレーションや、対象となるモビリ ティの挙動を確認しながらの補正操作が可能である。これらに より開発期間の短縮につながることが想定される。

今後はユーザビリティの向上や拡張性などに取り組み、ヤマハ 発動機グループ内に広げていき、開発効率化につなげていきたい。

■参考文献

[1] 航空工学(I) 東昭 裳華房 1989

[2] ヘリコプタ入門 加藤寛一郎、今永勇生 東京大学出版 会 1985

■著者

堀川 雅弘 Masahiro Horikawa ヤマハモーターエンジニアリング㈱ 先行技術開発部

太田 博康 Hiroyasu Ota ヤマハモーターエンジニアリング㈱ 先行技術開発部

松清 一樹 Kazuki Matsukiyo ヤマハモーターエンジニアリング(株) 先行技術開発部

技術紹介

社会共創による新価値創造「Town eMotion」 Vol. 1 まちなか R&D クリエイティブフィールドの可能性

Creation of New Value through Social Co-Creation: "Town eMotion" Vol. 1 Possibilities of Urban R&D Creative Fields

榊原 瑞穂

Abstract

Yamaha Motor Co., Ltd. (hereafter referred to as "the Company") has established "Creating Kando*" as its corporate mission, aiming to realize people's dreams through wisdom and passion while continuously striving to deliver "the next Kando." *Kando is a Japanese word for the simultaneous feelings of deep satisfaction and intense excitement that we experience when we encounter something of exceptional value. Since 2020, the Creative Center, responsible for design and branding, has been promoting an open innovation-based research and development initiative called "Town eMotion," which aims to enhance the well-being of individuals and society^[1].

In this initiative, the Company collaborates with various stakeholders from the private sector, government, academia, and civil society to research and develop mobility solutions and environments that provide the Kando experiences in line with the Company's ethos. The Company is challenging itself to materialize new products, systems, and social values within urban settings.

In the motorcycle market, one of the Company's main products, there is a growing demand for carbon neutrality, requiring driving technological developments in electrification and hydrogen utilization, as well as institutional reforms.

In a diverse and increasingly complex society, sales from single products are on a declining trend, making not only business scale expansion but also new business creation challenging. Therefore, it is deemed necessary to utilize assets such as products, services, and human resources that the Company can provide, to create an environment that fosters open innovation through co-creation with local communities across various businesses and functions, allowing for autonomous development.

Additionally, as urban environments change, many cities have been accelerating their transition to "walkable cities," shifting from car-centric to people-centric street spaces in recent years. These initiatives hold the potential to bring benefits toward sustainable urban development, such as promoting health through walking and reducing traffic congestion. Similar advanced initiatives are also being developed within Japan. This report introduces the background and development of the "Town eMotion" initiative, its systematic approach, and specific examples of its implementation.

はじめに

ヤマハ発動機株式会社(以下、当社)は企業目的として"感動 創造"を掲げ、人々の夢を知恵と情熱で実現し、常に"次の感 動"を期待される存在となることを目指している。デザインとブ ランディングを担うクリエイティブ本部では、2020年から、人と 社会の Well-being 向上を目指すオープンイノベーション型の 研究開発活動「Town eMotion(タウンイモーション)」を進めて いる[1]。

この活動では、産官学民のさまざまなステークホルダーと共 創しながら、当社らしい感動体験をもたらす "モビリティや フィールド"を研究開発し、新たなモノ・仕組みの価値や当社の 社会価値をまちなかで具現化していくことに挑戦している。

当社主力商品の一つである二輪車市場においても、カーボ ンニュートラルへの対応が求められており、電動化や水素利用 などの技術開発や制度改革が進められている。

多様で複雑化する社会において、単一商材での売上規模は 減少傾向であり、事業規模拡大だけでなく事業創出そのものが 困難となっている。このため、当社が提供できる商材やサービ ス、人材などのアセットを利活用しながら、事業や機能横断で 地域社会との共創によるオープンイノベーションを誘発させる 環境を構築し、自律発展が可能なかたちで機能させる必要が あると考えられる。

また一方で、都市環境の変化として、近年多くの都市が街路

空間を車中心から人中心へと変革する"ウォーカブルシティ" への移行を加速させている[2]。これらの取り組みは、歩行によ る健康促進や交通渋滞の軽減など、持続可能な都市開発に向 けた利点をもたらす可能性があり、日本国内でも同様の先進的 な取り組みが展開されている。本報告では、「Town eMotion」 活動の経緯と展開、活動の体系化、および具体事例について紹 介する。

「Town eMotion」の活動経緯

当社では従来、新規事業開発部門を中心に、地域の移動課 題解決のための時速20km 未満の EV"グリーンスローモビリ ティ(GSM)" の実証実験と市場導入を進めてきた [3]。

また、都市開発において人・まち・モビリティの関係性など、統 合的な価値提供の必要性が高まる中、クリエイティブ本部では 「Town eMotion」プロジェクトを立ち上げ、社会課題の解決に 向けた新たな価値創造を目指す活動をスタートさせた。

活動初期はコロナの状況下でフィールドワークには制限が あったため、社内外の有志メンバーでワークショップを行い、未 来のまちとモビリティに関するアイデアを、コンセプトブックにま とめることとした(図1)。「Town eMotion」が社会やまちへの貢 献を目的とし、社内外の意見を取り入れる必要があること、当 社に不足する環境側(まち・地域・道路空間等)の知見を得る必 要があることから、東京都世田谷区で地域コミュニティ活動を 行うインフラデザイナーの御代田和弘(みよたかずひろ)氏 [4] の協力を得ることとした。

このブックのコンセプトを"まちの感動と興奮をアシストす る"とし、まちや道路とモビリティの関係性に着目し、スローで安 全なまちづくりと地域コミュニティの活性化に貢献する内容を 示した。

その後社内新規事業開発部門と連携し、ステークホルダーと の対話を通じて共感を得ることができ、移動・輸送の提供だけ でない "まちの共創パートナー" という関係者間の認識を得る ことができた。

図1 「Town eMotion」コンセプトブック(A3サイズ6面折)

まちなか R&D 活動の展開

ステークホルダーとの対話と並行し、コンセプトブックで言及 したまち・道路・モビリティに着目した仮説検証(PoC)を開始し た。

人やモノの移動だけでないモビリティ価値の仮説から、地域 コミュニティの場としてのモビリティの利活用をピックアップし、 世田谷区三宿エリアで "三宿あおぞら図書館"PoC を実施した (図2)。

図2 三宿あおぞら図書館 2021/10 東京都世田谷区

Creation of New Value through Social Co-Creation: "Town eMotion" Vol. 1 Possibilities of Urban R&D Creative Fields

以前よりこの地域では御代田氏が中心となり、自治体の協力 も得ながら、交通安全向上のためのデザイン活動や高齢者支 援のためのベンチ設置などを行っており、当社がまちなかで新 しい価値を検証するためのフィールドとして相応であった。

三宿あおぞら図書館は、当社新規事業開発部門が製作した GSM 試作車両を使用し、地域のイベントに協力する形で実現 した。このイベントは、商店会、近隣大学、図書館などの地域ス テークホルダーとともに企画・実行され、コロナの状況下で子ど もたちが安全に読書を楽しめる屋外図書館として参加者の好 評を得た。参加ステークホルダーへの事後アンケートからは、 GSM の存在がイベントの目印として機能し、多様な活動に利 用される可能性が示され、また、地域の場づくりとしての効果も 確認できたと言える。

三宿エリアにおいては地域ステークホルダーとの信頼関係 を継続的に構築し、2022年には既存のまち・道路空間を利活 用した地域活性のしくみを想定し、先述の試作車両を用い、"三 宿モバイルパークレット"PoC を実行した(図3)。

三宿モバイルパークレット 2022/3 東京都世田谷区

この PoC では、店舗・歩道・車道を一体的なにぎわい空間と して利活用する基本的な概念の実証ができたとともに、地域 ニーズに合わせた車両の仕様や運用のあり方について多くの 示唆を得ることができた。また三宿以外の地域の産官学民ス テークホルダーに PoC を現場で体験いただき、多くの共感を 得たことで、その後の共創パートナーとの関係構築につながった。

三宿エリアでの PoC と並行し、地域の課題・価値探索を進め る中で、活発な社会活動の先進地域として神奈川県鎌倉市に 着目し、筆者が従来参加していた東京大学 IOG (INSTITUTE OF GERONTOLOGY) [5] の産学ネットワークに所属する秋山弘 子名誉教授 [6] が主宰する鎌倉リビングラボ [7] の協力を得て、 鎌倉地域における活動を2021年から開始、鎌倉市民に対する モビリティ体験を実施した。2022年には「Town eMotion」ホー

ムページにて共創ステークホルダーへの情報発信を開始した (図4)。

図4 「Town eMotion」ホームページ

こうした経緯を経て2022年末までに首都圏地域を中心に活 動を展開し、多面的な価値探索・検証・発信を行うことができ た。2023年には、世田谷区、鎌倉市に加え、千代田区、台東区、 茨城県つくば市、当社の本社所在地である静岡県磐田市、浜松 市といった地域で活動トライアルを広げていった。

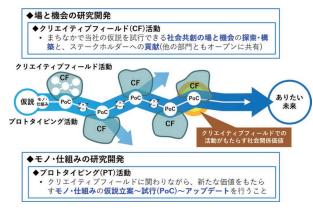
活動の体系化

こうした実際のまちなか、地域社会のなかで R&D を進めて いく活動を当社として定義し、ステークホルダーとともに自律的 に継続発展する仕組みとして確立させていくべく、活動の体系 化を行った。

以下、順を追って解説する。

図5に示す "共創エコシステム" とは、地域コミュニティにお ける "ビジョン" と "クリエイティブフィールド" を共有する DAO (自律分散型組織)であり、このエコシステムにおいて、ステーク ホルダーは、共感するありたい未来像、すなわちビジョンを形 成・共有する。ここで言う "ビジョン" は、地域の関係人口が望む 理想的な未来の姿を示すものである。

Creation of New Value through Social Co-Creation: "Town eMotion" Vol. 1 Possibilities of Urban R&D Creative Fields


"クリエイティブフィールド" は、各ステークホルダーが持ち 寄ったアイデアや資源を掛け合わせることで、新たな価値を創 造する場と機会である。ここでは、異なるバックグラウンドや強 みを持つ人々が協力し合い、地域コミュニティを豊かにするイ ノベーションを生み出していく。

このように "共創エコシステム" は地域コミュニティの自律的 な継続発展と、ステークホルダー間の協働を促進するための必 須の枠組みと捉えられる。

この定義の中で「Town eMotion」の活動は、共創エコシステ ムの一員として、場と機会の研究開発であるクリエイティブ フィールド活動と、モノ・仕組みの研究開発であるプロトタイピ ング活動を実践し、社会関係価値創出に寄与していると言える (図6)。

こうした体系化に基づきこれまでの活動の拡がりをまとめた (図7)。

このように、クリエイティブ本部の拠点の一つである東京汐 留のメンバーを中心とした関東圏から着手し、当社本社の所在 する遠州地域へ活動を広げ、関係人口を増やしながら継続し ている。

「Town eMotion」活動

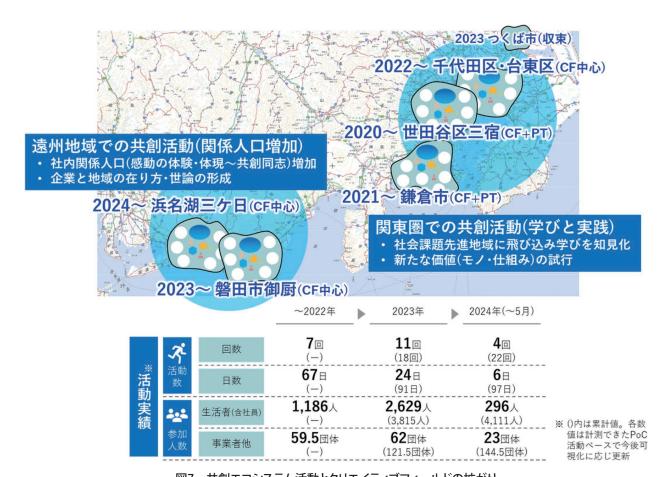


図7 共創エコシステム活動とクリエイティブフィールドの拡がり 「地理院地図 GSI Map」(国土地理院)(https://maps.gsi.go.jp/)をもとにヤマハ発動機株式会社作成

活動例 "パレットモビリテ

最後にクリエイティブフィールドにおけるプロトタイピング活 動の一つを紹介する。

2023年から、地域の多様な場づくりとして機能する車両、お よび地域住民などの担い手による運用システムも想定し、試作 車両を用いた "パレットモビリティ" の価値検証を進めている。

地域コミュニティ活動・店舗空間の拡張・自然環境など地域 資源を生かした場づくり、といった複数のシーンに対応し、走行 機能を有するベースユニットと、各ニーズに合わせ可変性を持 つ上物ユニットという構成を想定し、まずは各シーンにおける 場を体験可能な基本機能を検証する試作車両(以下、機能検 証プロト)を開発した(図8)。

図8 パレットモビリティPoC 2023/9 静岡県磐田市

機能検証プロトはベース車両に当社 GSM を用い、インテリ アのフラット化、ベンチ・カウンター等の什器、可変ルーフの設 置を行った。機能検証に特化し、上下ユニット分離機構や外観 意匠は検証の対象外としシンプルな仮装とした。

この機能検証プロトを用い、これまで世田谷区三宿(店舗空 間を拡張するモバイルパークレット)、磐田市御厨(地域イベン トの憩いの場づくり)、台東区上野公園(モビリティ発着ハブの 場づくり)、鎌倉市七里ガ浜(海風を感じる対話の場づくり)、と いった多様な場での PoC を進め、得られた知見を都度仕様に 反映させるアジャイルな開発を進めている。

パレットモビリティPoCは今後、よりユーザビリティやオペ レーションを考慮した、ユーザーエクスペリエンス(UX)を検証 可能なモデル開発を進め、地域や都市開発での検証・活用提 案を進めていく計画である。

おわりに

今回は「Town eMotion」の活動背景・経緯・展開、活動の体

系化に加え、パレットモビリティの開発を中心に活動紹介を 行った。

「Town eMotion」では上記に加えて、"地域の資源循環×モ ビリティによる共創エコシステム" "歩行~低速領域における新 たな移動スタイル"といったプロジェクトでの価値検証をオー プンイノベーション型で進めており、またの機会に紹介したい。

またこの活動は当社における価値探索フェーズと位置付け ており、財務面だけでなく非財務指標(主に社会関係資本)とし て適切に可視化していく計画である。

今後の活動についてはホームページでも順次公開していく 予定である。

■参考文献

[1] ヤマハ発動機株式会社. "Town eMotion未来のまちとモ ビリティ". ヤマハ発動機株式会社HP. https://www.yamahamotor.co.jp/townemotion/(参照2024-05-31)

[2] 国土交通省. "WALKABLE PORTAL". 国土交通省HP. https:// www.mlit.go.jp/toshi/walkable/(参照2024-05-31)

[3] ヤマハ発動機株式会社. "グリーンスローモビリティ(電動 カート公道仕様)". ヤマハ発動機株式会社HP. https://www. yamaha-motor.co.jp/gsm/(参照2024-05-31)

[4] 御代田和弘氏. "4FRAMES". 4FRAMES HP. https://4frames. net/(参照2024-05-31)

[5] 東京大学. "東京大学 高齢社会総合研究機構". 東京大学HP. https://www.iog.u-tokyo.ac.jp/(参照2024-05-31)

[6]東京大学. "東京大学高齢社会総合研究機構コアメンバー". 東京大学HP. https://www.iog.u-tokyo.ac.jp/member/ akiyama-hiroko/(参照2024-05-31)

[7] 高齢社会共創センター. "鎌倉リビングラボ". 高齢社会共創 センターHP. https://www.kamakurall.cc-aa.or.jp/(参照 2024-05-31)

■著者

Mizuho Sakakibara クリエイティブ本部 プランニングデザイン部

技術論文

フレーム変形が二輪車の運動に及ぼす影響に 関する研究 (第1報)

Effect of Frame Deformation on Motorcycle Dynamics (First Report)

坂本 和信 草刈 政宏 中谷 友輝 北川 洋

本報は、公益社団法人 自動車技術会 2024年自動車技術会 春季大会 学術講演会予稿集に掲載された論文を同会の許可を得 て転載したものです。本論文の著作権は公益社団法人自動車技術会に属し、無断複製・転載を禁じます。

要旨

フレームの剛性は二輪車の操縦安定性に影響することが知られており、曲げや捩りの力を静的に加えた変形量から算出される 剛性値に基づいてフレームの設計が行われてきた。しかし走行時のフレームには、車両の運動による過渡的な力によって複雑な 変形が生じていると考えられる。そこで本研究では、走行時のフレーム変形を取得し、二輪車の力学モデルに基づいて解析を行っ た。その結果、旋回時に支配的な力の移り変わりによって、ヘッドパイプ部やピボット部に局部的な捩り変形が生じていることがわ かった。そして、この局部的な変形が車両の運動性能に影響することを明らかにした。

Abstract

The effect of frame stiffness on motorcycle dynamics was analyzed based on the forces and frame deformation that occur during running. Focusing on turning, torsional deformation mainly occurs, which is a superposition of the torsional deformation of the steering head pipe and the torsional deformation of the rear swingarm pivot. At the start of turning, when high roll acceleration is applied, the torsional deformation of the head pipe occurs first, and the torsional deformation of the pivot occurs later. The time difference between these deformations is closely related to the transition of the force component applied to the vehicle. The local deformation of the frame delays the response of the deformation relative to the force and affects the motorcycle dynamics.

まえがき

二輪車の操縦安定性に関わるフレームの特性を表す指標と して剛性値が長らく用いられている。剛性値はフレームを部分 的に拘束し、静的な力を加えた際の変形量から算出される。そ の拘束状態や入力方向は走行中の二輪車に作用する力を想 定しているとされ、剛性値を基にしたフレームの詳細設計が行 われてきた [1]。これにより、軽量なフレーム構造が考案される 一方で、操縦安定性との両立には試行錯誤が続けられている。 今後さらなる構造の合理化と操縦安定性の向上を実現してい くためには、フレーム剛性に対する真の要求を明らかにするこ とが重要である。そこで本研究では、剛性を構成する力と変形 の関係に立ち返り、走行中の二輪車に作用する力と、それに よって生じるフレームの変形について解析を行った。その結果、 旋回時に生じているフレームの過渡的な捩り変形の詳細と、運 動性能に寄与する変形の特徴を明らかにできたので報告する。

フレーム変形の取得方法

2-1. 概要

フレーム単体の静的な弾性変形は実験計測や数値解析によ り取得することができる。走行時については、マルチボディダイ ナミクスによる時刻歴解析が行われているものの、フレームの 変形は明らかになっていない [2]。本研究で対象とする走行時 のフレーム変形は、車両各部に貼付けたひずみゲージの測定 データと数値解析を併用した同定手法による推定が行われて いる [3][4]。この同定手法では、小型の計測機器により車両挙動 への影響を最小限にできるが、正確な変形を求めるためには 適切な解析モデルが必要である。本研究では、以下の方法で解 析モデルを構築し、高い精度でフレーム変形を取得する。

2-2. ひずみ計測による変形の同定手法

本研究ではまず、フロントフォーク、メインフレーム、スイング アーム等を実車両に従って結合し、マスプロパティを精確に 再現した車両アッセンブリでの有限要素モデルを構築する (図1)。そして、走行中の車両に作用している力を想定した複数 の荷重条件を設定し、慣性リリーフ解析を行う。その各荷重条 件によって生じる変形を基本変形モードとし、各基本変形モー ドにおけるひずみの線型和が実車計測で得られる車両各部の ひずみと一致するように各基本変形モードの倍率を同定する。 これにより、フレームの固有振動数よりも十分に低い周波数の 入力による非拘束状態の弾性変形量を取得する。

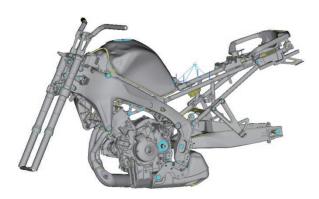
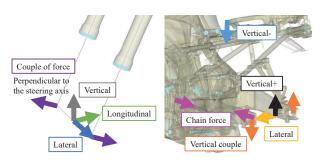



図1 FEM simulation model

2-3. 荷重条件の選定方法

走行時のフレーム変形を基本変形モードの重ね合わせとし て求める上で、適切な荷重条件の設定が重要である。本研究で はまず、前後輪のタイヤ力、ジャイロモーメント、チェーン張力 など車両に作用する力を想定した荷重条件にて解析し、基本変 形モードを得る。そして、ヘッドパイプやピボットなどフレーム の変形を特徴づける代表変位を用いて基本変形モード間の相 関性を評価する。この相関性の評価にはモード相関係数 (Modal Assurance Criterion, MAC) [5] を用いる。相関性の高 い基本変形モードがある場合は荷重条件を削除または統合し、 各基本変形モードの相関性が低くなるように荷重条件を再設 定する。これにより各基本変形モードにおけるひずみ分布の独 立性を高め、ひずみ計測点を削減しながら、少ない基本変形 モードの重ね合わせで走行時のフレーム変形を得ることがで きる。図2に荷重条件の例を示す。

(a) Loads of front side

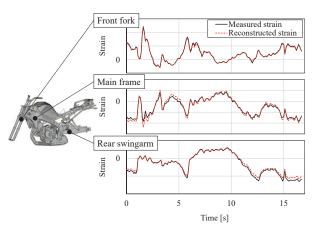

(b) Loads of rear side

図2 Examples of load conditions

走行時のフレーム変形の同定と分析

3-1. フレーム変形の同定結果

本研究では、フレーム変形を特徴づける代表変位を車両重 心を基準としたヘッドパイプ上下端とピボット左右端の節点に おける並進3方向の変位量とした。また、車両に生じるひずみ計 測時の走行条件は、平坦路を80km/hの一定速度で直進した 後、右旋回と左旋回を繰り返す S 字コースとした。図3には実車 計測したひずみと基本変形モードの線型和で算出したひずみ の比較例を示す。図2に示した9つの荷重条件を用いた基本変 形モードの重ね合わせにより、精度良く走行時のフレーム変形 を得ることができている。

Examples of measured strain and reconstructed strain

3-2. 基本変形モードの寄与率分析

走行時のフレーム変形状態を把握するため、各基本変形 モードの寄与率を算出する。本研究では、ヘッドパイプ上下端 の節点(i = 1,2)とピボット左右端の節点(i = 3,4)のそれぞれ 並進3方向の変位量 (x_i, y_i, z_i) を成分とする変位ベクトル ϕ を 用いて、走行時のフレーム変形と各基本変形モードの相関性 から寄与率を算出する。ここで、

$$\phi = \begin{bmatrix} x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3, x_4, y_4, z_4 \end{bmatrix}^T$$
 (1)

である。まず時刻 t におけるフレーム変形のベクトルを 各荷重条件の基本変形モードのベクトルを $\phi_n(n=1,2,\cdots,9)$ とし、φ_tとφ_nのモード相関係数を次のように求める。

$$MAC(t,n) = \frac{\left|\phi_t^T \phi_n\right|^2}{\left(\phi_t^T \phi_t\right)\left(\phi_n^T \phi_n\right)}$$
 (2)

また、時刻 t におけるモード相関係数の総和は、

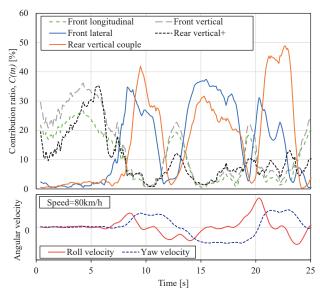
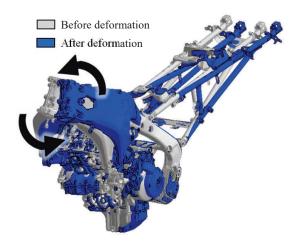
$$MAC_{sum}(t) = \sum_{n=1}^{9} MAC(t,n)$$
(3)

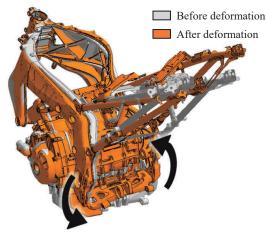
Effect of Frame Deformation on Motorcycle Dynamics (First Report)

となる。これより、時刻 t における各基本変形モードの寄与率を 次のように算出する。

$$C(t_n) = \frac{\text{MAC}(t, n)}{\text{MAC}_{\text{sum}}(t)}$$
(4)

図4に寄与率の時刻歴推移を示す。寄与率が低い基本変形 モードは省略している。直進走行部では車両垂直または前後方 向の荷重による基本変形モードの寄与率が高い。そして、ロー ル角速度の増加に伴ってフロント横方向の荷重による基本変 形モードの寄与率が高まり、さらにヨー角速度の増加とともにリ ヤ上下方向の偶力による基本変形モードの寄与率が高まる。 右旋回から左旋回に切返す際にも同様の傾向が見られる。フ ロント横荷重は旋回方向に車両を倒すようにフレームのヘッド パイプを捩る変形モードを生じさせ、リヤ上下偶力は旋回方向 とは逆向きに車両を起こすようにフレームのピボットを捩る変 形モードを生じさせる(図5)。旋回時にはこの2つの基本変形 モードが支配的である。


図4 Contribution ratio of each fundamental deformation modes

3-3. フレームの捩り変形

旋回時に支配的なフレームの捩り変形について、ピボットを 基準にしたヘッドパイプの捩れ角の推移と、その内訳であるフロント横荷重およびリヤ上下偶力により生じる捩れ角を図6に示す。基本変形モードの寄与率分析結果と同様に、フロント横荷重による捩れ角に対してリヤ上下偶力による捩れ角が遅れて推移する。また、定常旋回時には、リヤ上下偶力による捩れ角の寄与が高い。

(a) Deformation mode due to front lateral load

(b) Deformation mode due to rear vertical couple of force 図5 Fundamental deformation modes

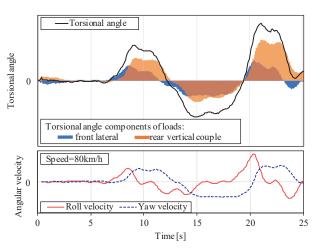


図6 Frame torsional angle and its components

4

フレームを捩る力の釣り合い

フレームは車両の運動状態に応じて変形し、旋回時には主

Effect of Frame Deformation on Motorcycle Dynamics (First Report)

に捩り変形を生じている。そこで、その捩り変形を生じさせる力 について、二輪車の最も基本的な数式モデルである4自由度モ デル^[6] を参考に考察する。

4-1. フレームに作用する捩りモーメント

まず、図7に示すステア軸とフレームの結合部である点 C に おいて、ステア軸に直交する軸周りに車両前部(操舵系)から作 用するモーメント M_{front} は下式で記述できる。

$$M_{front} = A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7$$

$$A_1 = m_f f \left(g \sin \varphi - v \dot{\psi} \cos \varphi \right)$$

$$A_2 = i_{fiv} \frac{v}{R_f} \left(\dot{\psi} \cos \varphi \cos \varepsilon - \dot{\varphi} \sin \varepsilon \right)$$

$$A_3 = F_{fy} \left(R_f \cos \varepsilon + j \right) \cos \varphi$$

$$A_4 = F_{fz} \left(R_f \cos \varepsilon + j \right) \sin \varphi$$

$$A_5 = M_{fx} \cos \varepsilon$$

$$A_6 = -M_{fy} \sin \varphi \sin \varepsilon$$

$$(5)$$

ただし、操だ角、タイヤ横すべり角、フロントフォーク部の慣 性モーメントの影響は小さいため無視する。また、走行速度は 一定とする。図7および式(5)中の記号は以下の通りである。

 G_v :車両重心

G_f:前輪を含むフロントフォーク部の重心

G_r:後輪とライダを含むメインフレーム部の重心

 m_f :前輪を含むフロントフォーク部の質量

g :重力加速度

v :走行速度

 i_{fw} :前輪の極慣性モーメント

 $A_7 = M_{fz} \cos \varphi \sin \varepsilon$

 F_{fv} :前タイヤの横力

 F_{k} :前タイヤの垂直抗力

*M*₆:前タイヤのオーバターニングモーメント

M_n:前タイヤの転がり抵抗モーメント

M₆:前タイヤのセルフアライニングトルク

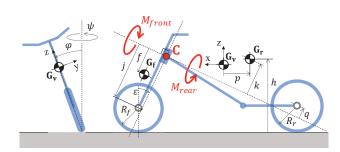


図7 Schematic diagram of 4-DoF motorcycle model

同様に、図7の点 C に車両後部(車体系)から作用するモー メント Mrear は下式で記述できる。

$$M_{rear} = B_1 + B_2 + B_3 + B_4 + B_5 + B_6 + B_7 + B_8 + B_9$$

$$B_1 = m_r k \left(g \sin \varphi - v \dot{\psi} \cos \varphi \right)$$

$$B_2 = -i_{rw} \frac{v}{R_r} \left(\dot{\psi} \cos \varphi \cos \varepsilon - \dot{\varphi} \sin \varepsilon \right)$$

$$B_3 = -F_{ry} \left(R_r \cos \varepsilon - q \right) \cos \varphi$$

$$B_3 = -F_{ry} \left(R_r \cos \varepsilon - q \right) \sin \varphi$$

$$B_4 = -F_{rz} (R_r \cos \varepsilon - q) \sin \varphi$$

$$B_5 = -M_{rx} \cos \varepsilon$$

$$B_6 = M_{rv} \sin \varphi \sin \varepsilon$$

$$B_7 = -M_{rz}\cos\varphi\sin\varepsilon$$

$$B_8 = \ddot{\varphi} k \left(\frac{I_{rx} + m_r h^2}{h} \cos \varepsilon + \frac{C_{rxz}}{p} \sin \varepsilon \right)$$

$$B_9 = -\ddot{\psi} k \cos \varphi \left(\frac{I_{rz} + m_r p^2}{p} \sin \varepsilon + \frac{C_{rxz}}{h} \cos \varepsilon \right)$$

なお、記号については以下の通りである。

m_r:後輪とライダを含むメインフレーム部の質量

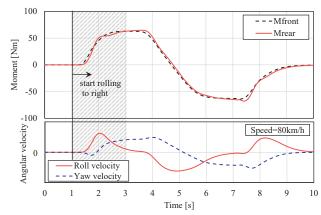
 I_{rx} :重心 G_r の x 軸周り慣性モーメント

 I_{rz} :重心 G_r の z軸周り慣性モーメント

 C_{rxz} :重心 G_r の x 軸と z 軸に関する慣性乗積

 i_{rw} :後輪の極慣性モーメント

 F_{rv} :後タイヤの横力


 F_{rz} :後タイヤの垂直抗力

M_{rx}:後タイヤのオーバターニングモーメント

Mrv:後タイヤの転がり抵抗モーメント

 M_{rz} :後タイヤのセルフアライニングトルク

式(6)にはロールとヨーの角加速度による慣性力項 Bgと Bg が含まれる。図8は4自由度モデルの運動方程式を解いて旋回 時の M_{front} と M_{rear} を求めた結果である。双方のモーメントは 常に釣り合いの関係にある。

Simulation results of M_{front} and M_{rear} in 4-DoF model 図8

4-2. モーメントの成分

図8網掛部分の右ロール運動時において、式(6)の M_{rear} を構成する各項の推移を図9に示す。図中の記号は式(6)の $B_1 \sim B_9$ に対応する。ロール運動の開始直後には高いロール角加速度が発生するため、重心に作用する慣性力によるモーメント成分 B_8 の影響が大きい。そして、定常旋回になるにつれてロール角加速度は低くなり、後輪接地点に作用するタイヤ力によるモーメント成分 B_3 、 B_4 、 B_5 の影響が大きくなる。すなわち、操舵系から作用する M_{front} に釣り合う M_{rear} の支配的な力の作用点が重心から後輪接地点に移り変わる。このことから、メインフレームが弾性変形を生じる場合には、ロール運動に伴ってメインフレーム重心よりも前方で変形を生じ、その後、フレーム全体での変形を生じると考えられる。これは3章で示した基本変形モードの寄与率分析結果の傾向と一致する。

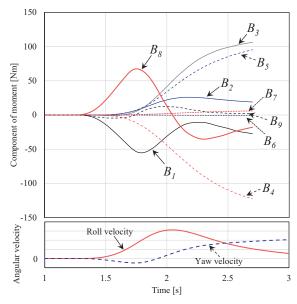
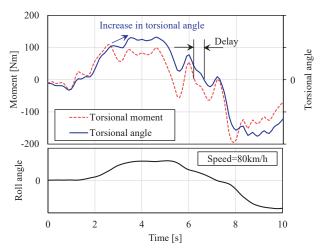


図9 Time history response of moment components at rolling

5 車両運動に影響する力と変形の関係


前章までの結果から、走行中のフレームは釣り合う力の作用 点の間で局部的な変形を生じることがわかった。そこで、この局 部変形が車両運動に及ぼす影響について、既述の解析方法を 用いた実車走行実験による検証を行った。

実験に用いた車両はフレームの仕様を変更できるようにしてあり、基準仕様 A は図6に示したリヤ上下偶力によるピボット付近の変形量が大きいフレームである。比較仕様 B にはその変形を抑制するように補強部品を取り付ける。走行条件は平坦路を80km/h の一定速度で直進から右旋回した後に左旋回に

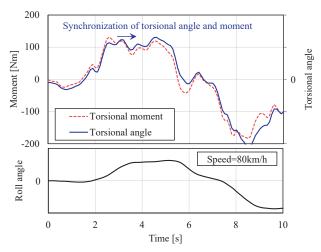

切り返すS字コースである。

図10にステア軸に直交する軸周りに操舵系から作用する捩りモーメント M_{front} と、ピボットを基準にしたヘッドパイプの捩れ角を算出した結果を示す。両仕様ともロール運動に伴い振りモーメントと捩れ角は増加し、ロール角の増加とともに振りモーメントは極大値に達する。その後、仕様 A の捩れ角は増加し続けるのに対し、仕様 B の捩れ角は振りモーメントと同じように推移する。また、右旋回から左旋回に切り返す際に、仕様 A は振りモーメントに対して捩れ角が遅れて推移する。一方、仕様 B ではほぼ一致している。一連の捩れ角の推移にはフレームの仕様差が表れている。

また、操縦安定性を評価可能なエキスパートライダによる官能評価において、仕様 A に対して仕様 B はロール応答性が向上しており、フレームに作用する力に対する変形の応答性と運動性能との相関を確認した。

(a) Standard specification A

(b) Reinforced specification B

図10 Comparison between torsional moment and frame torsional angle

まとめ

剛性を構成する力と変形の観点から、走行時に生じるフレー ム変形のメカニズムと運動性能に及ぼす影響を調査し、以下の 結果を得た。

- 1. 旋回時のフレームには主として捩り変形が生じ、その変 形はフレームのヘッドパイプを捩る力とピボットを捩る力 のそれぞれが慣性力との釣り合いで生じる変形モードの 重ね合わせで表せる。
- 2. 旋回開始時のように高いロール角加速度が生じる場面で は、ヘッドパイプを捩る変形が先に生じ、ピボットを捩る 変形が遅れて発生する。これは車両の運動状態によって 支配的な力の作用点が変化することに起因する。
- 3. フレームの局部的な変形が力に対する変形の応答性に 影響することを示し、運動性能との相関を官能評価により 確認した。

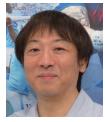
本稿では旋回時の捩り変形に注目したが、変形量にはその 他の成分も含まれる。今後は、運動性能に関係する変形量の紐 づけを進めるとともに、そのメカニズムに基づいた最適化方法 を検討する。

■参考文献

[1] 二輪車の運動特性部門委員会監修: 二輪車の実際に見ら れる運動, みんなのモーターサイクル工学講座, 公益社団法人 自動車技術会, 2022, p. 88-89

[2] 内藤重男, 北川洋, 大富部寿一: 車両の弾性変形を考慮し た二輪車の安定性解析モデル,自動車技術会 学術講演会前 刷集, No. 108-01, p. 1-4(2001)

[3] Mitsuo Hirai, Takashi Ueno, Youhei Iwaki, Shojiro Oohama: Application of FEM Analysis Using Loads Predicted from Strain Measurement in Motorcycle Frame Development, SAE Technical Paper (2013), 2013-32-9044 [4] Yasushi Nakamura, Kazuhiro Ichikawa, Takumi Kawasaki, Yasuhisa Okabe, Hiroshi Ishii, Akiyuki Yamasaki: Development of Technology for Measuring Dynamic Deformation of Motorcycle Bodies, SAE Technical Paper (2013), 2013-32-9165


[5] モード解析ハンドブック編集委員会:モード特性同定,モー ド解析ハンドブック, コロナ社, 2000, p. 128

[6] R. S. Sharp: The stability and control of motorcycles, Journal of Mechanical Engineering Science, Vol. 13, No. 5, p. 316-329(1971)


■著者

坂本 和信 Kazunobu Sakamoto PF 車両ユニット PF 車両開発統括部 車両実験部

草刈 政宏 Masahiro Kusakari PF 車両ユニット PF 車両開発統括部 車両実験部

中谷 友輝 Yuki Nakatani PF 車両ユニット PF 車両開発統括部 車両実験部

北川 洋 Hiroshi Kitagawa PF 車両ユニット PF 車両開発統括部 車両実験部

技術論文

A Study on Optimal Combinations of Winding and Cooling Methods for Downsizing Power **Units in Motorcycles**

Ryota Otaki Teruyuki Tsuchiya Yu Sakai Takuya Yamauchi Tsukasa Shimizu

当論文は、JSAE 20249007/SAE 2024-32-0007として、SETC2024 (Small Powertrains and Energy Systems Technology Conference) にて発表されたものです。

Reprinted with permission Copyright © 2024 SAE Japan and Copyright © 2024 SAE INTERNATIONAL (Further use or distribution is not permitted without permission from SAE.)

要旨

市販されている電動バイクでは、出力の増加に伴い、冷却方式は空冷から水冷へ、巻線方式は集中巻から分布巻へと変化する 傾向が見られる。この変化は8~10kW 付近で起こる。しかし、これらの冷却方式と巻線方式の組み合わせが最適であるかどうか を検証した研究は少ない。この傾向を検証するために、車両の要求出力と熱性能に応じてモータと冷却システムの合計容量と重 量を比較できる検証モデルを構築した。構築したモデルを用いて、巻線方式(集中巻またはセグメントコンダクタ(SC)分布巻)と 冷却方式(水冷または空冷)の組み合わせの比較検証を行った。本研究で設計したモータにおいて、車両の最大出力が35kW 以 下(欧州 A2免許範囲)の場合、モータと冷却システムの合計体積は空冷集中巻モータが最も小さいことがわかった。しかし、15kW 以上では、冷却装置(ラジエータ、ホース、ポンプ、リザーバタンク、冷却水)を含む水冷式 SC モータの体積は、空冷集中巻モータ の約110%であることが分かった。また、重量は約65%以下であった。本研究では、分布巻モータの一種として SC モータを検討 したが、分布巻モータの特徴として、スロット数が多く、巻線とステータコアの接触面積が大きく、放熱性が高いことが挙げられる。 これらの特性は巻線種類に関係なく共通である。したがって、上記の知見は、定格出力が約10kWの EV において、水冷分布巻 モータの採用が増加しているという市場傾向とおおむね一致している。

Abstract

In commercially available electric motorcycles, there is a notable shift in the cooling method, moving from air cooling to water cooling, and in the winding method, moving from concentrated winding to distributed winding, as the output increases. This shift occurs around 8 to 10 kW. However, there is a paucity of empirical investigations examining these combinations to ascertain their optimality.

In order to verify this trend, a verification model has been constructed which allows for the comparison of the capacity and weight of the motor and cooling system according to the vehicle's required output and thermal performance. A comparison and verification of the combinations of winding methods (concentrated winding or segment conductor distribution winding) and cooling systems (water-cooled or air-cooled) was conducted using the model that had been constructed.

In the motor designed for this study, when the maximum output of the vehicle was 35 kW or less (European A2 license), the total volume of the motor and cooling system was found to be the smallest for the air-cooled concentrated winding motor. However, in the 15 kW and above range, it was found that the volume of the water-cooled Segment conductor (SC) winding motor, including the cooling system (radiator, hoses, pump, reservoir tank, cooling water), was approximately 110% of the air-cooled concentrated winding motor, and the weight was approximately 65% or less. In this study, we used a SC winding motor as a type of distributed winding motor for verification. The characteristics of distributed winding motors include a large number of slots that provide a large contact area with the winding and high heat dissipation. These characteristics are the same regardless of the type of winding. Therefore, these findings are generally consistent with the observed trend of an increasing adoption of water-cooled distributed-winding motors in commercially available electric vehicles (EVs) with a power rating of approximately 10 kW.

INTRODUCTION

In power units (PU) for motorcycles, it is important to achieve a compact and lightweight design. When downsizing the motor, temperature rise becomes a problem. Therefore, in order to design a compact and lightweight motor, it is necessary to design a proper cooling structure. In the previous study^[1], various motor cooling methods, including water cooling and air cooling, were compared. Air cooling provides a simple cooling system, but there is concern that the cooling capacity may not be sufficient for high power motors. Water cooling requires components such as a radiator in addition to the motor, and the increase in volume and weight must be considered.

Figure 1 shows the combinations of winding and cooling methods for each output for EVs currently on the market. There is a switch between water cooling and air cooling at around 8 to 10 kW, and there is also a trend for the winding to switch from concentrated winding to distributed winding.

Previous research^[2] has shown that water cooling is effective in achieving downsizing of the motor above 15 kW. However, the previous report focused only on the concentrated winding and did not mention motors with SC distributed windings, which have become popular recently.

Therefore, in this study, we have constructed an analytical model that allows for a side-by-side comparison of the motor winding and cooling systems of electric motorcycles. Using this model, we have organized the optimal combinations of winding and cooling systems for each vehicle output, and have confirmed the validity of the combinations used in commercially available EVs.

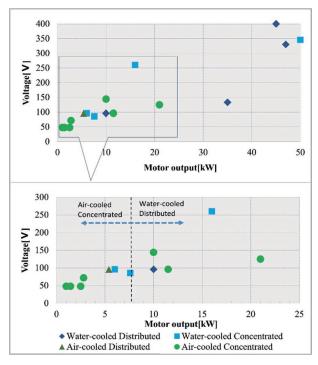


Fig. 1 Winding types and cooling methods

In order to verify the above, two types of motors were designed: one with a concentrated winding and the other with a distributed winding. A magnetic field analysis model was prepared for each motor.

By improving the winding fill factor, the thermal 1 from the coil to the stator can be reduced, which in turn reduces the temperature rise^[3]. In the motor configuration designed in this article, we have employed a concentrated winding coil utilizing rectangular wire or a distributed winding with SC, which are believed to possess a high fill factor and superior heat dissipation capabilities.

In the thermal design of motors, the losses of each component vary depending on the operating point of the output, and the way in which the temperature of each component rises is also different^[4]. Therefore, in order to correctly calculate the temperature rise of the motor, it is necessary to define the operating point of the motor for each vehicle output, calculate the losses in each part, and then perform a thermal analysis.

One method of thermal analysis for motors is to calculate

temperature rise with high accuracy by bidirectionally coupling magnetic field analysis with thermal and fluid analysis^[5]. However, in this study, it is necessary to perform multiple case calculations for motors with different power and cooling methods, and the calculation time becomes enormous. One method to reduce the calculation time is the thermal equivalent circuit network method. In this method, the thermal resistance and thermal capacity on the main thermal path are modeled to estimate the temperature rise of the motor^[6]. Although this method is less accurate than thermal fluid analysis, it is considered accurate enough for the relative comparisons required in this study. Therefore, in this study, we attempted to reduce the calculation time by constructing an equivalent thermal circuit model that includes the effects of the radiator and driving wind on motorcycles based on a CFD model^[7] that has been confirmed to have sufficient accuracy within Yamaha.

2

MODEL FOR VERIFICATION

2-1. The Configuration of the Motor

In order to facilitate the verification process, we have designed a concentrated winding motor and an SC motor, each of which is intended to be installed in a motorcycle that is equivalent to a European A1-A2 license. The concentrated winding motor is a 12-slot, 8-pole Interior Permanent Magnet Synchronous Motor (IPMSM). The winding is composed of a rectangular wire. The stator core is divided at the teeth and each tooth is wound with an insulating bobbin. This structure increases the space factor, which increases the adhesion between the coils and the insulating bobbin and improves the heat dissipation capacity.

The SC motor has 48 slots and 8 poles and uses rectangular wires.

The stator outer diameters of the respective motors are equivalent. Heat is transferred to the case by shrinkage fitting the stator core to the aluminum case.

For water-cooled motors, cooling channels are provided

in the aluminum case. In the case of air-cooled motors, fins are provided on the outer diameter of the aluminum case (Figure 2). The core length of the motor is adjusted to achieve the appropriate torque and output characteristics in accordance with the performance requirements of the vehicle. In this process, the cross-sectional shape of the motor remains unchanged, and the aluminum case, water cooling channels, fins and coils are extended accordingly (Figure 3).

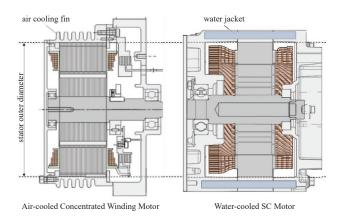


Fig. 2 Example of Drawings of Motors

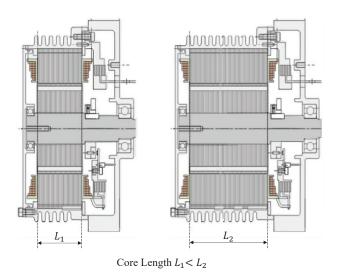


Fig. 3 Example of Motors with Different Core Lengths

In order to facilitate discussion of motor size in the following sections, it is necessary to define motor volume. The calculation of motor volume is performed as a cylindrical shape. The diameter shall be the outer diameter of the aluminum housing. In this study, water-cooled and air-cooled motors will be treated, and the outer diameters of the water-cooled jacket and air-cooled

fins will be assumed to be equal. Consequently, the difference between water-cooled and air-cooled motors has no effect on the outer diameter of the motor. The cylinder length shall be equal to the height of the coil. Since the height of the coil end differs between concentrated winding and SC, the volume differs even with the same core length. Therefore, the volume of the motor to be compared is as shown in Figure 4.

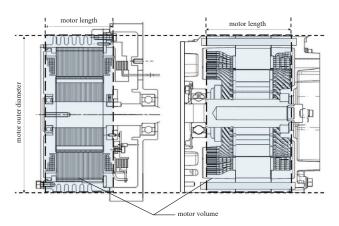


Fig. 4 Definition of motor volume

In an actual motor, there is a shaft and housings at both ends, but these are considered equal regardless of the motor type and are not considered in the volume comparison.

However, the specific heat and thermal resistance of the shaft and housing are considered in the thermal analysis described below.

2-2. Cooling Systems

An overview of the cooling system of the water-cooled electric motorcycle assumed in this study is shown in Figure 5. In the case of a water-cooled motor, the motor and inverter have cooling jackets, and the heat is exchanged with the outside air through a radiator. The motor cooling jacket is located at the periphery of the aluminum housing. The outside air is assumed to flow equally around the radiator and the motor housing at a flow rate calculated from the vehicle speed and the vehicle speed utilization ratio. The weight and volume of the reservoir tank and electric water pump are also considered components of the cooling system.

Fig. 5 Cooling System of Water-cooled Motorcycle

In the case of air cooling, cooling fins instead of water jackets must be provided for both the motor and the inverter. Water cooling systems such as radiators are not installed in the air-cooled vehicle. Cooling air equivalent to that of the water-cooled case hits the cooling fins of the motor housing and exchanges heat.

2-3. Thermal Circuit Model of a Motor

A thermal circuit model of a motor is described. The motor losses considered are copper loss in the coil, iron loss in the core, joule loss in the magnet, and friction loss in the bearing and oil seal. The losses generated in each part are dissipated to the outside air or cooling water according to the thermal circuit model shown in Figure 6.

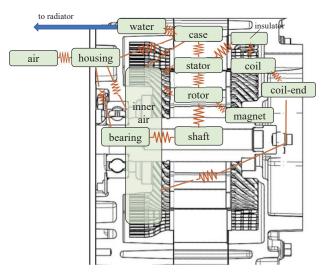


Fig. 6 Thermal Circuit Model of a Motor

3

ANALYSIS MODEL

3-1. Vehicle Model

In order to identify the optimal combination of winding and cooling system for each output, it is necessary to define the performance of the vehicle for each output. In this study, vehicles with a maximum output of 5 to 35 kW were considered, which corresponds to the European A1 to A2 license range for internal combustion engine (ICE) vehicles. Previous studies have demonstrated a correlation between rear wheel output, maximum driving force, and speed in a typical internal combustion engine (ICE) motorcycle^[2]. Consequently, the aforementioned correlation was employed once more to define the required driving force and maximum speed for each vehicle with varying power outputs. Figure 7 illustrates the correlation. For example, a vehicle with a maximum output of 8 kW requires a driving force of 1029 N and a maximum speed of 102 km/h.

In the thermal design of motors, it is crucial to consider not only the maximum output but also the continuous rated output. However, there is no universally accepted definition of continuous rated output for. Therefore, in this study, we defined the thermal performance to be met as the ability to continuously deliver the maximum power of the vehicle for 15 minutes at 60% of the maximum speed of the vehicle, which is assumed to be used frequently.

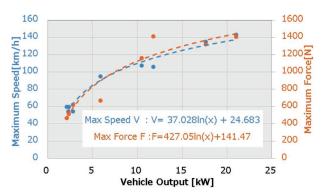


Fig. 7 Correlation between Vehicle Power and Maximum Driving Force and Speed in ICE Motorcycle

It is assumed that the size of the battery varies with vehicle output. In particular, the model assumes that the DC voltage of a vehicle with a maximum output of 10 kW is 100 V, and that it increases or decreases linearly with vehicle output.

3-2. Cooling System Model

The cooling system depicted in Figure 5 as implemented in each vehicle output in the following manner. The radiator was designed to have a variable size. The radiator's heat dissipation capacity was modeled to be contingent upon the wind speed and radiator size. The radiator's speed utilization factor varies with the vehicle configuration; however, in this study, it was assumed to be constant at 0.2. Consequently, the wind speed utilized by the radiator is contingent upon the vehicle speed at rated output and the vehicle speed utilization ratio. The outside air temperature was fixed at 25°C. Figure 8 illustrates the relationship between radiator size, vehicle speed, and heat dissipation for the radiator model created.

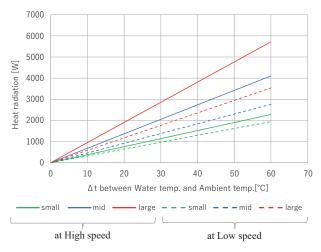


Fig. 8 Relationship between Radiator Size, Vehicle Speed, and Heat Dissipation for the Radiator Model

The following section will discuss the other components considered in the cooling system. It was assumed that the electric water pump would be a commercially available 12 W product, regardless of vehicle power, as was done in previous studies. In the vehicle under study, the flow rate was assumed to be 5 l/min, as the pump has sufficient capacity. The volume of the pump is 251 cc, and its weight is 0.4 kg. The cooling hose utilized for the vehicle is assumed to be Φ 22, 400 mm in diameter. The

total volume of cooling water will vary according to the size of the motor and the radiator. For water-cooled vehicles, the volume and weight of these cooling systems must be considered in addition.

3-3. Magnetic Field Analysis Model

Each loss of the motor at the rated output set by the vehicle model was calculated using a two-dimensional magnetic field analysis model. The calculated losses included AC and DC copper losses, Joule losses of the magnets, and iron loss. Actual measured values were used for the mechanical losses of bearings and oil seals. In order to accurately analyze the losses generated in the motor, it is necessary to consider that the actual motor current includes harmonic components due to the pulse width modulation (PWM) control of the inverter. However, magnetic field analysis that reproduces PWM control requires a significant amount of time for computation. Therefore, in this study, we compared the analysis results using the ideal sine wave current with those considering PWM harmonics, and coefficients were calculated for the effect on loss. Subsequently, the aforementioned coefficients were applied to the results of the ideal sine wave analysis in order to achieve a closer approximation of the actual motor losses. For simplicity, the loss distribution of each component was not considered, and each loss was assumed to occur uniformly in each component of the thermal analysis model. In the 2D magnetic field analysis, the copper loss at the coil end cannot be calculated. Consequently, the copper loss at the coil end was calculated based on the current value and input to the coil end of the thermal circuit model.

The accuracy of the loss calculations was validated by comparing the magnetic field analysis model with the measurement results of the actual equipment. As an example, Table 1 Comparison of Motor Loss Analysis and Measurement depicts the analysis results of an SC motor under specific operational conditions and the measured efficiency of the actual motor. The discrepancy between the calculated and measured losses of the actual motor was approximately 5%, thereby confirming that this analytical model is sufficiently accurate.

Table 1 Comparison of Motor Loss Analysis and Measurement

Analyzed Losses [W]

Copper Loss	269.8		
Stator Loss	280.2		
Rotor Loss	32.6		
Magnet Loss	77.2		
Total Loss	659.9	Measured Motor Loss	631.7

3-4. Method for the Design of Motors according to **Vehicle Output**

In this study, it is assumed that the motor output characteristics are adjusted by varying the core length without changing the motor cross-sectional shape (i.e., magnetic circuit). Therefore, it is necessary to design an appropriate core length for each vehicle output. The procedure is described below.

- (1) As previously stated in the section on the vehicle models, the DC voltage, required driving force, and maximum vehicle speed are determined according to the vehicle's maximum output.
- (2) The maximum rotational speed of the motor is considered to be 12,000 rpm or less. This analysis considers the rotational speed range of bearings and oil seals typically employed in motors, excluding those with exceedingly high rotational speeds.
- (3) Since the motor cross-section does not change from the initial design, the minimum motor size (core length) required to meet the driving force requirements of the vehicle is determined. The N-T characteristics and efficiency of this motor are determined by magnetic field analysis.
- (4) The efficiency map of the motor is obtained through magnetic field analysis. The speed at which the motor can operate at high efficiency is identified, and this point is defined as the rated point. In other words, this speed represents 60% of the vehicle's maximum speed. This enables us to posit the vehicle's reduction ratio. In the event that the requisite maximum rear-wheel drive force

cannot be attained at the assumed reduction ratio, it is necessary to adjust the reduction ratio within the range where the motor efficiency at the rated point remains relatively unchanged. Should this prove insufficient to meet the requisite driving force for the vehicle, it will be necessary to adjust the dimensions of the motor.

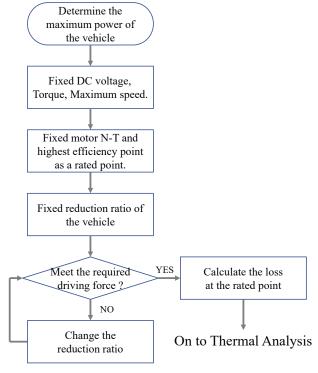


Fig. 9 Motor Design Procedure

A multitude of combinations of motor size and reduction ratio can be found that satisfy the requirements of the vehicle. Among these combinations, the configuration that satisfies the thermal performance requirements at the rated point and minimizes the total volume of the cooling system and motor is sought through thermal analysis. The methodology for identifying the optimal minimum size will be described in a subsequent section.

3-5. Thermal Analysis Model

The magnetic field analysis model enables the determination of the motor size and losses during rated operation. Consequently, the thermal resistance between the parts in the motor can be calculated based on the motor's body size. Furthermore, the heat capacity of each component and the volume of cooling water can be determined.

Thermal analysis was conducted by reproducing the thermal circuit depicted in Figure 5 and Figure 6 in JMAG, a magnetic field analysis software. To reduce the time required for calculations, the analysis was conducted by combining the FEM analysis in JMAG and the thermal circuit model. In the FEM analysis, the heat transfer in the electromagnetic part of the motor that generates the loss was evaluated. The thermal circuit model reproduced the heat dissipation to air and other fluids, as well as the thermal resistance of the contact area of the parts receiving the heat dissipation. The thermal circuit model also reproduced the shaft, motor case, cooling jacket, and vehicle radiator, excluding the electromagnetic parts.

The thermal resistance of each component was incorporated into the circuit model through the application of the equivalent thermal conductivity equation (Figure 10, e.q.(1), e.q.(2)).

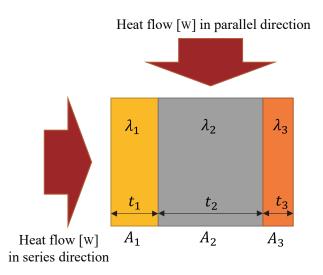


Fig. 10 Heat flow in series and parallel

$$\lambda_{eq_S} = \frac{t}{\sum \frac{t_i}{\lambda_i}} \tag{1}$$

$$\lambda_{eq_P} = \frac{\sum (A_i \cdot \lambda_i)}{A} \tag{2}$$

 λ_{eq_s} : Equivalent Thermal Conductivity in Series

 λ_{eq_P} : Equivalent Thermal Conductivity in Parallel

t : Total Thickness

 t_i : Thickness of each Component

 λ_i : Thermal Conductivity of each Component

A : Area in the Direction of Heat Flow

 A_i : Area of each Component in the Direction of Heat

Flow

The contact area between components is typically quantified by an index known as contact thermal resistance. In this model, the calculation was based on Tachibana's equation^[8], a widely utilized expression for contact thermal conductance, with adjustments made based on actual measurements.

$$K = \left(\frac{1.7 \times 10^5}{\frac{\delta_1 + \delta_0}{\lambda_1} + \frac{\delta_2 + \delta_0}{\lambda_2}} \cdot \frac{0.6P}{H} + \frac{10^6 \lambda_f}{\delta_1 + \delta_2}\right) \cdot C \tag{3}$$

K: Contact Thermal Conductance $[W/(m^2 \cdot K)]$

: Maximum Height of each Part Surface Roughness $[\mu m]$

: Contact Equivalent Length [µm] δ_0

: Fluid Thermal Conductivity [W/(m·K)] λ_f

P: Contact Pressure [MPa]

H: Vickers Hardness of the Softer Side[kg/mm²]

C: Correction Factor

The validity of the thermal analysis model was verified by comparing it with the actual motor. The thermal analysis model was partially calculated using a thermal circuit, which resulted in the analyzed temperatures being volume-averaged temperatures. Conversely, since the surface temperature of each component was measured in the experiment, it cannot be directly compared with the results of this analysis. Consequently, a computational fluid dynamics (CFD) thermal analysis model^[7] was employed to assess the thermal circuit model developed in this study. This validated the efficacy of the thermal circuit model. Initially, the outcomes of the CFD full model analysis and the actual machine were compared. The evaluation conditions are the results of running at a constant output for one hour at an ambient temperature of 25 degrees C and natural air cooling. The analysis is also based on the same conditions.

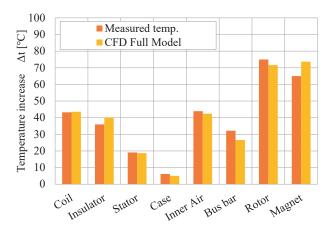


Fig. 11 Comparison of CFD Analysis Temperatures and Experimental Results

Figure 11 shows that the CFD model is sufficiently accurate, with an error within 10% of the experimental results. Therefore, the volume-averaged temperatures of each component were obtained from the CFD model. The accuracy of the thermal circuit model was confirmed by comparing the CFD results with the analysis results of the thermal circuit model used in this study. The results of the comparison are shown in Figure 12. This result demonstrates that the thermal circuit model is sufficiently accurate for relative comparisons of cooling performance between different motors. The analysis using the thermal circuit network model is a transient analysis with 10 seconds per step, and the results shown are those at the point in time when the same amount of time has elapsed as in the actual machine evaluation. The residual value of less than 10^{-8} has been set as the convergence criteria for each step.

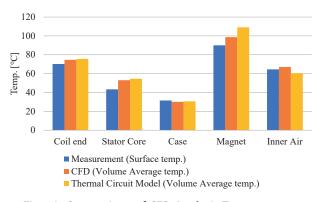


Fig. 12 Comparison of CFD Analysis Temperatures and Thermal Circuit Model

The subsequent section of this discussion will examine the comparative characteristics of motors with distinct winding configurations and varying core lengths. It is important to note that concentrated winding and SC have disparate coil shapes, which consequently affects the contact area between the coil and the core. The larger the contact area, the lower the thermal resistance. In general, SC exhibits a larger contact area between the coil and core due to the ease of increasing the number of slots, which results in superior heat dissipation (Figure 13). Conversely, concentrated winding has smaller coil ends. Consequently, if the core length is identical to that of the SC, it can be reduced in size. In the motor under consideration, the contact area between the coil and core is 2.3 times larger and the coil end size is 1.2 times larger than that of the concentrated winding motor. This value is considered in the present study.

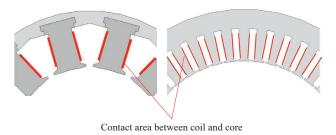


Fig. 13 Difference in contact area between concentrated winding and SC

For motors with different core lengths, the thermal resistance of each part changes as described above. A motor with a larger core length is capable of more heat dissipation and has a larger heat capacity, which changes the temperature rise during vehicle operation. Conversely, the larger motor volume increases the phase resistance of the coil, which may result in increased copper loss, and the larger core volume may increase the iron loss.

The following definitions pertain to other conditions. For the sake of simplicity, the change in volume of the gear section due to the reduction ratio is not considered. Furthermore, the size and mass of the inverter are not considered, as the focus is on the motor. The water temperature shall be limited to 60° C. In the case of water-cooled motors, the inverter is generally water-

cooled as well. Therefore, the upper water temperature limit is set in consideration of inverter cooling. The upper temperature limit for coils and magnets varies depending on the selection of materials, but in this case, the upper temperature limit for both is 160°C. If the temperature of each of the components does not exceed the upper limit, the motor is deemed to have sufficient thermal rating capacity. However, if the temperature exceeds the upper limit, the motor should be enlarged to improve the heat dissipation capacity, or the radiator size should be increased to identify the smallest size that can achieve the rated output.

3-6. Optimization Procedure for each Motor Output

The following procedure outlines the specific methodology for comparing motor and cooling system sizes for each output. As previously stated, the design of the motor should be based on the output to be considered. The loss of the motor in rated operation is determined by magnetic field analysis. Given that the size of the motor is fixed, the thermal resistance and heat capacity of each component can be obtained. The thermal analysis model determines the heat dissipation capacity of the radiator based on the vehicle speed at rated operation and the radiator size. The considerations thus determine the conditions for the thermal circuit model.

- (1) The motor temperature should be assessed using the thermal circuit model that has been determined.
- (2) If the temperature exceeds the upper limit, the radiator size should be increased so as to improve the capacity for heat dissipation.
- (3) The thermal analysis should be repeated with the new model.
- (4) If a model is identified within the temperature limit, the volume and weight of the motor and cooling system should be calculated.
- (5) The motor core length should then be increased. It is necessary to ascertain whether a combination can be

achieved with a smaller radiator size due to the increased heat dissipation capacity of the motor.

(6) The procedure should be repeated (1) to (5) in order to extract the smallest combination of motor and cooling system that satisfies the thermal rating.

In the case of air-cooling, there is no radiator, thus the sole means of increasing the heat dissipation capacity is to increase the motor size.

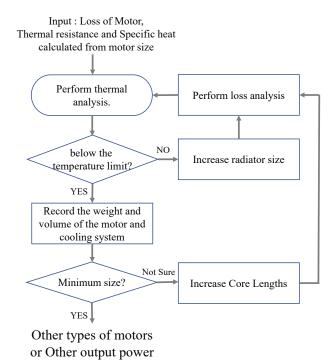


Fig. 14 Optimization Procedure

4 ANALYSIS RESULTS

4-1. Results for Vehicles with a Maximum output of 11 kW

As an example, the results of the study are presented for a vehicle with a maximum output of 11 kW when an SC water-cooled motor is applied. The vehicle model is defined in accordance with the specifications outlined in Table 2.

Table 2 Specifications of Vehicle with Maximum output of 11 kW

Max. Power [kW]	11
Max.Speed [km/h]	113.5
DC voltage [V]	110
Max. Force [N]	1165

The minimum core length required to achieve the desired vehicle performance was 35 mm. A thermal analysis was conducted on this motor in conjunction with a radiator of the smallest size. The results are presented with the core size held constant and the radiator size increased. The radiator size is expressed as a percentage of the radiator size utilized in the ICE 125cc vehicle.

Figure 15 presents the results of the analysis. When the core length is 35 mm, there is a margin for coil and magnet temperatures for all radiator sizes. The water temperature falls below 60°C when the radiator size is 63%. Therefore, when the motor core length is 35 mm, 63% radiator size is required.

The subsequent step is to ascertain whether the overall volume and weight can be reduced by increasing the core length and decreasing the radiator size. This same study is conducted for a motor with a core length of 40 mm as for 35 mm. The results indicate that at 40 mm, a radiator size of 42% is sufficient because the heat dissipation capacity of the motor has been improved.

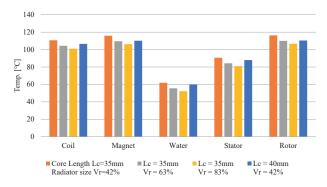


Fig. 15 Results of Thermal Analysis on a 11 kW Vehicle

In the context of a typical motorcycle, it is not appropriate to consider radiators smaller than 42%. Consequently, the smallest possible combinations are either a 35 mm

core length with 63% radiator or a 40 mm core length with 42% radiator. The results of this comparison are presented in Figure 16.

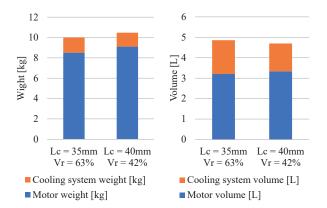


Fig. 16 Comparison of Motors with different Core Lengths

The results indicate that the lightest weight is observed at a core length of 35 mm, while the smallest volume is observed at a core length of 40 mm. Similar studies were conducted with different winding types, cooling methods, and power outputs.

4-2. Summary of Study Results for each Output

The total weight and volume of the four combinations were compared: concentrated winding, SC, air-cooled, and water-cooled. The volume and weight of the water-cooled SC were used as a reference for relative comparisons of the other combinations. The volume comparison results are shown in Figure 17.

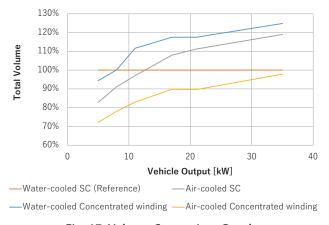


Fig. 17 Volume Comparison Results

It was found that air-cooled concentrated winding motors have the smallest volume in the range of 35 kW or less. For motors of 15 kW or more, the volume of water-cooled SCs is 110% or less of that of air-cooled concentrated windings, so they can be considered roughly equivalent.

When comparing water-cooled SC motors with watercooled concentrated motors, it can be seen that the SC is superior in terms of miniaturization in almost all areas except 5kW. In this study, motor cooling is achieved by a cooling jacket on the outer case of the motor. On the other hand, concentrated winding motors have higher thermal resistance than SC due to the difference in contact area between the coil and the core. Therefore, SC can cool the motor more efficiently. Although concentrated winding reduces copper and stator losses compared to SC, it cannot achieve the miniaturization effect of water-cooled SC motors.

The number of slots in an SC motor can be increased more easily. This reduces the eddy current loss generated in the magnets inside the rotor compared to a concentrated winding motor. Since the rotor has no cooling jacket, the temperature rises more easily as the loss increases. Figure 18 shows the temperature results for a 5 kW SC water-cooled motor and a concentrated winding water-cooled motor. The core length of both motors is 30 mm and the size of the cooler is the same. The water temperature is almost the same (55-60°C), but the temperature of each part is higher in the concentrated winding motor. This indicates that the heat resistance of the concentrated winding motor is higher. *The thermal resistance between the housing and the cooling water is very small for both the concentrated winding motor and the SC motor, so the temperature of the housing is mainly affected by the cooling water temperature. In this result, the water temperature was slightly lower in the concentrated winding motor, so only the case temperature was reversed.

Air-cooled SC motors also failed to demonstrate superiority over other methods. This is probably because while SCs have excellent heat dissipation characteristics due to their low thermal resistance from the coil to the housing, air cooling can only achieve limited heat

exchange from the housing to the air, so it cannot demonstrate its heat dissipation performance.

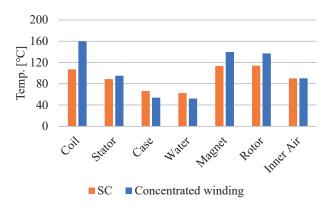


Fig. 18 Temperature Comparison between Concentrated Winding and SC

The next step is to compare the weights. The results are shown in Figure 19.

In terms of weight, the 5 kW rated unit is slightly superior to the water-cooled concentrated winding motor. However, in all other cases, the water-cooled SC motor is the best. For 10 kW and below, air cooling is superior in volume, but water cooling is superior in weight. This is due to the weight density of the motor. The construction of motors comprises electromagnetic steel and copper, which have a high weight density. In contrast, water-cooled systems such as radiators and pumps have a low weight density. In air-cooled motors, core length is increased to enhance heat dissipation, which has a significant impact on weight. In water-cooled motors, the size of the radiator can be expanded to improve cooling capacity, thereby reducing weight.

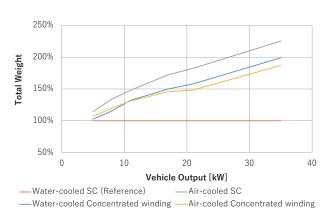


Fig. 19 Weights Comparison Results

Finally, the relationship between heat dissipation capacity and volume or weight is shown in Figure 20 and Figure 21. Figure 20 shows the results of a study on a water-cooled SC motor with an output of 35 kW. It compares the effects of increasing the core length and radiator size to enhance heat dissipation capacity. In both cases, the temperature decreases with an increase in volume. The reduction in temperature per volume was validated using coil temperature as an indicator.

As a result, when comparing the effects of increasing the length of the motor core and increasing the size of the radiator, it was found that the effect of reducing the coil temperature per unit volume was better when the core length was increased. Figure 21 shows the effect of temperature reduction in relation to the change in weight. In terms of weight, the effect of increasing the size of the radiator is equivalent to increasing the size of the motor. When cooling the coil temperature, it can be seen that increasing the contact area with the housing, which is the main heat sink for the coil, is more effective in reducing the temperature than increasing the size of the radiator. This trend is the same for the rotor (Figure 22, 23).

On the other hand, Figures 24 and 25 show the relationship with water temperature. Figure 25 shows that if you want to reduce the water temperature, it is much easier to increase the radiator size than to increase the core length.

Therefore, to reduce the temperature inside the motor, it is more effective to increase the size of the motor itself, increase the heat exchange area, and reduce the thermal resistance, but you must be careful not to increase the weight. Increasing the size of the radiator is useful for reducing the water temperature.

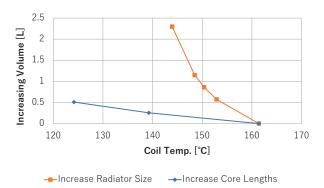


Fig. 20 Relationship between Coil Temperature and Volume

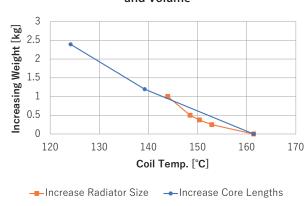


Fig. 21 Relationship between Coil Temperature and Weight

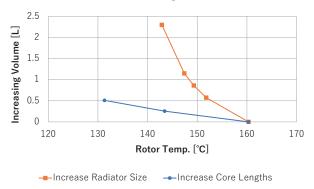


Fig. 22 Relationship between Rotor Temperature and Volume

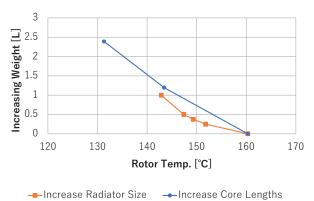


Fig. 23 Relationship between Rotor Temperature and Weight

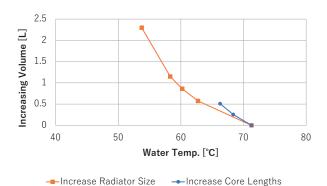


Fig. 24 Relationship between Water Temperature and Volume



Fig. 25 Relationship between Water Temperature and Weight

5

SUMMARY/CONCLUSIONS

In order to compare the combination of winding methods and cooling systems in the output range of European A2 licenses and below, we constructed an analysis model using magnetic field analysis and thermal circuit networks.

Using this model, we examined the smallest power unit configuration, including the cooling system, for each vehicle output.

For the motor we designed this time, we found that the air-cooled concentrated winding motor had the smallest volume when the vehicle output was 35 kW or less. On the other hand, the water-cooled SC motor was the lightest in all power ranges. In the 15 kW and above range, it was found that the water-cooled SC motor was about the same size as the air-cooled concentrated winding motor, even when the water-cooling system was included.

Therefore, it was suggested that the air-cooled concentrated winding motor was superior in the range of 15 kW and below, and the water-cooled SC motor was superior in the range of 15kW and above.

These results are broadly consistent with the trends seen in commercially available EVs.

In the context of actual vehicle development, it is believed that the optimal combination may vary depending on the vehicle's specific performance requirements, motor design, and cost considerations. However, the use of this model has facilitated a more straightforward comparison of design proposals.

In the field of motorcycle design, it is important to select the most suitable motor and cooling system for the intended use. The findings of this research will prove an effective tool for making such decisions and may be applied in future vehicle development.

REFERENCES

[1] Yaohui Gai, Mohammad Kimiabeigi, Yew Chuan Chong, James D. Widmer et al., "Cooling of Automotive Traction Motors: Schemes, Examples, and Computation Methods" IEEE Transactions on Industrial Electronics (Volume: 66, Issue: 3, March 2019), doi:10.1109 /TIE.2018.2835397 [2] Tsukasa Shimizu, Jin Itou, Hideki Shirazawa, Yasuyuki Muramatsu, "Study on appropriate cooling systems according to output of motor for small EV's" SAE Technical Paper 2017-32-0079, 2017, doi: 10.4271/2017-32-0079 [3] Norihisa Iwasaki, Hideki Kitamura, Masashi Kitamura, Junnosuke Nakatsugawa et al., "The Effect of Structure and Material Properties of Permanent Magnet Synchronous Motors on Temperature rise" IEEJ Rotating Machinery Research Committee (In japanese) Vol. RM-10 No. 134-152 Page. 61-66 (2010.10.20)

[4] Sasaki Kensuke, Akatsu Kan, "Effect of Cooling Methods on Continuous Output Capability of a Permanent Magnet Synchronous Motor" IEEE Conference Proceedings Vol. 2023 No. IEMDC Page. 1-5 (2023), doi:10.1109/IEMDC 55163.2023.10238898

[5] Tikadar Amitav, Kumar Nitish, Joshi Yogendra, Kumar

Satish, "Coupled Electro-Thermal Analysis of Permanent Magnet Synchronous Motor for Electric Vehicle" IEEE Conference Proceedings Vol. 2020 No. ITherm Page. 249-256 (2020), doi: 10.1109/ITherm 45881.2020.9190562 [6] Norihisa Iwasaki, Hideki Kitamura, Masashi Kitamura, Junnosuke Nakatsugawa et al., "Miniaturization Design and Performance Evaluation of Prototype Permanent Magnet Synchronous Motor Optimally Designed with Thermo-Magnetic Field Coupling Analysis" IEEJ Rotating Machinery Research Committee (In Japanese) Vol. RM-10 No. 56-69 Page. 57-62 (2010.05.28)

[7] Takuya Yamauchi, Satomi Ishikawa, Mika Inoue, Hideki Oki, "Modeling methods that contribute to improvements in accuracy of CFD analysis on electric motor" Yamaha Motor Technical Review No. 57, Dec. 2022.

[8] Fujio Tachibana, "A Study on the Thermal Resistance of Contact Surfaces" Transactions of the JSME (in Japanese), Vol. 55, No. 397, pp. 102–107, 1952, doi: 10.1299/jsmemag. 55.397_102

■著者

大滝 亮太 Ryota Otaki パワートレインユニット プロダクト開発統括部 電動 PT 開発部

土屋 照之
Teruyuki Tsuchiya
技術・研究本部
技術開発統括部
先進プロダクト開発部

酒井悠Yu Sakai
パワートレインユニット
プロダクト開発統括部
電動 PT 開発部

山内 拓也 Takuya Yamauchi 技術・研究本部 技術開発統括部 制御システム開発部

清水 司 Tsukasa Shimizu パワートレインユニット プロダクト開発統括部 電動 PT 開発部

技術論文

三次元磁路と非対称磁石配置をもつ 可変界磁 PM モータの運転特性評価

Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement

日吉 祐太郎 土井 康太朗 野口 季彦

本稿は、一般社団法人電気学会 2023年産業応用部門モータドライブ/回転機合同研究会において優秀論文発表賞を受賞し たもので、同会の許可を得て転載したものです。

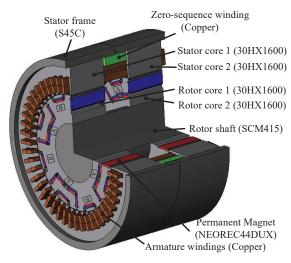
本論文の著作権は一般社団法人電気学会に属し、無断複製・転載を禁じます。

要旨

本論文では、低回転動作における高トルクと、高回転動作における高効率な特性の両立が可能となる、3次元磁路構造と非対 称な磁石配置のロータを有する可変界磁モータについて述べる。3次元 FEA(Finite Element Analysis)によって、高トルク密度 の特性を維持しつつ可変界磁制御が可能であることを確認した。さらに、試作機に対し負荷試験を実施することで、高回転の動作 において高効率な特性が得られることを検証した。

Abstract

This paper describes a three-dimensional structure of an adjustable field magnetization permanent magnet (PM) motor and a high-power density rotor structure with asymmetric permanent magnet arrangement for both high torque and high efficiency operation in the high speed and low torque range. 3D-FEA demonstrated that adjustable field magnetization operation is possible without sacrificing high torque density. Furthermore, load tests have confirmed that high efficiency characteristics can be achieved at high-speed operation.


はじめに

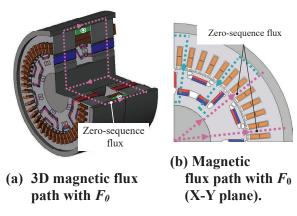
自動車主機用の電動モータに対する要求水準は日々上昇し ており、特にエネルギー効率の高さと、出力密度への要求の高 さは顕著である。経済産業省の2030年開発目標としては、 「モーターシステムとして、85%以上の平均効率」「モータ単体 出力密度:8.0kW/kg」を掲げている[1]。モータ体積当たりの出 力を向上するため、車載主機用モータを高回転化する試みが なされている [2][3]。高トルク・高出力かつ高効率の特性を持ち、 車載主機用のモータとして多く用いられる埋め込み磁石型同 期モータ(IPMSM)においては、高回転領域での動作時に弱め 界磁制御 [4] が一般に用いられるが、弱め界磁制御では、弱め 界磁に必要な電流の分だけ損失が増大し、モータ効率が悪化 するという課題がある。この課題の解決のため、回転数に応じ て界磁強さが制御可能な、可変界磁モータが盛んに研究され ている^{[5][6][7][8]}。筆者らはこれまでに、追加の界磁巻線を利用し た3次元の磁路をもつ可変界磁モータを提案してきた [9][10]。特 に、非対称な磁石配置となる回転子を有することで、マグネット トルク・リラクタンストルクをともに利用でき、高トルク密度・高 出力かつ可変界磁による高回転高効率のモータを提案した[11]。 本稿では、上記の3次元の磁路と非対称な磁石配置を有する 可変界磁モータについて実機を製作し、実施した実負荷試験 の結果を報告する。

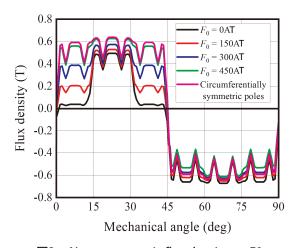
2-1. モータ構造

図1に製作したモータの構造を示す。また表1ヘモータ諸元 を示す。本モータはステータコア・ロータコアを軸方向へ2分割 した構造となっている。ステータコア1、2に挟まれた空間へ界 磁巻線を配置し、これに電流(以下、零相電流)を印加して生じ た零相磁束によって強め界磁の効果を得る。図2へ示すように、 零相磁束はロータコア1、ステータコア1、モータフレーム、ス テータコア2、ロータコアコア2、ロータシャフトを順に通る3次 元的な磁路を流れる。

Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement

Proposed motor model




図2 Principle of adjustable field

Specifications of proposed motor

Number of poles and slots	8 poles and 48 slots	
Armature winding and	8T-2P, star connection,	
resistance	0.0209Ω	
Zero-sequence winding and	500T-2P, 8.83Ω	
resistance	3001-21, 0.0332	
Stator frame outer diameter	φ152mm	
Stator outer diameter	φ140mm	
Rotor outer diameter	<i>ϕ</i> 93mm	
Rotor shaft diameter	$\phi 46$ mm	
Axial length	89mm	
Maximum armature current	240A _{peak} ,	
and density	24.2A/mm ²	
Maximum DC link voltage	300V	
Maximum zero-sequence	$4A_{ m dc}$,	
current and density	20.4A/mm ²	
Maximum speeds	15000r/min	
Cooling system	Water cooling	

2-2. 可変界磁原理

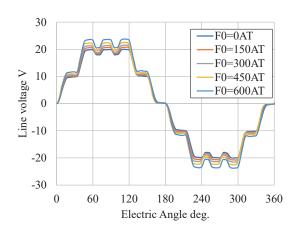
ロータコアは磁極間で非対称な形状であり、周方向に磁石量 の多い極、少ない極が交互に配置されている。また軸方向に分 割されたロータコア1、ロータコア2は、一磁極分位相がずれて いる。図3の解析結果へ示す通り、零相電流の印加なき場合は 磁極の非対称性から、エアギャップでの磁束密度分布は非対 称となる。また、全て磁石量の多い極とした場合と比べ磁束密 度分布の振幅が小さい。零相磁束を印加することで生じた零相 磁束は。磁石が少なく磁気抵抗の小さい極へ集中するため、磁 石量の少ない極の磁束を選択的に増加させることができる。増 加した磁束によって磁束密度分布の対称性が得られると同時 に、界磁全体としての磁束量が増加し、界磁を強めることがで きる。すなわち、零相電流の制御によって界磁を変化させ、可変 界磁を実現する。

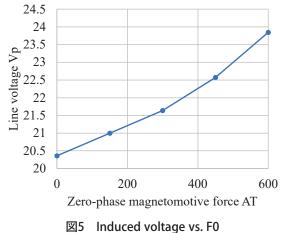
Air gap magnetic flux density vs. F0 under no-load condition

実機試験

3-1. 無負荷誘起電圧計測

提案モータについて、外力によりロータを回転させた際の三 相線の電圧を計測する試験を行った。本試験では可変界磁効 果を確認するため、零相巻線に安定化電源を接続し、任意の零 相電流 Ioを印加できるようにした。試験の様子を図4に示す。回 転数は1,000rpmで固定とし、零相起磁力 F_0 は0、150、300、 450、600AT を与えた。


Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement



Experimental setup

試験の結果を図5へ示す。零相起磁力の増加に伴い、線間誘 起電圧の振幅が増加していることが分かる。無負荷誘起電圧 V は式(1)から与えられるため、電気角周波数ω一定の場合、零 相起磁力によって鎖交磁束ψが変化している。すなわち、零相 起磁力によって界磁の制御が行えていると言える。

$$V = \omega \psi \tag{1}$$

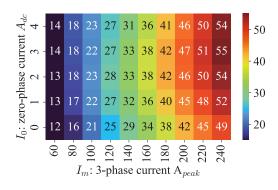
3-2. 電流及び位相角感度確認のための負荷試験

提案モータについて、回転数、3相電流値、3相電流位相角、 零相電流値を指定したうえで、軸トルクを計測する試験を行っ た。試験のパラメータを表2に示す。三相電流の印加には汎用 インバータ pMOTION (Myway 社製)を利用し、零相電流の印 加には安定化電源を使用した。

表2 Parameters in the test for measuring induced voltage

3-phase current $A_{\it peak}$	From 60 to 240, in increments of 20.	
3-phase current phase angle deg.	From 0 to 90, in increments of 10.	
Zero-phase current A_{dc}	0, 1, 2, 3, 4	
Rotational speed rpm	1000	

図6(a)(b)に三相電流 I_m 、・零相電流 I_0 条件ごとに、トルク 最大となる三相電流位相角 β (以後最適進角 β)と、最適進角 にて計測されたトルクを示す。提案モータの最大電流条件にお いて、電流位相角50deg. にて最大トルク53.7Nm が確認でき た。図6(c)に、各 I_m 、 I_0 条件下での $\beta = 0$ における電機子鎖交 磁東 ψ を示す。 I_m の低い領域では I_0 の値に応じて ψ が大きく 増減しているが、 I_m が増加すると ψ の変化は小さくなる。 I_m 由 来の磁束によって、零相磁束の磁路が飽和してしまっているた め、 I_m の大きな条件では I_0 由来の磁束が通らず ψ を増加させ られなくなっていると考えられる。


また飽和によって ψ 自体が低下しているため、 I_m の高い条 件では式(2)に示す磁石トルク Tm が発揮しにくくなっている。 図6(d)に、d軸・q軸インダクタンスを示す。 I_m の増加による磁 気飽和の影響によって、モータインダクタンスが低下している。 ただし L_d 、 L_a がともに減少するため、インダクタンス差 L_d - L_a は 極端に減少せず、式(3)に示すリラクタンストルク T, を維持で きている。

$$T_m = P_n \psi I_q \tag{2}$$

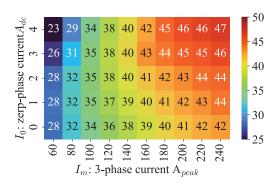
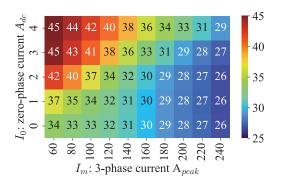
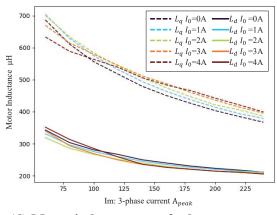

$$T_r = P_n \left(L_d - L_q \right) I_d I_q \tag{3}$$

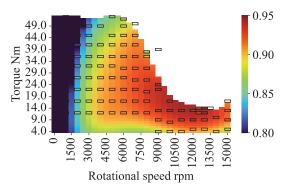
図6(b)に示す最適電流進角の分布からも、高 Im 条件にお いてリラクタンストルクが支配的になっていることが確認でき る。


Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement


(a) Torque [Nm]

(b) β : Optimum current phase angle [deg.]

(c) ψ : Chained flux [mWb]


(d) Motor inductance vs. 3-phase current.

Results of load tests

3-3. 各動作点における効率計測試験

提案モータについて、任意の回転数、三相電流値を設定した うえで、最もトルクが大きくなる零相電流値 I_0 、三相電流進角 β を探索し、最適な条件におけるモータ効率を計測する試験を 行った。本試験の計測結果のうち、最も高い出力は36.7kWで あり、回転数9,000rpm にて軸トルク39.0Nm が確認できた。 軽自動車の主機としては最高出力30kW 程度が必要であるの で [12]、提案モータの出力は十分であると言える。図7に製作し たモータの効率分布を示す。黒い四角は実測したポイントであ る。提案モータの電源条件において、最高効率は94.7%であ り、最高効率点は13,000rpm・13.8Nm であった。IOの低下に より界磁を弱められるため、高回転域の効率が良く、最高効率 点が13,000rpmと高回転である。

図8(a)-(d)に各種損失の分布を示す。図8(d)に示す「その 他損失」には、鉄損、AC 銅損、機械損が含まれる。図8(b)に示 すように、DC 銅損は高トルク域にて大きく、また図8(d)に示す ように、その他損失は電流値およびモータ回転数に対して感度 があり、高出力域で大きい。合計損失としては、両損失が重畳す る N-T 線図の肩位置近傍において最も大きくなっている。最高 回転数付近の領域では、零相電流の低減による界磁の弱まり と、零相電流自体の損失低減により、合計損失の値としては小 さくなっている。図8(c)に示すように、9,000rpm以下の条件に おいては Ioはほぼ最大値となっているため、零相コイル銅損も 同様にほぼ最大値で一定である。9,000rpm 以上の領域にお いては I_0 を低減させ、 ψ を低減させることで式(4)に示す誘起 電圧を低減させている。図8(c)から、高回転域では I_0 の減少に 伴い零相コイル銅損が低下していることが分かる。

Distribution of motor efficiency in the N-T diagram

Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement

図8 Distribution of each loss

$$\begin{pmatrix} V_d \\ V_q \end{pmatrix} = R \begin{pmatrix} I_d \\ I_q \end{pmatrix} + \begin{pmatrix} 0 & -\omega L_q \\ \omega L_d & 0 \end{pmatrix} \begin{pmatrix} I_d \\ I_q \end{pmatrix} + \begin{pmatrix} 0 \\ \omega \psi \end{pmatrix}$$
 (4)

実使用を想定した評価のため、図7に示す効率の分布に基づき、WLTC モード走行を仮定した際の平均効率を考える。

モード走行の前提として、車両のパラメータを車重746.4kg、 タイヤ径0.6m、減速比1.0: 12.0とした。

図9に WLTC class 3b に定められた走行パターンを示す。 図10にモード走行をした場合の動作点と、各動作点における モータ損失を示す。低トルクおよび高回転領域では損失が少な く、高効率での走行ができていると言える。図11にモード走行中 のモータ効率を示す。加減速のタイミングにてモータ効率が悪化 しているが、中・高速運転中はモータ効率80%以上をとる期間が 多く、モード走行を通した平均効率は84.4%であった。提案モー タは、電力消費の激しい高速度域の運転において高効率の特性 を持つため、モード走行基準では優位性があると考えられる。

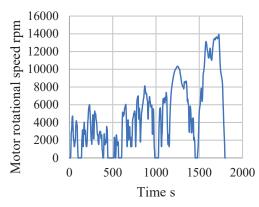


図9 Motor rotation speed [rpm] in WLTC Class 3B mode

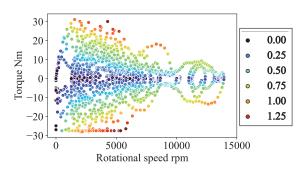


図10 Total motor loss [kW] for WLTC Class 3B driving

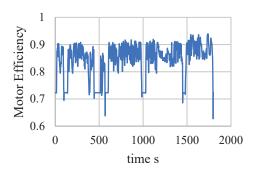


図11 Motor efficiency transition in mode driving

4 まとめ

本稿では、3次元の磁路と非対称な磁石配置を有する可変 界磁モータについて実機を製作し、実負荷試験を実施した。今 回の計測では最大53.3Nm、36.7kWの出力特性が確認でき た。モータ単体での最高効率は94.7%であり、WLTC class3b モードにおける平均効率は84.4%であった。自動車主機として 利用可能な出力と、可変界磁モータの特徴である高回転運転 の高効率な特性が確認できた。最高効率点が高回転に位置す る特性から、モード走行における平均効率は良好な結果となっ た。

一方で零相磁束を通すためのケース・シャフトを軽量化することが困難であること、また零相巻線といった部品が追加されることから、モータ単体重量は20.3kg、モータ単体出力密度は1.8kW/kgとなった。出力密度向上のためには、より高回転・高電圧で動作可能なモータとすること、零相磁束を通しながらも体積の小さい回転子を最適設計することなどの対策が考えられる。

■参考文献

[1] 経済産業省製造産業局, "「次世代蓄電池・次世代モーターの開発」プロジェクトに関する研究開発・社会実装の方向性", 2021. [オンライン]. Available: https://www.meti.

Evaluation of Operating Characteristics of Adjustable Field Magnetization PM Motors with 3D Magnetic Path and Asymmetric Magnet Arrangement

go.jp/shingikai/sankoshin/green_innovation/industrial_restructuring/pdf/005_03_00.pdf

[2] I. Husain, B. Ozpineci, M. S. Islam, E. Gurpinar, G.-J. Su, W. Yu, S. Chowdhury, L. Xue, D. Rahman, R. Sahu, "Electric Drive Technology Trends, Challenges, and Opportunities for Future Electric Vehicles," Institute of Electrical and Electronics Engineers, 2021.

[3] K. Mohamed, A. A. Abdussalam, A. Abdulagader, "Technology Challenges and Trendsof Electric Motor and Drive in Electric Vehicle," IJEES, February8, 2023.

[4] T. M. Jahns, "Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive," IEEE Transactions on Industry Applications, July 1987.

[5] H. Hijikata, Y. Sakai, K. Akatsu, Y. Miyama, H. Arita, A. Daikoku, "Multi-phase inverter-fed MATRIX motor for high efficiency driving," IEEJ Transactions on Industry Applications, 2018.

[6] K. Sakai, K. Yuki, Y. Hashiba, N. Takahashi, K. Yasui, "Principal and Basic Characteristics of Variable-Magnetic-Force Memory Motors," 2009 International Conference on Electrical Machines and Systems, 2011.

[7] T. Mizuno, K. Nagayama, T. Ashikaga, T. Kobayashi, "Basic Principles and Characteristics of Hybrid Excitation Type Synchronous Machine," IEEJ Transactions on Industry Applications, vol. 115, no. 11, pp. 1402-1411, 1995.

[8] R. Tsunata, M. Takemoto, S. Ogasawara, K. Orikawa, "Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications," IEEE Transactions on Industry Applications, July-Aug. 2021.

[9] 土井康太朗,野口季彦,"三次元磁路と非対称磁石配置を もつ可変界磁PMモータの検討",電気・電子・情報関係学会東 海支部連合大会,2022.

[10] K. Iwama, T. Noguchi, "High-Efficiency Drive Method of Adjustable Field IPMSM Utilizing Magnetic Saturation," MDPI, Energies, Dec. 2021.

[11] 土井康太朗, 山田幹太, 日吉祐太郎, 野口季彦, "三次元 磁路と非対称磁石配置をもつ可変界磁PMモータの運転特性", 電気学会, 2023.

[12] MITSUBISHI MOTORS CORPORATION., "MINICAB MiEV", [オンライン]. Available: https://www.mitsubishi-motors. co.jp/lineup/minicab-miev/performance/. [アクセス日:792023].

■著者

日吉 祐太郎 Yutaro Hiyoshi 技術・研究本部 AM 開発統括部 第2技術部

土井 康太朗
Kotaro Doi
静岡大学
創造科学技術大学院

野口 季彦 Toshihiko Noguchi 静岡大学

技術論文

船外機の市場不具合低減活動 (パワーチルト&トリム)

Activities for Reducing Initial Market Failures in the Outboard Motors Market (Power Tilt & Trim)

高林 亮介 山下 敏之 青木 崇浩 岡本 守央 山口 淳

要旨

ヤマハ発動機株式会社(以下当社)の大型船外機の製造拠点である袋井南工場(静岡県袋井市)では、今まで以上にお客さま に安心と信頼をお届けするために、市場初期不具合の低減を目標に掲げ、不良検出力の強化活動を行っている。市場不具合を 部品別に分類した結果、大部分がパワーチルト&トリム(以下 PTT)に関連しており、中でも、"作動時間の遅延"、"作動時の異音" の案件が多く発生していることが判明した。そこで、現行完成検査の工程変更や新たな設備投資をすることなく、自動判定機能を 織り込んだ PTT の作動時間検査装置と異音検査装置を導入したので報告する。

Abstract

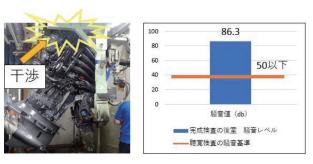
At Yamaha Motor Co., Ltd.'s (hereinafter referred to as "the Company") Fukuroi Minami Plant, the manufacturing hub for large outboard motors, the Company has set a goal of reducing initial market failures. To achieve this, the Company is implementing activities aimed at enhancing fault detection capabilities, ensuring greater peace of mind and reliability than ever before. An analysis of market failures by component revealed that the majority were related to the power tilt and trim (hereinafter "PTT"), with delayed operation times and abnormal noise during operation being the most common issues. In response, the Company has introduced a PTT operation time inspection device and an abnormal noise inspection device, both featuring an automatic determination function. These innovations were implemented without altering the current final inspection process or investing in new equipment. This report will detail the specifics of this initiative.

はじめに

当社の船外機は、ここ数年で大型モデルを中心に US(米国) 市場での販売が増加し、それに伴い売り上げも伸びてきてい る。しかし、他社の新商品の投入によって競争は激化しており、 このような環境下で事業成長を続けるためには、新商品を開発 するだけではなく、品質と信頼性の高い製品をお客さまへ提供 することが必要不可欠である。

また、マリン事業本部では、"私たちは、お客さまのマリンライ フをさらに安心・快適な経験に変えるため、お客さまの視点に より、高品質で信頼性の高い製品とサービスを提供します。"と いう品質基本方針を掲げている。製造部門は、お客さまから寄 せられた市場不具合情報に対し真摯に向き合い、市場問題の 発生・流出防止のための取り組みを継続することで、より一層 の安心・信頼できる商品をお客さまに提供することを目指して いる。

市場不具合発生状況


特に短時間の使用で不具合が発生した場合は、ブランドイ メージを著しく低下させることが容易に考えられる。そこで、運 転時間10時間以内で発生した市場初期不具合を調査した結 果、最も不具合が多い部品は PTT であった。また、PTT の不具 合を事象別で見ると、"作動時間の遅延"と"作動時の異音"の 2つの事象で約6割を占めていることが判明した。

補足として、PTTとはパワーチルト&トリムの略称であり、油 圧を用いて船外機の角度を自由調整できる機能を有する部品 である。船は速度が上がると船首が浮き上がり、船外機が取り 付けられている船尾は沈んだ姿勢になる。安定かつ速く航走す るにはプロペラの角度を推進方向に最適に保つ必要がある。こ の船外機の角度を微調整する機構を "トリム" という。

また、船を港に停泊させる際、海水の汚れや腐食から船外機 を保護するために、海面から船外機を引き上げる機構を"チル ト"という(図1)。

図1 PTT(パワーチルト&トリム)の機能と構造

船外機設備干渉および完検洗浄工程の騒音環境レベル

工場出荷前に異常検知するための 課題

先述の通り、PTT の初期不具合について、完成検査に焦点を あて調査した結果、PTT はメーカー保証*の ASSY 納入品であ り、当社の完成検査では作動可否の確認のみで、作動時間と作 動音は確認していないことがわかった。

そこで作動時間と作動音の検査導入を目的に、現状の完成 検査工程を調査した結果、以下2点の問題があることがわかっ た。1つ目は、検査員が現時点で配置されている工程では PTT の作動ができない問題がある。具体的には、新規検査項目は、 洗浄後に PTT を上昇・下降させる作業工程で行うのが適して いるが、現状で洗浄作業工程を担っているのは非検査員のた め、検査権限がないことが課題となる(図2)。

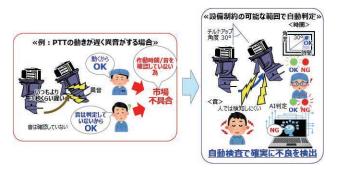
図2 完成検査の洗浄工程位置

2つ目は、「異音検査」のための設備と騒音環境下での検査 方法に課題がある。具体的には、市場で使われる PTT 全作動 域の検査がポイントになるが、現行設備では PTT を上昇させ る途中で、設備と船外機の干渉により、フルチルト角度まで作動 できない。また、周辺で洗浄・エアーブローを行っている騒音環 境下で異音検査を行うことが困難な状況であった。しかし、これ らの課題解決のために、設備に多大なコストをかけられないと いう理由から、現行の工程制約の下で PTT 作動時間と異音の 検査の導入を検討した(図3)。

※メーカーとは YHSJ (ヤマハモーターハイドロリック株式会社)であり、PTT の 開発~製造を行っている。

目標

PTT の "作動時間の遅延" と "作動時の異音" の市場初期不 具合ゼロを目標として、これを達成するための検査工程の導入 において以下2点に取り組んだ。


- ・ 音と作動時間を機械で自動合否判定する手段の確立(検 香員を必要としない)
- ・ 現状の工程制約で成立する検査手段の確立(チルト角度 の制約・環境音の制約)

対策

5-1. 検査コンセプト

検討に際し、まずPTT出荷検査強化のコンセプトを3つ掲げ た(図4)。

- 1. YHSJ で行っている PTT 単品検査と袋井南工場で行う船 外機完成検査の内容を整合させて、作動時間を測定する ことで、データの紐づけ分析を可能にさせる。
- 2. AI を用いて正常・異常な音を機械的に判別させることで、 異音判定のバラツキを抑制する。
- 3. 巨額な設備投資をすることなく、現状の完成検査の制約 条件下で検査を成立させる。

検査コンセプト

5-2. 作動時間検査方法の検討と導入

まず作動時間について、YHSJと同じ検査を完成機で再現さ せるための検査方案を検討した。YHSJでは、PTT 単品に完成 機同等の荷重を加えた上で、角度10°ごとのPTT作動時間と 最大電流値を測定し検査している(図5)。

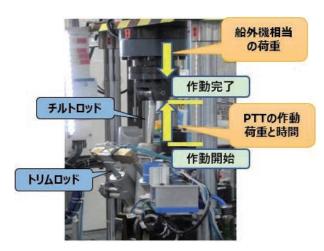
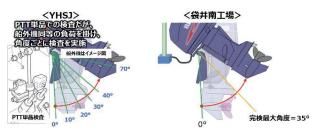
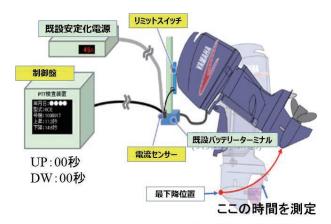



図5 単品状態の PTT 検査

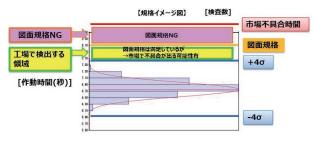

一方で当社の完成検査では設備構造上、フルチルト角度ま で作動させると船外機が設備に干渉してしまうため、最大角度 の作動検査と同等の精度がある検査方案として、"速度検査" "電流値検査" "作動時間検査" の3案の検討を行った。そのう ち、"速度検査" "電流値検査" には明確な規格値がなかったた め、PTT 単品での図面規格値が存在する"作動時間検査"で検 討を行うことに決めた。次に、PTT の動作可能な範囲から検査 角度を検討した。PTT 動作可能範囲とは、設備に接触する直前 までの角度であり、その作動域は約35°であった。なお、図面の PTT 作動時間の規格から作動域35°の想定作動時間を算出す ることで、フルチルト同等の判断が可能と考えた(図6)。

YHSJと袋井南工場の PTT 作動角度の違い

PTT は、船外機に付いている PTT スイッチを作業者が押す ことで上下に作動する。そこで、PTT が作動したときの電流を 活用し、その入力電流をトリガーとして作動時間の計測を行う 仕組みを取り入れた。なお、上昇動作、下降動作の2パターンの 作動時間計測を行う必要があるため、それぞれの作動時間計

測方法を検討した。上昇動作では、入力電流をトリガーとして 計測を開始し、終了点にはリミットスイッチを設置して、船外機 の一部がリミットスイッチに接触することで強制的に動作を停 止させる仕組みとした。下降動作では、入力電流をトリガーとし て計測を開始し、PTT が最下降位置に達し作業者がスイッチ を離した時点(電流遮断点)を終了点として計測する仕組みと した(図7)。

作動開始⇒リミットスイッチ⇒電源遮断=作動時間 図7 計測装置


次に、作動時間検査の規格値を検討した。いくつかの不具合 品を調査した結果、作動時間が早いものでも単品図面規格値 の1.8倍を要していることが判明した。なお、完成検査では設備 制約上、最大角度まで作動できないため、作動角度ごとの作動 時間を机上で算出し、規格値を仮設定した(図8)。

作動時間の製造規格値(単位:秒)

算出した規格値でテストを行った結果、机上計算の規格値に 対して、実際の作動時間は短いものがほとんどであった。そのた め、図面規格値ではなく、不具合につながりそうな異常品を検出 するための製造独自の規格値を設定する必要があると考えた。そ こで、量産品の作動時間を約1カ月間サンプリングし、その±4σ を袋井南工場の検査規格値に設定した。この検査規格は、PTT 単品図面の規格値よりも厳しいものであり、市場で不具合が発生 する可能性のある商品を工場で検出することは可能である。そし

て、異常を検出した場合は、真因追究を行い発生対策を織り込む ことで、さらに信頼性の高い商品提供が可能になる(図9)。

規格値分析 図9

5-3. 異音検査の検討と導入

次に、異音検査方案の検討に際し、まずは異音発生源の調査 を行った。その結果、異音の9割以上がモーター起因の音であ ることが判明した(図10)。

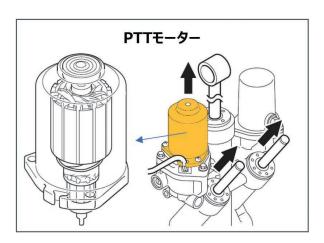


図10 PTT モーター

モーターは、PTT内部のギヤポンプにより油圧で駆動する部 品であり、常に一定の速度で回る。したがって、フルチルトまで 作動させなくてもモーターからの異音検査は可能と考えた。異 音検査の仕組みは、収録した音の大きさだけで判断するので はなく、異音の特徴を捉えるために周波数ごとの音の強弱を表 現できる STFT (短時間フーリエ変換) 画像に変換し、画像から 周波数・時間・音圧の特徴をAIへ学習させ、正常な音と異常な 音を機械で自動判別させるようにした(図11)。

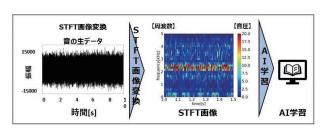


図11 STFT 画像変換、AI 学習

また、検査工程では水槽運転検査にて船外機の外観につい た水をエアーブローで飛ばす際に、約80~100dBの騒音が発 生する。このような騒音環境下でも PTT の作動音を検知するこ とができるかテストを行った結果、現状の完成検査の騒音環境 下でも PTT 作動音の検出が可能であると確認できた(図12)。

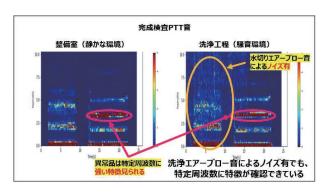


図12 騒音環境下での特徴確認

異音検査の規格値は、YHSJ や品質保証部門と協議の上、市 場で発生する異音の大半を占める3つの不良モード1)BRG(ベ アリング)変形による摺動異常、2)モーターマグネット割れによ る干渉不良、3)コネクター変形不良について、異常品サンプル を作成し、異常音を AI 学習させることで異常を判別できるよう にした。工夫点としては、集めた音の周波数と強度のレンジを 調整することで AI に学習させやすい STFT 画像を作成した。 まず、着目する周波数帯は2.000Hz~6.000Hz、音圧レベルの カラーマップ設定は-50dB~40dBとした(図13)。

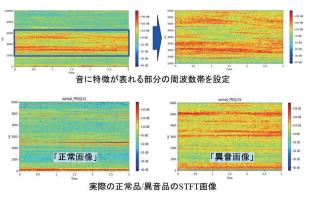


図13 判定周波数、強度の設定

AI は CNN (Convolutional Neural Network) と AE (Auto Encoder) の2種類を使用した。CNN は画像判別が得意な AI であり、AE は異常検知が得意な AI である。学習データには正 常品500データ、不良品15データを活用した。テストの結果、 正常品、不良品ともに、正確に合否判定できることを確認した (図14)。

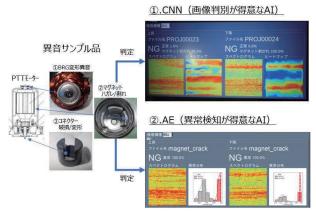


図14 AI 判定

5-4. 作動時間検査および異音検査の導入効果

今回開発した検査装置は、現状の設備でも船外機と接触す ることがなく、検査員資格を必要としない。そのため、現状の工 程を変更することなく、PTT の作動検査・異音検査を実現させ ることができた。表1に導入効果を示す。

表1 導入効果

検査内容	運用開始時期	不具合件数
作動時間検査	2022年2月から	0件
異音検査	2024年1月から	0件

おわりに

今回の "作動時間の遅延" と "作動時の異音" という PTT 市 場不具合低減の取り組みは、これまで未実施だった PTT の作 動時間・異音の検査に自動判定機能を織り込んだ検査装置を 導入することで、工程変更と新たな設備投資をすることなく、商 品の品質保証に貢献できたと考える。本施策の導入後に、市場 での初期不具合0件という実績より、有効性の高さが示された。 今後は発生防止の観点から源流改善を行うことも必要である。 検査を追加したことで PTT の不具合検出が可能となり、さらに は新検査方法で異常と判断された部品の調査のため、前工程 と連携を開始し情報を共有する体制も構築できている。源流改 善を行うためには、不具合の原因を特定し、対策しなければな らないが、いまだ全ての原因がつかめていないため、今後は ビッグデータを活用し、原因分析につなげることを検討してい る。まず、"製造条件や検査情報"と"市場の故障情報"を紐づ けできるように、PTT 単品に付与された PTT シリアル番号と船 外機の完成号機のデータ管理を整備中である。次に、連結され たビッグデータを解析ソフトで分析し、製造要因の洗い出し、原

因の追究へとつなげ未然防止を図っていく。上記の活動を今 後も継続し、発生防止と流出防止の両方の施策を強化して、市 場不具合ゼロを目指していく(図15)。

● 製造と市場のデータの繋がり

例)PTT Assyの短時間不具合低減

●市場×工場データ連結による分析手段確立(実績作り)

図15 データ連携

■著者

高林 亮介 Ryosuke Takabayashi マリン事業本部 製造統括部 マリンエンジン製造部

山下 敏之 Toshiyuki Yamashita マリン事業本部 製造統括部 マリンエンジン製造部

青木 崇浩 Takahiro Aoki 生産技術本部 生産技術部/ 静岡大学情報学部客員教授

岡本 守央 Morio Okamoto 生産技術本部 生産技術部

山口 淳 Jun Yamaguchi 生産技術本部 生産技術部

技術論文

平準化・ハイサイクル生産を実現する MC 組立の革新

Innovation in MC Assembly: Achieving Levelized and High-Cycle Production

友田 祐介 小林 篤史 深澤 伸吾 川口 貴之

要旨

ヤマハ発動機株式会社(以下当社)の MC(モーターサイクル)組立工場(静岡県磐田市)では35モデルを4つの組立ラインのコンベヤー方式で生産をしてきた。近年の生産台数減少と市場要求の多様化に対して、市場追従するため4つの組立ラインをAGV (Automatic Guided Vehicle)を用いた多品種変量生産に対応する2本の組立ラインへ集約した。また、月に1回しか生産がなかったモデルもほぼ毎日生産し、製品を市場に安定供給することが求められている。そのため、従来のロットサイズ40台の生産方式から、1台多品種変量生産方式の実現に向けて、汎用化と段取り改革を柱に技術開発を行った。

汎用化を目指し、従来の工程合致の考え方を変え、工数合致という視点で工程設計を実施した。工数合致をしていくことで、ラインバランスを最適化し、どのモデルを生産する時でも組立ライン内は同じ工数で作業ができ安定した生産を実現した。

モデルごとの工数差についてはシステムによる制御をし、AGVバイパス方式を用いることで解決した。

段取り改革において、従来ロットサイズでは40台ごとにあった段取り作業が、1台多品種変量生産では1台ごとに発生する。その課題を解決するために、自動化・共通化・最短化という視点で改善に取り組んだ。

本報では汎用化と段取り改革の取り組み内容を紹介する。

Abstract

At Yamaha Motor Co., Ltd.'s (hereinafter referred to as "the Company") motorcycle (MC) assembly plant in Iwata City, Shizuoka Prefecture, 35 models have traditionally been produced using a conveyor system with four assembly lines. In response to declining production volumes and increasingly diversified market demands in recent years, the four assembly lines were consolidated into two. These lines now utilize automated guided vehicles (AGVs) to enable high-mix, variable-volume production that adapts to market trends. Moreover, models that were previously produced only once a month must now be produced almost daily to ensure a stable supply of products to the market. To address this challenge, the Company developed technologies focusing on generalization and setup reforms, enabling the shift to a high-mix, variable-volume production system. This allows for the production of just one unit at a time, rather than the conventional 40-unit lot size.

In pursuit of generalization, the traditional process of matching specific tasks to models was rethought, and a new approach was adopted—designing the production process based on matching man-hours instead. By matching man-hours, the line balance was optimized, and stable production was achieved with the same number of man-hours in the assembly line regardless of which model was being produced.

By optimizing man-hour balance, stable production was achieved across all models, regardless of which was being assembled, while maintaining the same man-hours per assembly line. Any differences in man-hours per model were controlled through the AGV bypass system.

In terms of setup reform, tasks that were previously performed for every 40 units in lot-size production are now executed for each individual unit in this high-mix system. To streamline this process, improvements were made in automation, standardization, and reducing setup times.

This report will introduce the initiatives undertaken for generalization and setup reform.

1

はじめに

リーマンショック以降、モーターサイクル(以下 MC)生産台数の減少とともに市場からの要求が多様化してきた。MC 組立工場では35モデルを4つの組立ラインのコンベヤー方式で生

産をしてきた。MC の生産はスポーティ/ツーリングモデルやオフロード/コンペティションモデル等のカテゴリー別組立ライン(図1)にすることで効率を高めていたが、その反面、モデルごとの生産量は季節ごとに大きく増減するため工程や人員をそれに合わせていた。さらに完成車の出荷場も4ヵ所あり、同じ

Innovation in MC Assembly: Achieving Levelized and High-Cycle Production

仕向け地のコンテナが一杯になるまで待っているため出荷ま でのリードタイムが長かった。

また、見込み生産では市場の要求台数と生産台数との間に ズレが生じてしまい、市場の需要に対応できないという課題も あった。

この課題を解決するべく市場追従性と損益分岐点経営の両 立を目標に掲げ、1台のオーダーでもタイムリーに生産して世 界中のお客さまに喜んでもらえることを考え、生産台数の変動 に対応した生産方式を成立させた。

組立ライン別モデル一覧

平準化

2-1. 工程設計

従来の組立ラインは、カテゴリーごとに工数・構造差の少な いモデルを集めて最適化した専用組立ラインで生産していた。 しかし、汎用組立ラインとするためには、工数・車体構造差のあ るモデルを同じ組立ラインで生産する必要がある。そのため、 構造に合わせて工程を編成する "工程合致1)" の考え方から脱 却し、どのモデルを生産する時でも常に同じ仕事量かつ一定の ラインピッチで生産することができる "工数合致²⁾" の考え方で 工程設計をすることにした。

- 1) 工程合致とは、同じ作業者が常に同じ構造の似た作業となるように工程を合 わせる考え方をいう。
- 2) 工数合致とは、同じ作業者が常に同じ仕事量の作業となるように工数を合わ せる考え方をいう。

工数合致させるための課題は2つある。設備制約とモデルご との工数差があげられ、これらの課題を解決することが必要で ある。

1つ目の設備制約の取り組みとして固定設備を排除した。従 来の組立ラインで設置されていた作業者の高さを調節する固 定リフターや大物部品のハンドリング設備は、設置されている

工程は作業しやすくすることができるが、工程編成によって場 所を自由に移動できない。

車両搬送 AGV 側にリフター機能を搭載することや(図2)、大 物部品のハンドリング設備は大物部品を前工程で組み合わせ て供給することで、組立ライン内の固定設備数を減らすことに 成功した(図3)。また、AGV にターンテーブルを組み込むこと で、車両の向きを360度変えることができるようにし、これまで は車両に対して常に同じ方向からでしか作業できなかったが、 モデルや工程ごとで車両の向きを変えて最適な作業をするこ とができるようになった。

無線給雷:非接触急速充雷

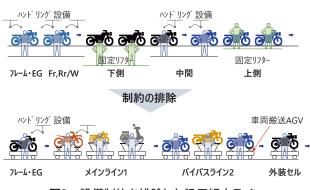
■寸法:長さ2400×幅1300×高さ400 (mm)

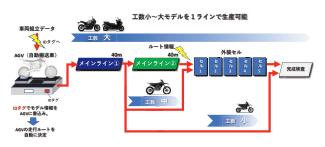
- ■重量:700kg
- ■稼働台数:135台

堂時無線诵信:

- ■特徴 ・駆動方式:電動モータ式
- •自動走行:磁気テープトレース
- AGV動作随時監視、トラブル時迅速な対応
- ・自動リフター昇降:作業性を向上
- RFIDタグ:設備自動切替のトリガー
- •無線給電:充電作業レス
- •安全機能:障害物センサー停止(レーザー) バンパー停止 (リミットスイッチ)

図2 車両搬送 AGV

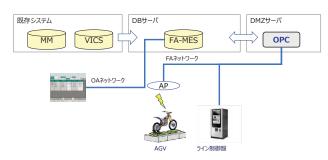



図3 設備制約を排除した汎用組立ライン

2つ目の工数差に対応する仕組みとして、AGV バイパス方式 を採用した。AGVバイパス方式とは、メインとなる組立ラインの 工数を一定にし、工数がオーバーする作業を別に分けたメイン ライン2や組立セルで吸収させる方法である。今回の汎用組立 ラインでは、AGV バイパスラインと組立セルを組み合わせ、工 数の大小に応じてルートを変えて流すことで、どんな組立工数 のモデルも同じ組立ラインでロス無く生産できるようになった。

2-2. AGV バイパスラインのためのシステム

2-1で述べた AGV バイパス方式を成立させるために必要不 可欠な手法は、システムを用いて車両搬送 AGV のルートを工 数やモデルに合わせて自由に選択する制御である。


車両によって組立工数は大きく異なる。そのため、車両搬送 AGV が積載している車両別にルートを変更して疑似的にライ ン長を伸び縮みさせることで、工数差を吸収している。図4のよ うに、メインライン1はすべての車両が流れるが、メインライン1 を出た後に工数 "小" のモデルはそのまま完成検査へ直行す る。工数 "中" のモデルは外装セルへ向かい、工数 "大" のモデ ルはメインライン2および外装セルを経由して完成検査へと向 かう。

組立工数差に対応する仕組み

上記の方式を可能にしたのは YMSL(ヤマハモーターソ リューション(株))が開発したシステム「FA-MES (Factory Automation-Manufacturing Execution System)」である。

車両搬送 AGV は Moxa 製の無線 LAN 機器を搭載してお り、AP局(Access Point)とWi-Fi通信することでOPCサーバー (Object Linking and Embedding (OLE) for Process Control) と接続することが可能である。それゆえ、システムは OPC サー バーを介して車両搬送 AGV にアクセスしてデータの書き込み や取得をすることができる(図5)。

設備の通信接続状態

基本的に書き込む情報は"ルート情報"、"昇降高さ情報" そ して "CT(サイクルタイム)情報" の3つである。ルート情報とは、 車両搬送 AGV がどのルートを走行するのか指示するための情

報である。車両搬送 AGV の走行ルートには、システムとの連携 ポイントが合計21ヵ所存在する。車両搬送 AGV は連携ポイン トごとに次の連携ポイントまでの指示を受け取ることで、ルート を自由に選択しながら走行することを可能にした。昇降高さ情 報とは、工程ごとに作業高さを変更するためのリフター高さ情 報である。マーカー番号に昇降高さ情報を紐付けて、車両搬送 AGV がマーカーを読み込んだタイミングで昇降高さ設定通り にリフターが昇降する。CT 情報とは、工数差を吸収する目的で ある組立セルにおける機種ごとの車両搬送 AGV 停止時間で ある。CT 情報もマーカー番号と紐付けて、マーカーを読み込ん だタイミングで車両搬送 AGV は一時停止し、一定時間経過後 に再発進する。

情報を書き込むフローについて説明する。AGV がメインライン の前工程にある連携ポイントで停止している時、システムが次 に投入する車両を照合し、RFID(Radio Frequency IDentification) タグの AGV 番号を読み込んで積載する車両情報と車両搬送 AGV を紐付ける。その後、システムが車両搬送 AGV に積載さ れている車両を確認し、その車両に適したルート情報を車両搬 送 AGV に指示する(図6)。

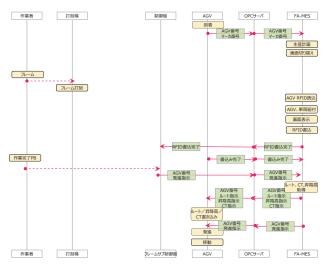


図6 車両搬送 AGV への情報書き込みフローチャート(一例)

外装セルは1ラインにつき5つあるため、セルへの進入前に 改めてシステムから行先指示を貰う必要がある。セルへの進入 前のシステム連携ポイントで車両搬送 AGV は一時停止し、停 止している間にセルの空き情報をシステムが判断する。空いて いるセルがある場合、そのセルまでのルート情報をシステムが 車両搬送 AGV へ指示する。同時にシステムは車両搬送 AGV へ走行指示も送信することで、AGV は走行を再開して目的のセ ルへ進入する。

ハイサイクル生産対応

3-1. 段取り改革

段取りとは、モデルに対して使用する設備や治工具の設定変 更や交換を行う作業である。従来のロットサイズ40台の生産で は、40台に1回の段取り作業が発生する。1回の段取り作業に は1台分の間隔を空けて、段取り作業を行っていた。ハイサイク ル生産とは、4台に1回または1台に1回のペースで機種が切り 替わる。そのため段取り作業が発生し、大きなロスとなり段取り 改革を行った(図7)。

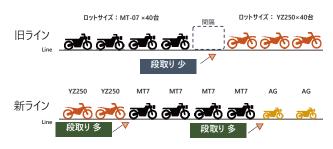


図7 段取り概要図

段取り改革では ECRS (Eliminate/Combine/Rearrange/ Simplify)の原則を基に3つの考え方で改善を行った。

- 1. 自動化(設備/ツール)
- 2. 共通化
- 3. 最短化(ワンタッチ化)

3-1-1. 自動化

従来まではデジスイッチによる手動での設備機種切り替えや ツールの入れ替えを行っていたが、多大な時間を要するため 機種間に1台分の空台を入れていた。この課題を解決するため に開発したのが RFID タグを使用した設備の自動切替ができ る仕組みである。

AGV に車両を搭載する際に、車両情報と各設備の設定情報 を書き込む。各設備が RFID タグを読み込み、対象の設備情報 を取得することで、設備の自動切替を実現した。

また、この RFID タグの情報をもとに、車両のボルトを締付す る締付ツールのトルク値を自動で変更し、モデルに合った締付 トルクの切り替えが可能になった。

これにより締付ツールの段取り作業も自動化することができ た。

3-1-2. 共通化

従来はモデル専用に治具を持っていたため、段取り作業が 必ず発生していた。モデル単体ではなく、生産されているすべ てのモデルの特長と必要な機能を整理することで、同じ機能で もモデルごとに形状が異なるため専用で持っていた治具を1つ にすることができた。

3-1-3. 最短化

治具の中では共通化が不可能なものには、段取り作業の目 標時間を0.1分(6秒)以内と設定し、その時間内に段取り作業 が可能な形状を追求した。

合わせて、部分共通化と軽量化を意識した改革を行った。

大きな治具では従来は治具全体を交換して時間がかかって いたが、大部分を共通化させることにより、段取り替えをする箇 所を限定し、一部だけをワンタッチでの段取り替えができる設 計をした(図8)。

また治具そのものの軽量化を図ることで、短時間で段取り替 えをすることができるようになった。



図8 治具段取り改善

3-1-4. 段取り改革の効果

今回の段取り改革により、従来必要であった機種切り替え段 取り用の空台を排除できた。それは、モデルごとの設備の自動 切換え+同機能の治具の共通化+治具の最短化(軽量化と部 分的に交換可能な治具導入とワンタッチ化)の実現によるもの である。

3-2. 部品供給

ハイサイクル対応にあたり、部品の供給方法も変更した。

これまでのロットサイズ40台の生産では、コンベヤー周辺に 機種ごとの部品台車を配置し、機種が変わるごとに1ロット分 の部品が載った台車を交換して対応していた。しかし、ハイサイ クル生産では4台ごとに機種が変わるため、機種別で台車を並 べて対応するには、スペース不足や台車交換のための段取り口 スが多くなり、その改善が必要であった。

この課題への解決策として、組立ライン内で1台の車両を組 立するのに必要な部品をあらかじめ台車に搭載し、組立ライン を流れる車両に同期して流す方法がある。

そのためには、部品台車の供給と空台車の返却を人で行う と、組立ラインのピッチに合わせて供給返却を行う必要から、多 くの人員が必要になるか、人員抑制のために運搬距離に制約 が必要になる。また、ライン形態が AGV バイパス方式となり、 行き先が複雑化したため、車両搬送 AGV に載っている車両に 紐付いた部品を、正確にメインラインやセルに供給する必要が ある。

これらの必要性から、組立ラインや組立セルで使用する1車 両分の部品を台車に載せ、システムと連携しながら台車を自動 で運搬する仕組みを新たに構築した(図9)。以下ではその内容 について説明する。

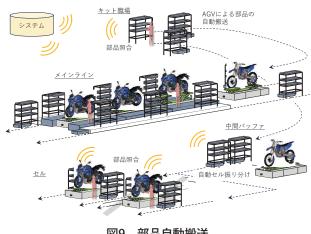


図9 部品自動搬送

3-2-1. 部品搭載

メーカーから供給された部品はまず、生産計画に基づいて、 工場内外で一車両分の部品になるように、トレーやケースへ仕 分けされる。仕分けされた部品を載せたトレーやケースは、組 立順序に従って台車に搭載され、工場内にある組立ラインや組 立セルへ部品を供給する部品管理職場へまとめて搬送される。

部品管理職場では、台車に搭載されたトレーやケースを組 立ライン・組立セルへ供給するために、マーシャリング台車 (図10)へ順番に搭載する。ここで、オペレーターはトレーや ケースに貼られた QR コードを機器で読み取り、供給先の車両 搬送 AGV に載っている機種の部品との照合をシステムで実施 する。このときマーシャリング台車と搭載されている部品の情報 を紐付ける。

図10 マーシャリング台車

3-2-2. 部品搬送 AGV

部品が搭載されたマーシャリング台車は、オペレーターに よって専用の搬送口にセットされ、部品搬送 AGV によって組立 ライン・組立セルへ自動搬送される。組立ラインと組立セルで は部品搬送 AGV の制御が異なるため、分けて説明する。

組立ラインへの運搬:組立ラインでは、運搬されたマーシャ リング台車をリフターで持ち上げ、地面より高い位置で台車を 流すことで、下側を部品搬送 AGV がすり抜けられる構造になっ ている。

マーシャリング台車の引き渡し・引き取りはすべて、組立ライ ンの制御と部品搬送 AGV 間で光センサを用いた通信により、 自動的に行われる。これにより、必要なマーシャリング台車の数 に対して少ない台数の部品搬送 AGV での自動運搬が可能と なっている。

組立セルへの運搬:組立セルは組立ラインと異なり、複数セ ルを1職場で対応するため、システムによる車両搬送 AGV の各 セルへの振り分けと部品搬送 AGV の組立セルへの振り分けを 合わせる必要がある。そのため、部品供給職場から送り出され た部品搬送 AGV は一度、中間バッファとして溜めておき、組立 ラインから出てくる車両搬送 AGV に合わせて、組立セルへの 行先指示をシステムから部品搬送 AGV へ光センサを用いて書 き込みを行い、車両搬送 AGV と同じ組立セルに向かうように 制御する。

組立セルでは部品の確認のため、台車に紐付けられた部品 の機種情報を読み取り、車両搬送 AGV に載っている車両の機 種情報を比較し、システムによる照合確認を行う。

効果

4-1. 4ライン→2ライン

汎用組立ラインにすることによって、車体組立ラインはこれま でカテゴリー別に分けられていた4本のラインから、どんなモデ ルでもロスを最小限に抑えて流せる2本の汎用組立ラインに集 約することができた。

この2本の組立ラインをほぼ同じ形にすることで、季節によっ て変わる生産量の増減を2本のラインで補い合い、生産負荷の 調整が容易になった(図11)。これまでは負荷変動のためにモ デルを違う組立ラインで生産する場合、工程・人・設備などの準 備に長い時間が必要だったが、この期間を短縮でき、市場の要 求台数に対し、柔軟な対応ができる生産体制を構築することが できた。

汎用性と市場対応力

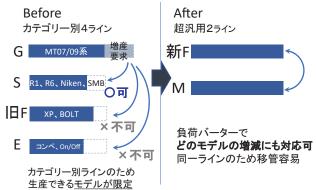


図11 専用ライン→汎用ライン

4-2. 小ロット化

ハイサイクル対応への取り組みにより、生産ロットサイズは 40から4へと小ロット化をロス無く実現することができた。大き

な効果としては、段取りロスの削減があげられる。

生産ロットサイズを40台から4台とするにはロット間の段取 りロスが課題だった。従来はロット間に段取り時間のための間 隔1台分を空けるロスを設定しながら生産していたため、その まま生産ロットサイズを小さくして段取り回数を増やしてしまう と、それだけロスが増えてしまう。段取り改革により段取りを最 少化することで、この間隔を空けるロスを発生させることなく生 産することが可能となった。

現在、車体組立ラインは生産ロットサイズを4台まで小さくす ることができており、仕組みとしては1台にも対応可能となった。 図12に生産ロットサイズの変更前後を示す。

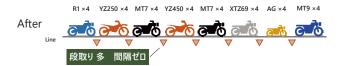


図12 生産ロットサイズ40台→4台

4-3. 毎日生産率

毎日生産率とは、各ラインで生産するモデルラインナップに 対し、日々の生産するモデルの種類の割合のことである。

ロットサイズを40から4にすることにより、毎日生産率は従来 生産の41%から90%まで向上することができた。これにより、 例えば図13のモデルBのように、月に1回しか生産がなかった モデルもほぼ毎日生産することができ、製品を市場に安定供給 することが可能となった。

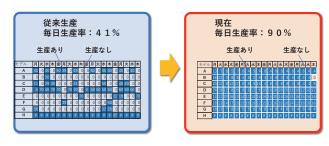


図13 毎日生産率

また、毎日生産することによって生産職場の組立作業が安定 し、日々の生産能率の安定につながった。従来のロットサイズ 40の生産では、月に一度しか生産しないモデルは組立作業者 が作業を思い出すのに時間がかかり、最初の数台は作業スピー ドが上がらない上に、作業を間違えて品質不良が発生すること

も多く、その修正に要する時間も無視できなかった。そのため、 生産頻度の少ないモデルは能率と品質を下げる要因となって いたが、ほぼすべてのモデルが毎日生産され、なおかつ1時間 ごとにほぼ同じパターンでモデルが生産されることにより、作業 者も作業を忘れることなく、安定したパフォーマンスで高品質 な作業をすることができている。

新人作業者の育成についても、従来はすべてのモデルの教 育・訓練を終えるまでに生産頻度が少なく完了までに時間を要 していたが、毎日コンスタントに生産されるため作業者の習熟 も上がりやすく、育成期間の短縮にもつながった。

■著者

友田 祐介 Yusuke Tomoda 生産本部 製造技術統括部 組立技術部

小林 篤史 Atsushi Kobayashi 生産本部 製造技術統括部 組立技術部

まとめ

本報では、汎用化と段取り改革での取り組み内容を紹介し た。

市場追従性において、従来のロットサイズ40台の生産方式 から、1台のオーダーに対応できるようになり、必要な量を生産 することができるようになった。これにより、市場のニーズにタイ ムリーに応えられるようになった。

損益分岐点経営においては、まだ改善の必要がある。理想の 姿を描き、理論値の視点でロスを見える化し、改善を進めて、経 営への貢献に努めていく。

また組立ラインの汎用化によって、組立作業者はこれまで以 上に多くのモデルの作業を高いパフォーマンスで正確に行うこ とが必要になる。そのため、今後のテーマとしてはヒューマンエ ルゴノミクスの研究を通して、人に優しく働きやすい環境作りに も貢献していく。

深澤 伸吾 Shingo Fukazawa 生産本部 製造技術統括部 組立技術部

川口 貴之 Takayuki Kawaguchi 生産本部 製造技術統括部 組立技術部

技術論文

Investigation on Degradation Process of PdRulr/CZ "pseudo-Rh" Catalysts used for Motorcycles

Takuya Motegi Shunya Tatara Shunpei Takamoto Kosuke Doi

当論文は、JSAE 20249016/SAE 2024-32-0016として、SETC2024 (Small Powertrains and Energy Systems Technology Conference) にて発表されたものです。

Reprinted with permission Copyright © 2024 SAE Japan and Copyright © 2024 SAE INTERNATIONAL (Further use or distribution is not permitted without permission from SAE.)

要旨

自動車向けの排ガス浄化触媒では、活性物質として白金(Pt)・パラジウム(Pd)・ロジウム(Rh)が使われている。このうち、Rh は 効率的に NOx の還元反応を促進させることができ、必須な元素である。一方、近年では Rh の価格が高騰しており、触媒のコスト 増加が問題となっている。希少資源の供給リスクの観点からも、触媒中の Rh を代替する、または使用量を削減する技術の開発が急がれる。我々は、(国研)科学技術振興機構の ACCEL プログラムで開発された "擬ロジウム合金" に注目し、これを用いた触媒の二輪車への適用を検討するとともに、劣化過程の調査を行った。

ナノサイズの PdRuIr 合金をセリアジルコニア固溶体へ担持した触媒 (PdRuIr/CZ 触媒) を作製し、二輪車へ搭載して排ガス計測を行った。担持量4.0g/L の PdRuIr/CZ 触媒は0.3g/L の Rh/CZ 触媒に匹敵する初期特性を有するが、850℃、5hr の熱処理を施すと HC、NOx の排出量が増加し、Rh/CZ 触媒には劣る結果となった。触媒粉末の X 線回折、透過電子顕微鏡観察により、熱処理後には合金粒子の粗大化や相分離が起きていることが確認できた。さらに、評価部品の作製過程でイリジウム(Ir)が酸化していることも確認できた。触媒の作製過程や排ガスに曝される中で、Ir が酸化と還元を繰り返しながら相分離が進行していくと推測する。

今回、我々は PdRuIr/CZ 触媒の劣化過程を明確にし、Ir の酸化が合金の相分離を引き起こす要因であると結論付けた。今後は触媒の耐久性向上、材料費低減を目指し、Ir を使わない合金系を探索していく。

Abstract

Platinum (Pt), palladium (Pd), and rhodium (Rh) are used as active substances in exhaust gas purification catalysts for automobiles. Among these, Rh is an essential element because it efficiently promotes a NOx reduction reaction. On the other hand, the price of Rh has been rising in recent years. From the perspective of the supply risk of rare resources, there is an urgent need to develop technologies to replace or reduce the amount of Rh used in catalysts. We focused on the pseudo-rhodium alloy developed by the ACCEL program of the Japan Science and Technology Agency (JST), and then investigated the application of the pseudo-rhodium alloy on the catalysts of our motorcycles and also the degradation process.

A nanosized PdRuIr alloy supported on a ceria-zirconia solid solution (PdRuIr/CZ) was prepared and assembled into a motorcycle for emissions measurement. The PdRuIr/CZ catalyst with an alloy loading of 4.0 g/L had initial properties comparable to the Rh supported on a CZ (Rh/CZ) catalyst with a Rh loading of 0.3 g/L, but after degradation treatment, emissions increased and were inferior to the Rh/CZ. X-ray diffraction and transmission electron microscopy of the catalyst powder showed that the alloy particles increased in size and underwent phase separation after degradation treatment. Furthermore, it was confirmed that iridium (Ir) was oxidized during the specimen preparation process. It is speculated that phase separation proceeds as iridium undergoes repeated oxidation and reduction during the catalyst production process and exposure to exhaust gases.

We have clarified the degradation process of PdRuIr/CZ catalysts and concluded that iridium oxidation is one of the major factors causing phase separation of the alloy.

INTRODUCTION

The need to address the issue of air pollution to help protect the environment and prevent health hazards has resulted in the introduction of increasingly stringent emissions regulations covering motorcycles. To purify the substances covered in these regulations (carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx)), vehicle exhaust systems are equipped with an emissions purification catalyst that uses platinum (Pt), palladium (Pd), and rhodium (Rh) as active substances. Among these, Rh is indispensable since it is the only active substance capable of efficiently promoting NOx reduction reactions. However, faced with rising Rh prices and the supply risks involved in procuring rare resources, there is an urgent need to develop technologies to replace or minimize the amount of Rh used in catalysts. Therefore, this research focused on the pseudo-rhodium alloy^[1] developed by the ACCEL program of the Japan Science and Technology Agency (JST). This pseudorhodium alloy is a nanosized Pd-Ru alloy produced through fusion between Pd and Ru at the atomic level. It features an electron state similar to Rh and reportedly achieves superior NOx purification performance to Rh^[2]. It has also been reported that adding iridium (Ir) to create an PdRuIr alloy enhances catalytic activity and restricts phase separation under high temperatures^[3].

This paper describes the preparation of a PdRuIr/CZ catalyst consisting of a PdRuIr alloy supported on ceriazirconia (CZ), an evaluation of its emissions purification performance, and an investigation of its degradation process.

MATERIALS & METHODS

2-1. Material Preparation

2-1-1. Alloy Composition Samples

Table 1 describes the samples that were produced to study the optimum alloy composition. These samples were prepared with the cooperation of Kyoto University using a synthesis technique that simultaneously generates the alloy in the liquid phase and sets it on the surface of the CZ support.

Table 1 Alloy composition

	Alloy concentration	composition [at%]			
	in powder [wt%]	Pd	Ru	Ir	
Sample-1	0.71	10.1	51.2	38.7	
Sample-2	0.71	23.3	44.1	32.6	
Sample-3	0.79	34.6	36.5	28.9	
Sample-4	0.78	43.5	30.7	25.8	
Sample-5	0.89	61.7	21.1	17.2	

2-1-2. Test Specimens (Emissions Measurement)

The PdRuIr/CZ used for the emissions evaluation was synthesized by Furuya Metal Co., Ltd. using this technique that simultaneously generates the alloy in the liquid phase and sets it on the surface of the CZ support. Table 2 describes the details of the composition. Due to the difficulty of using X-ray diffraction and transmission electron microscopy (TEM) to measure low loading concentrations, the powder was prepared with a high loading concentration of active material. The Rh/CZ powder that was prepared for comparison was synthesized by impregnation using a Rh(NO₃)₃ solution.

Each powder was dispersed in ion-exchanged water, blended with binder, alumina, CZ, and so on to fabricate the catalyst slurry. The slurry dipping method was adopted to coat the slurry onto the metal honeycomb. The coating amount was then adjusted by air blowing. The test specimens were then produced by forming coating layers in a 1-hour baking process at 450°C in air. For comparison, specimens subjected to degradation treatment were also prepared. Table 3 lists the degradation treatment conditions. The heating furnace temperature was set to achieve a catalyst temperature of approximately 850°C.

A preliminary study was conducted using model gases to estimate the amount of alloy and Rh that would result in similar NOx emissions before degradation treatment. The PdRuIr/CZ catalyst was adjusted to a PdRuIr alloy content of 4.0 g/L. In contrast, the Rh/CZ catalyst was adjusted to an Ru content of 0.3 g/L.

Table 2 Alloy loading concentration and composition of prototype powders

Alloy concentration	Alloy o	Alloy composition [at%]			
in powder [wt%]	Pd	Ru	Ir		
12.58	21.6	38.2	40.2		

Table 3 Degradation treatment conditions

temperature		furnace: 805℃ specimen: approx. 850℃	
time		5 hours	
gas rich composition lean		O ₂ : 0.5vol%, CO: 4.0vol%, H ₂ O: 10vol%, N ₂ : balance	
		O ₂ : 5.0vol%, H ₂ O: 10vol%, N ₂ : balance	
fluctuation pattern		rich gas: 30 sec, lean gas: 10 sec	

2-2. Evaluation of Catalytic Activity Using Model Gas

To study the alloy composition, the purification characteristics of the catalysts were evaluated with a model gas using a SIGU-1000 tester manufactured by Horiba, Ltd. The catalyst powder was compacted in a pressing machine and crushed into pellets. These pellets were then sieved into a size between 0.5 and 1 mm and the sample amounts were adjusted to create a PdRuIr alloy weight of 2.8 mg. Table 4 lists the pre-treatment conditions and Table 5 lists the test conditions.

Table 4 Pre-treatment conditions

temperature (furnace)		750℃
time		2 hours
gas	rich	O ₂ : 0.5vol%, CO: 4.0vol%, H ₂ O: 10vol%, N ₂ : balance
composition	lean	O ₂ : 5.0vol%, H ₂ O: 10vol%, N ₂ : balance
fluctuation pa	attern	rich gas: 30 sec, lean gas: 10 sec

Table 5 Test conditions

temperature (furnace)	start	170℃
	end	600℃
	rate	20°C/min
gas composition		CO ₂ : 12.12vol%, O ₂ : 0.92vol%, C ₃ H ₆ : 0.336vol%, C ₃ H ₈ : 0.084vol%, CO: 0.92vol%, NO: 0.12vol%, H ₂ O: 10vol%, N ₂ : balance

2-3. Emissions Measurement

The emissions of a motorcycle equipped with a 155 cc liquid-cooled engine that complies with the Euro 4

emissions regulations were measured on a chassis dynamometer (37 kW) manufactured by Ono Sokki Co., Ltd.

- Test cycle: Worldwide Harmonized Motorcycle Emissions Certification Procedure (WMTC) Class 2 Subclass 2-1
- Emissions measurement: MEXA-ONE emissions measurement system manufactured by Horiba, Ltd.

2-4. Alloy Composition Analysis

The Pd, Ru, and Ir content of the catalyst powder was measured by high-frequency inductively coupled plasma emission spectrometry. The catalyst powder was dissolved and liquified by the alkali fusion method. A Plasma Quant PQ9000 spectrometer manufactured by Analytik Jena GmbH & Co. was used to measure the content by the calibration curve method.

2-5. Specific Surface Area Measurement

The Brunauer-Emmett-Teller (BET) specific surface area was measured using N_2 adsorption to compare the specific surface area of the catalysts before and after the test. This was accomplished by 1-point BET analysis using a Flow Sorb II 2300 apparatus manufactured by Micromeritics Instrument Corp.

2-6. Measurement of Quantity of Adsorbed CO

The quantity of adsorbed CO was measured as an indicator of the metal surface area of the catalysts. This was carried out by the CO pulse method using the R-6015H fully automatic catalytic gas absorption measuring apparatus manufactured by HEMMI Slide Rule Co., Ltd. Pretreatment consisted of heat treatment for 15 minutes at 400°C under an O_2 environment, followed by a helium (He) purge and reduction treatment for 15 minutes at 400°C under a hydrogen gas (H₂) environment.

2-7. TEM Observation

A transmission electron microscope (TEM) manufactured by JEOL Ltd. was used to observe and identify the state of the alloy particles supported on the catalysts. The JEM-F200 multi-purpose electron microscope and JEM-ARM300F2 atomic resolution analytical microscope were used to observe the synthesized catalyst powder. After the degradation treatment, the catalyst powder was observed at an accelerating voltage of 200 kV using a JEM-2100F electron microscope. Elemental analysis was performed using a JED-2300 energy dispersive X-ray spectrometer (EDX).

2-8. X-Ray Diffraction (XRD) Measurement

The crystalline structure and composition of the alloy particles were verified by XRD measurement using an X'Pert PRO MPD X-ray diffractometer manufactured by Spectris. Copper (Cu) tubes were used as the X-ray source and $CuK\alpha$ rays were used as a probe X-rays.

RESULTS

3-1. Alloy Composition Study

Five samples were fabricated to evaluate the different purification characteristics of the alloy compositions. Figures 1 to 3 show the evaluation results. Sample 2 demonstrated the highest low-temperature activity for the purification performance of CO, HC, and NO. Sample 2 was fabricated with a Pd:Ru:Ir alloy composition of 2:4:4. In response, an alloy-loaded powder with the same composition was produced for emissions measurement using an actual motorcycle.

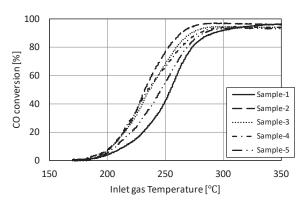


Fig. 1 CO purification characteristics using model gas

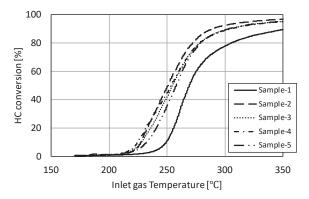


Fig. 2 HC purification characteristics using model gas

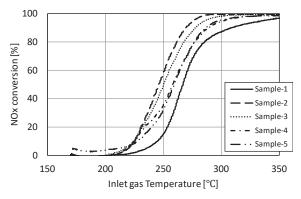


Fig. 3 NOx purification characteristics using model gas

3-2. Emissions Measurement

Figure 4 shows the emissions measurement results using motorcycles equipped with PdRuIr/CZ catalysts. Before the degradation treatment, the total hydrocarbon (THC) emissions were higher than the Rh/CZ catalyst. However, the CO and NOx emissions were the same, confirming the excellent NOx purification characteristics of a catalyst with this alloy composition. However, emissions increased after the degradation treatment and were substantially worse than the Rh/CZ catalyst, highlighting the fact that durability will be an issue for practical adoption.

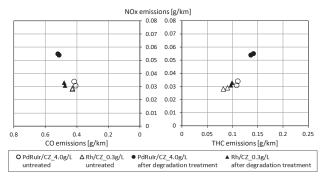


Fig. 4 Emissions measurement results after test cycle

3-3. Investigation of Degradation State

The degradation state was investigated to help improve the durability of the PdRuIr/CZ catalyst. It is known that both Ru and Ir oxidize under high-temperature oxidizing conditions and evaporate into a gaseous phase. Since the active material of this catalyst consists of nanoparticles, this oxidation and evaporation process might occur at lower temperatures. Therefore, once emissions measurement was completed, catalyst powder was extracted from the test specimens after the degradation treatment, and the Pd, Ru, and Ir content was analyzed (Fig. 5). The extracted powder was compared with fresh powder obtained by drying the catalyst slurry. No changes in the element content were identified after the degradation treatment, indicating that evaporation of Ru or Ir had not occurred.

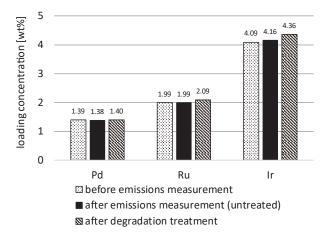


Fig. 5 Results of element content analysis

Figure 6 shows the CZ specific surface area measurement results. These results indicate that the specific surface area fell due to the heat load applied by the emissions measurement and degradation treatment, and that the CZ particles increased in size. However, the specific surface area of CZ that is not loaded with alloy falls only slightly after heat treatment for 5 hours at 850°C in air. Therefore, this drop in specific surface area seems to be a particular phenomenon caused by the loading of the alloy onto the CZ.

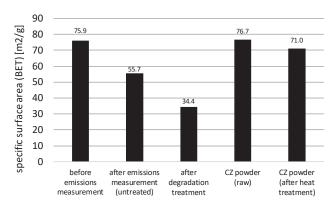


Fig. 6 Specific surface area trend

It was estimated that the increase in the size of the support particles caused the PdRuIr alloy particles on the surface of the CZ to coalesce or sink into the support, resulting in a lower alloy surface area. Subsequently, the quantity of adsorbed CO was measured as an indicator of the alloy surface area (Fig. 7). The quantity of adsorbed CO fell in the same way as the specific surface area of the support, also indicating that the alloy surface area decreased in size. Next, the alloy particles were observed using TEM. Figure 8 shows observation images of the catalyst powder after PdRuIr alloy loading and Fig. 9 shows element map images. These images show that, immediately after alloy loading, a PdRuIr alloy with a particle size of several nm was produced. Visual field 1 in Fig. 8 shows a location at which the alloy particles have aggregated, whereas visual field 2 shows that this location also contains areas in which the alloy loading state is comparatively dispersed. Figure 10 shows the catalyst powder after degradation treatment. In these images, particles sized between 10 and 100 nm can be observed. In addition, superimposed elemental analysis images show that the composition inside the particles is not uniform and that phase separation has probably occurred inside the particles.

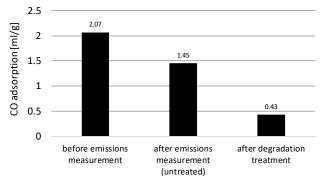
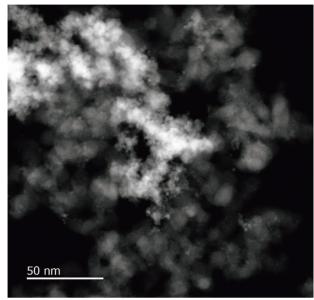
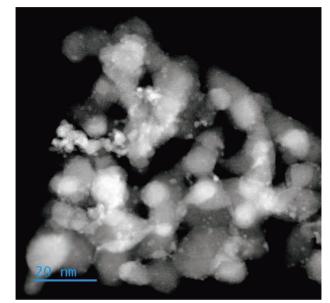




Fig. 7 CO adsorption trend

Visual field 1 (JEM-F200)

Visual field 2 (JEM-ARM300F20)

Fig. 8 Appearance of catalyst powder after PdRulr alloy loading

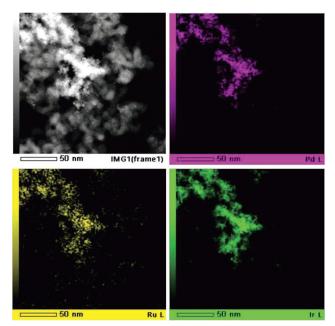
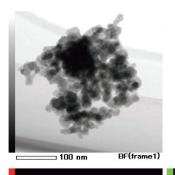



Fig. 9 Element map of catalyst powder after synthesis (visual field 1 in Fig. 8)

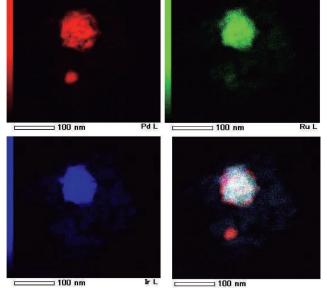


Fig. 10 Element map of alloy particles after degradation treatment

The phase separation process of the alloy particles was investigated by XRD. Figure 11 shows the XRD pattern. Data item 3 shows the diffraction pattern immediately after PdRuIr alloy loading. In addition to the CZ-derived peak, a broad peak around 40.7° is also present. In results measured by Kusada et al.^[3] using synchrotron radiation ($\lambda = 0.578980$ Å), the (111) phase of PdRuIr was observed close to $2\theta = 15^{\circ}$). When the results measured by Kusada et al. were converted to the wavelength of the CuK α rays ($\lambda = 1.54060$ Å) used in this research, the peak around 40.7° corresponds with the (111) phase of PdRuIr. The synthesis of nanosized PdRuIr alloy can also be recognized from the X-ray diffraction pattern. Data item 4 is the catalyst powder after a 1-hour baking process at 450°C in air during the process to fabricate the specimens for emissions evaluation. The diffraction peak derived from PdRuIr disappears and a peak derived from IrO₂ appears. This result suggests that the Ir in the alloy was oxidized by the baking process, causing the PdRuIr alloy state to break down. In contrast, after emissions measurement (data item 5) and degradation treatment (data item 6), the diffraction peak around 40.7° appears again. At the same time, peaks derived from IrRu and IrPd also appeared, creating a mixed condition of PdRuIr, IrRu, and IrPd. This is considered to be the state inside the particles shown in Fig. 10.

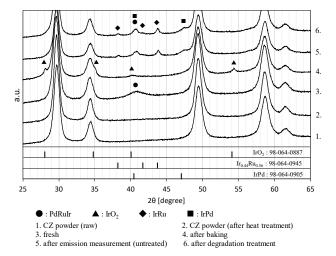


Fig. 11 X-ray diffraction pattern of catalyst powder (reference data: only peaks with an intensity ratio of 20% or higher are shown)

DISCUSSION

Based on the analysis results described above, the emissions purification characteristics of the PdRuIr/CZ catalyst fell due to enlargement of the CZ and alloy particles and phase separation of the alloy. The aim is to address these issues and realize practical adoption of a pseudo-rhodium alloy catalyst.

Loading the PdRuIr alloy onto the CZ support seems to facilitate a decrease in the CZ specific surface area. One possible cause of this issue is the formation of a Ru and Ir solid solution. Since oxides of Ru and Ir have a lower melting temperature than CZ, these oxides might act as sintering aids. Another possible cause is hydrothermal degradation or the like in the alloy synthesis process. Continued efforts are required to identify the causes and study countermeasures.

One of the main causes of alloy particle phase separation is thought to be changes in the crystalline structure due to the oxidation and reduction of Ir. The results of this investigation found that IrO2 was being generated easily at a relatively low temperature of 450°C. The catalyst is exposed to higher temperature oxidizing and reduction conditions under the actual exhaust gas environment generated during riding and the degradation treatment conditions of this test. The crystalline structure of Ir undergoes major changes when it transforms to and from its oxide and metal states. These changes probably facilitate its transition to more stable IrRu and IrPd phases. It may be possible to suppress this phase separation by adopting an element that is less susceptible to oxidation than Ir, such as Pt. As Ir becomes more expensive, the switch to a lower cost element would also be a rational measure in those terms. Studies will be continued.

CONCLUSIONS

This paper studied the optimum composition for a PdRuIr alloy and evaluated the performance of a PdRuIr/CZ catalyst on an actual motorcycle. Although the test confirmed that this catalyst has an excellent NOx conversion capacity, it also identified an issue related to durability. The results verified that catalyst degradation was caused by enlargement of the CZ and alloy particles and phase separation of the alloy. One of the main cause of this phase separation is thought to be Ir oxidation.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to everyone involved in this research, notably Professors Hiroshi Kitagawa and Kohei Kusada of Kyoto University, as well as Kyoto University, Furuya Metal Co., Ltd., and Sakura Kogyo Co., Ltd. for their invaluable cooperation in the manufacture and material analysis of the alloy support powder, and in carrying out the emissions measurement.

REFERENCES

[1] Kusada, K., Kobayashi, H., Ikeda, R., Kubota, Y. et al. "Solid Solution Alloy Nanoparticles of Immiscible Pd and Ru Elements Neighboring on Rh: Changeover of the Thermodynamic Behavior for Hydrogen Storage and Enhanced CO-Oxidizing Ability", J. Am. Chem. Soc., 136, 1864, (2014). doi: 10.1021/ja409464g.

[2] Sato, K., Tomonaga, H., Yamamoto, T., Matsumura, S. et al. "A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles", Sci. Rep., 6, 28265, (2016). doi: 10.1038/ srep28265.

[3] Kusada, K., Wu, D., Nanba, Y., Koyama, M. et al. "Highly Stable and Active Solid-Solution-Alloy Three-Way Catalyst by Utilizing Configurational-Entropy Effect", Advanced Materials, 33, 2005206, (2021). doi: 10.1002/ adma.202005206.

■著者

茂木 卓也 Takuya Motegi 生産技術本部 材料技術部

多々良 俊哉 Shunya Tatara 生産技術本部 材料技術部

高本 駿平 Shunpei Takamoto 生産技術本部 材料技術部

土居 航介 Kosuke Doi 生産技術本部 材料技術部

技術論文

Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-cast Cylinders made of Hypereutectic Al-Si Alloy

Atsushi Owada Takaharu Suzuki

当論文は、JSAE 20239506/SAE 2023-01-1806として、SETC2023 (Small Powertrains and Energy Systems Technology Conference) にて発表され、High Quality Presentation Award を受賞したものです。

Reprinted with permission Copyright © 2023 SAE Japan and Copyright © 2023 SAE INTERNATIONAL (Further use or distribution is not permitted without permission from SAE.)

要旨

近年、世界中でカーボンニュートラルに向けた取り組みが加速している。アルミニウム原材料においては、新地金から再生地金 に置き換えることで原材料製造時に消費される電力の大幅削減が可能であり、再生地金の使用拡大がカーボンニュートラルに貢 献できる手段の1つである。

本稿では、DiASil シリンダに再生地金を適用することを目的とし、再生地金に含まれる不純物元素が部品機能にどのような影 響を及ぼすかを調査した。新地金と再生地金でシリンダを製造し、その焼付き特性を比較した結果、再生地金で製造したシリンダ の方が劣る傾向が見られた。金属組織観察、台上試験、熱力学計算ソフトウェア等を用いて原因究明し、不純物元素の1つである Ni を含む化合物が焼付き特性に影響を及ぼす可能性を見いだした。

Abstract

In recent years, efforts to reduce CO2 emissions (carbon neutrality) have accelerated worldwide. In the aluminum manufacturing industry, CO₂ emissions can be reduced by switching the raw materials of choice; from virgin ingots to recycled ingots. However, the possible characteristic change accompanying the usage of impurity-ridden recycled ingots severely limits its applications, which also limits its potential contribution to carbon neutrality. Determining how impurity elements present in recycled ingots can affect the function of manufactured components is a necessary first step towards expanding the usage of recycled ingots.

In this study, we aimed to apply recycled ingots to the monolithic cylinder made of hypereutectic Al-Si alloy and investigated how impurity elements in recycled ingots affect properties (especially seizure characteristic).

Die-cast cylinders using virgin and recycled ingots were manufactured and their properties were investigated. The elements that increased in the recycled ingots were Zn, Mn, and Ni. The effects of these elements on the seizure resistance were confirmed by reciprocating sliding test. In addition, we confirmed the differences in the compounds formed from metallographic observations and discussed the relationship between these compounds and seizure resistance using thermodynamic calculation software (Thermo-calc), among other methods.

INTRODUCTION

Aluminum is widely used in transportation equipment and other applications and contributes to improved energy efficiency and reduced CO₂ emissions at the usage stage. However, the excessive amount of energy required to manufacture virgin aluminum ingots from natural resources means a high amount of carbon footprint during the manufacturing stage. The CO2 emissions of recycled aluminum ingots produced from scrap are about 3% of those of virgin aluminum ingots, so expanding the use of recycled ingots can contribute to carbon neutrality^[1].

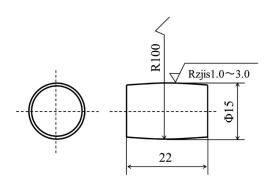
DiASil Cylinder (die-casting monolithic cylinder) is made of hypereutectic Al-Si alloy. Primary Si particles with high

hardness on the cylinder bore surface can improve resistance against seizure and wear even without cast iron sleeve, and the sleeveless design can realize excellent heat dissipation and high strength-to-weight ratio [2][3]. These characteristics make it an attractive choice to use in automobile parts, like cylinder blocks for example. To realize these special characteristics, virgin ingots with few impurities are used instead of recycled ingots. However, the actual effects of impurities are currently not well understood, so clarification of these effects will lead to the expansion of use of recycled ingots.

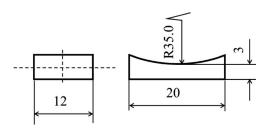
This study aims to evaluate the difference in material property of DiASil Cylinder manufactured using virgin ingots and recycled ingots (hereafter VC and RC, respectively). We particularly focused on seizure resistance property since it is one of the most important specifications of cylinder blocks. The chemical composition of each cylinder blocks is shown in Table 1. These cylinder blocks were T5 heat treated after diecasting.

Table 1 Chemical composition of cylinder

Sample	Chemical Composition (mass%)							
Sample	Si	Cu	Mg	Fe	Zn	Mn	Ni	Sn
VC	17	4.2	0.3	0.6	0.0	0.0	0.0	0.0
RC	17	4.3	0.4	0.8	1.0	0.5	0.5	0.1


EXPERIMENTAL

2-1. Metallography


A cross section near the cylinder bore surface was prepared and metallography was observed. To confirm the differences in intermetallic compounds in detail, analysis was also performed using FE-EPMA.

2-2. Seizure properties of VC and RC

Seizure properties were evaluated by using SRV tester from Optimol Instruments Prüftechnik GmbH. Figure 1 shows the shape of test specimens. Barrel-shaped test specimens were prepared from a continuous cast bar used for a forged piston production. This is made of Al-12mass%Si-4Cu alloy and given T7 heat treatment. On the surface, Fe-Sn plating was treated. Cylinder test specimens were cut out of the actual cylinder as shown in Figure 2 to remain the curved shape and crosshatched pattern.

(a) Barrel-shaped test specimen

(b) Cylinder test specimen

Fig. 1 Geometry of test specimen for SRV test

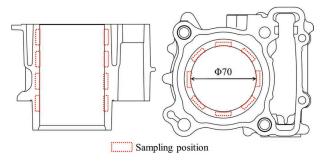


Fig. 2 Sampling position of cylinder test specimen

A schematic illustration of SRV tester and an image of each test specimen contact are shown in Figure 3 and 4. The barrel-shaped test specimen and the cylinder test specimen were installed on the upper and lower specimen holders respectively. The lower specimen holder was filled with oil enough to entirely immerse the contact area between each test specimen. The setting temperature was adjusted so that the oil temperature could be held at 150 degrees Celsius. After initially running for 60 seconds with a vertical load of 50N as a running-in period, the load was increased to 600N to cause seizure. During the test, the vertical load, horizontal stroke, and friction coefficient were monitored by the equipped sensors. An example of the behavior of stroke and friction coefficient when seizure occurs is shown in Figure 5. Distinct peaks were observed shortly after the 60 second mark, and also around the 150 second mark. The irregular peak at 60 seconds was thought to be caused by the load being raised to 600N. The irregular peaks observed at 150 seconds was thought to be the result of mild adhesion which would eventually develop into seizure. The seizure occurrence point was considered to be the point wherein the sudden drop in stroke value to almost zero and the abrupt increase in friction coefficient was observed simultaneously. In this example, the seizure time is 163s. Detailed test conditions are summarized in Table 2. Each test was conducted 3 times. (Quality of the cylinder test specimens was assumed to be no different depending on the sampling position, and three were used at random from the test specimens in Figure 2.)

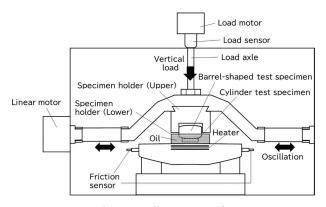


Fig. 3 Schematic illustration of SRV test

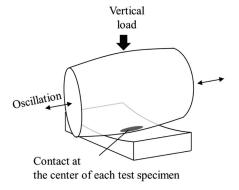


Fig. 4 Contact area between test specimens

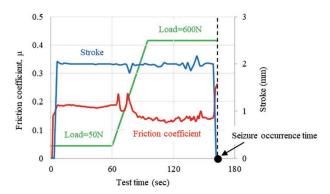


Fig. 5 An example of SRV test result

Table 2 Detailed condition of reciprocating slide test

Frequency	10Hz		
Stroke	2mm		
Oil	SAE 10W-40		
Lubrication condition	Immersion		
Oil temperature	150±5 degree Celsius		
Running-in	50N, 60s		
Vertical load	600N		
Test duration	Until seizure (Max 1800s)		
	-		

RESULTS AND DISCUSSION

3-1. Metallography

Figure 6 shows cross section optical microscopy images of the metallography of the VC and RC. There is no marked difference in primary Si.

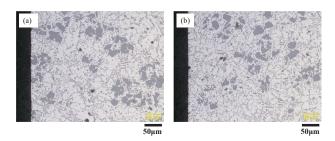
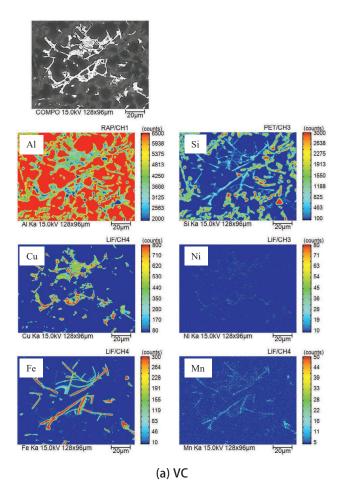



Fig. 6 Metallography of (a) VC (b) RC cross sections

Figure 7 shows the results of intermetallic compounds analysis by FE-EPMA. Two differences were observed: first is Cu-based compounds, and second is the shape of Fe-based compounds. As for the Cu compounds, it is assumed that not only Al-Cu compounds (considered CuAl₂) but also Al-Cu-Ni compounds were precipitated due to the increase of Ni in the RC. As for the shape of the Fe-based compounds, needle-like morphology was observed in the VC, while a more massive shape was observed in the RC. A study conducted by Komiyama et al. reported that the needle-like compounds are thought to have changed to massive compounds due to the increase of Mn^[4], and the results of this study are similar to his findings. Although segregation of Zn contained in RC was observed, it was detected in both compound and matrix phases (no blue area), so it is safe to consider that Zn is mainly solid soluble.

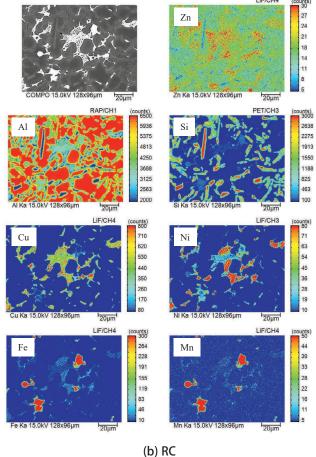


Fig. 7 FE-EPMA analysis results of intermetallic compounds

3-2. Seizure properties

The results of the comparison of seizure occurrence time in the SRV test are shown in Figure 8. Dots indicate the results of the three tests, bars indicate the average of the three tests. Seizure occurrence time includes running-in time of 60 sec. As can be seen in Figure 8, the RC tended to take a shorter time to seizure than the VC, suggesting that the RC may have inferior seizure resistance.

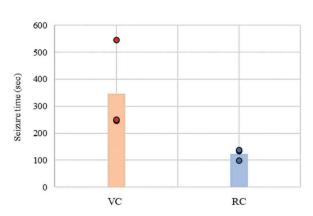


Fig. 8 Seizure occurrence time in SRV test

3-3. Investigation of the difference in seizure resistance

To investigate the cause of the difference in seizure resistance between the VC and RC, the SRV test was stopped before seizure occurred, and the surface conditions were compared. The test load was set at 400N, slightly lower than the value in Table 2, and the test was stopped 10 seconds after reaching 400N. The timing of the test stops and the behavior of the friction coefficient for each material at that time are shown in Figure 9.

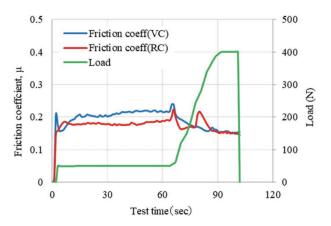
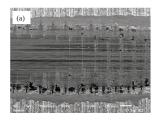
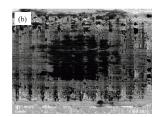
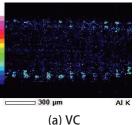


Fig. 9 Test stop timing and friction coefficient

SEM images and EDS mapping images of the suface observations of barrel-shaped specimens after the test are shown in Figure 10. Only in the RC, aluminum-based adhesions that possibly originated from the cylinder specimen was observed in the center of the sliding area. Since it can be considered that the presence of this substance affected the difference in seizure resistance, a more detailed analysis was conducted. Firstly, quantitative analysis of adhesion was performed using FE-EPMA. The results are shown in Table 3. The adhesion contains not only Al and Si from the cylinder specimen, but also a large amount of Fe and Sn (about 10 and 6 mass% respectively). In order to separate whether the large amounts of Fe and Sn detected were from in the adhesion itself or whether they originated from the plating of the barrel-shape specimen below the adhesion, depth profiling was performed using AES. Fig. 11 shows the result (elements below 5% are omitted from the graph). Focusing on the area that seems to indicate the composition of adhesion (below in Fig. 11), the amount of Fe is quite large compared to the amount contained in the cylinder, and it is inferred that the adhesion is an alloy formed by the mixture of Al and Fe derived from the wear debris of the cylinder and barrel-shaped specimen. This suggests that the temperature of the sliding surfaces reached or was close to the melting point of the aluminum alloy.


Secondly, the results of that analysis were compared with the original composition to consider which components were affected. The results of the adhesion analysis include the components of oil residues and barrel-shaped specimens, so they cannot be simply compared as is. Therefore, the relative ratio of the amount of each elements against the amount of Al (how much is the ratio when the Al content is set to 1) were calculated before doing the comparison. Table 4 shows the results. Components that were thought to be derived from oil residues or barrel-shaped specimen were excluded from the comparison. It is indicated that the adhesion has a particularly high ratio of Cu and Ni compared to the original composition.


From the above results, the following may be considered.


- · Adhesion, which are thought to affect seizure resistance, develops from melting due to heat generated by friction.
- Al-Cu-Ni compound contained only in the RC promote the formation of adhesion.

In other words, the results suggest that adhesion is generated when the material reaches near the melting point of the aluminum alloy, and the presence of Al-Cu-Ni compound may have affected the thermodynamic properties of the material.

Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-cast Cylinders made of Hypereutectic Al-Si Alloy

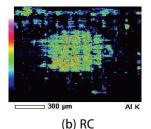


Fig. 10 Surface observation

Table 3 Chemical composition of adhesion

Al	Cu	Si	Mg	Fe	Zn	Mn
51.36	4.70	11.58	0.37	10.95	0.93	0.36
Ni	Sn	С	0	P	S	Ca
0.74	6.10	6.82	4.62	0.50	0.62	0.36

(mass%)

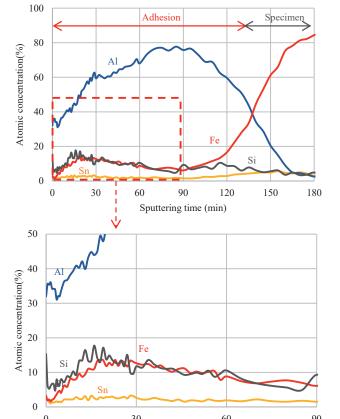


Fig. 11 Depth profile

Sputtering time (min)

Table 4 Comparison of adhesion and original composition

		The ra	The ratio when the Al content is set as 1 (a.u.)								
		Si	Cu	Mg	Zn	Mn	Ni				
Ad	hesion	0.225	0.092	0.007	0.018	0.007	0.014				
Or	iginal	0.223	0.057	0.004	0.013	0.007 0.007	0.007				

3-4. Discussion using thermodynamic calculation

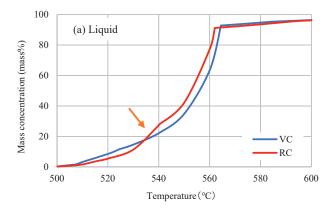

Finally, thermodynamic calculation software (Thermocalc) with the TCAL8 Al-alloy database was used to discuss the previous results. The compositions used in the calculations are shown in Table 1. The calculated equilibrium phase at T5 temperature for each material are shown in Table 5. The VC and RC show differences in Al₁₅Si₂(FeMn)₄ (=AL15SI2M4) and Al₇Cu₄Ni (=AL7CU4NI), which is consistent with the differences seen in the actual observations (Figure 7). Special attention was paid to Al₇Cu₄Ni, and the changes near the melting point of the aluminum alloy were calculated. The changes in the liquid and Al₇Cu₄Ni phases at 500-600°C are shown in Figure 12(a), (b). The Al₇Cu₄Ni phase of the RC disappeared around 530-540°C, and the percentage of liquid phase tended to increase rapidly at the same temperature indicated by orange arrow in Fig. 12(a). Such a rapid increase in the liquid phase is not seen in the VC. The rapid increase in the liquid phase may promote the growth of larger wear debris which leads to the considerable deterioration of seizure resistance. Taken together with the previous experimental results, it is inferred that this rapid increase in the liquid phase associated with the melting of Al₇Cu₄Ni affected the ease of adhesion generation, which may have led to the difference in the seizure resistance.

Table 5 Equilibrium phases at T5

Phase	VC	RC
FCC_A1	71.42%	69.21%
DIAMOND_A4	16.37%	16.25%
AL2CU_C16	7.83%	6.61%
AL9FE2SI2	2.98%	2.97%
Q_ALCUMGSI	1.24%	1.14%
AL15SI2M4	0.08%	1.67%
AL7CU4NI	_	1.95%

(mass%)

Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-cast Cylinders made of Hypereutectic Al-Si Alloy

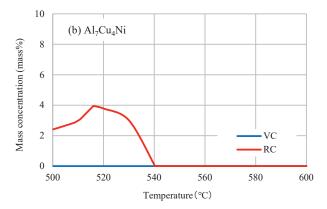


Fig. 12 The changes in (a) liquid and (b) Al₇Cu₄Ni phase

CONCLUSION

In this study, the effects of impurity elements in recycled ingots on seizure properties of hypereutectic Al-Si alloy were investigated. The conclusions are as follows.

- 1. Use of recycled ingots with high Mn and Ni content allows Al₁₅Si₂(FeMn)₄ and Al₇Cu₄Ni compounds to precipitate.
- 2. The RC may have inferior seizure resistance. Before seizure occurred, aluminum-based adhesion was observed only in the RC and this substance affected the difference in seizure resistance.
- 3. The adhesion is an alloy formed by the mixture of Al and Fe derived from the wear debris of the cylinder and barrel-shaped specimen and has a particularly high ratio of Cu and Ni compared to the original composition. Results of Thermo-calc calculations of the RC showed a rapid increase of percentage of liquid phase around 530-540°C due to melting of Al₇Cu₄Ni phase. Consequently, this led to the development of

adhesion, which may have affected the seizure resistance.

To apply recycled ingots to DiASil Cylinder, it is considered necessary to limit the amount of Ni to prevent the formation of Al₇Cu₄Ni.

REFERENCES

[1] Japan Aluminum Association, "Aluminum Vision 2050," September 2020. https://www.aluminum.or.jp/ vision2050/

[2] H. Kurita, H. Yamagata, H. Arai and T. Nakamura, "Hypereutectic Al-20%Si alloy engine block using high pressure die-casting," SAE Technical Paper 2004-01-1028, (2004).

[3] T. Uhara and H. Kurita, "The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy," SAE Int. J. Mater. Manf. 7(1), (2014). doi:10.4271/2013-32-9046

[4] Y. Komiyama, K. Uchida and M. Gunshi, "Effects of Fe, Mn, Zn and Ti on mechanical properties and microstructures of Al-Si-Cu-Mg casting alloy," The Japan Institute of Light Metals, 26(1976)7, 311-319

■著者

大和田 純史 Atsushi Owada 品質保証本部 ランドモビリティ品質保証統括部 製品品質保証部

鈴木 貴晴 Takaharu Suzuki 生産技術本部 材料技術部

技術論文

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

Hideki Furuta Jun Yoshida

当論文は、JSAE 20239553/SAE 2023-01-1853として、SETC2023 (Small Powertrains and Energy Systems Technology Conference) にて発表されたものです。

Reprinted with permission Copyright © 2023 SAE Japan and Copyright © 2023 SAE INTERNATIONAL (Further use or distribution is not permitted without permission from SAE.)

要旨

近年、地球温暖化や化石燃料の枯渇、大気汚染の回避が重要視されており、二酸化炭素排出量を削減できる環境にやさしい 二輪車が求められている。一方、二輪車においては、ドライブトレインの小型化・軽量化・長距離走行など、これまで通りお客さまの期待に応える必要がある。このような背景の中で、ハイブリッド電動自動車(HEV)のシステムは、環境にやさしいパワートレインを実現するための最も現実的な手段であり普及しているシステムである。

本研究では、これらの要求に応え、燃費向上と駆動系のコンパクト化を実現する全く新しい電子式トランスミッションである EVT (Electrical Variable Transmission)システムを搭載したハイブリッド電動二輪車を紹介する。 EVT システムは、ステータ内に取り付けられたダブルローターのセットで構成されている。 EVT システムを搭載したハイブリッド電動二輪車は、純電動自動車としての電動駆動機能と回生制動機能、エンジン発電機としての内燃機関始動機能と発電機能、それらを統合制御によって組み合わせた発電と駆動を含むハイブリッド電動機能を備えている。また、 EVT システムは、ブーストアクセラレーション機能やダブルローターの直結機能を実現できるため、従来のバイクに対して幅広いメリットと独自の新しい価値を提供することが可能である。

筆者らは、この独自の電動トランスミッション EVT を搭載したハイブリッド電動二輪車のプロトタイプを開発した。

本稿では二輪車に対して検討を行い、ハイブリッドトポロジー、EVT の多彩な機能、EVT の動作原理、EVT と二輪車のレイアウト構成、試作 EVT マシーン紹介、EVT パワートレインハイブリッド制御戦略、ハイブリッドパワートレイン開発環境、ハイブリッド電動二輪車の性能測定結果、ハイブリッド電動二輪車の可能性について考察する。

Abstract

In recent years, global warming, depletion of fossil fuels, and reducing pollution have become increasingly prominent issues, resulting in demand for environmentally-friendly two-wheeled vehicles capable of reducing CO2 emissions. However, it remains necessary to meet customers' expectations by providing smaller drivetrains, lighter vehicles, and support for long-distance riding, among other characteristics. In the face of this situation, hybrid electric vehicle (HEV) systems are considered to be the most realistic method for creating environmentally-friendly powertrains and are widely used.

This research introduces a hybrid electric two-wheeled vehicle fitted with an electrical variable transmission (EVT) system, a completely new type of electrical transmission that meets the aforementioned needs, achieving enhanced fuel efficiency with a compact drivetrain. The EVT system comprises double rotors installed inside the stator. The hybrid electric two-wheeled vehicle equipped with the EVT system has the electric drive and regenerative braking functions of a fully electric vehicle, internal combustion start and power generation functions as an engine generator, and hybrid power generation functions, including combined power generation and drive through integrated control. The EVT system also provides boost acceleration functions and direct double rotor connection functions, offering wide-ranging advantages compared to conventional motorcycles and enabling the provision of new types of distinctive value.

The authors developed a prototype hybrid electric two-wheeled vehicle fitted with this unique EVT electrical transmission. This article considers its qualities compared to other two-wheeled vehicles and describes the hybrid topology, the various functions of the EVT, the working principle of the EVT, the EVT configuration and the two-wheeled vehicle configuration, the prototype EVT machine, the EVT powertrain hybrid control strategy, the hybrid powertrain development environment, the results of hybrid electric two-wheeled vehicle performance measurements and the possibilities presented by hybrid electric two-wheeled vehicles.

INTRODUCTION

In recent years, global warming and the depletion of fossil fuels have seen growing interest in sustainable, pollution-free vehicles. Based on agreements such as those at the UN Climate Change Conference (COP), regulations to reduce CO₂ emissions are gathering pace and research and development into environmental and fuel-efficient technologies that can satisfy future automobile and two-wheeled vehicle fuel efficiency regulations is taking place around the world. In terms of four-wheeled automobiles, electric and hybrid electric vehicles are known to be effective ways to accomplish these tasks. Similarly, improving energy conversion efficiency is also considered important in the case of smaller-scale mobility, as typified by two-wheeled vehicles.

The authors carried out research and development on a hybrid electric two-wheeled vehicle capable of addressing three existing customer needs, ensuring sufficient riding distance, alleviating the inconvenience of insufficient charging infrastructure and reducing the high cost of batteries. The authors aimed for high fuel efficiency targets in order to achieve significant improvements in fuel efficiency relative to conventional two-wheeled vehicles, compared to those achieved with two-wheeled vehicles equipped only with conventional ICEs.

Systems equipped only with conventional ICEs require a trade-off in terms of reduced acceleration and maneuverability in order to achieve high fuel efficiency targets. The authors carried out research and development on a new powertrain capable of resolving this trade-off.

In general, fully electric two-wheeled vehicles are often fitted with expensive batteries, thereby increasing the cost of the vehicle. Hybrid electric vehicles, on the other hand, offer a means of propulsion that can lower end user costs compared to fully electric vehicles because they minimize use of expensive batteries. However, this tends to increase costs compared to vehicles equipped only with conventional ICE. Hybrid powertrain units used in standard four-wheeled vehicles up to this point have tended to be expensive and lead to increases in size and weight. Against this background, the fitting of relatively low-cost hybrid electric powertrains to two-wheeled vehicles was challenging. The authors have developed a completely new hybrid system that can be fitted on vehicles from small scooters to two-wheeled vehicles and surpasses the structure, configuration, functions, and performance of conventional hybrid systems, together with a new hybrid electric two-wheeled vehicle fitted with this system. The hybrid electric two-wheeled vehicle in this research can achieve both low fuel consumption and provide new sensations, such as quietness and acceleration unique to electric vehicles, compared to conventional vehicles fitted with ICEs.

The authors selected a 125 cc scooter as the subject for research and development.

One reason for this selection was that, when taken as a whole, the large scale of global production makes it a vehicle category connected to a large quantity of carbon dioxide emissions. This is illustrated by the fact that 5 kW to 15 kW (100 to 200 cc) scooters account for a large proportion of the total number of two-wheeled vehicles produced worldwide. As a result, significantly reducing carbon dioxide emissions in this vehicle category has the potential to have a major impact on future global warming.

Another reason behind the vehicle selection was that installing hybrid system parts in the limited space available on a small scooter provided an opportunity to gain an understanding of the potential of EVT systems in terms of being compact and lightweight. The construction of hybrid systems requires additional components, such as drive motors, generators, inverters, and lithium-ion batteries. The authors believed that installing a hybrid system on a small scooter with a limited mounting space with the aim of creating an innovative powertrain had the potential to enable mitigation of global warming in a wide range of two-wheeled vehicle categories.

Innovative compact, lightweight hybrid systems also have the potential for future application in marine, agricultural, and general-purpose equipment in addition to two-wheeled vehicles, supporting further efforts to reduce global warming.

The base scooter and ICE specifications of the 125 cc scooter that is the subject of this research are shown in Figure 1.

For the ICE, a unit-swing type powertrain equipped with a mass-produced 125 cc forced air-cooled single-cylinder ICE was used.

Length (mm)	Width (mm)	height (mm)	WheelBase (mm)	Vehicle weight (kg)	Engine type	cylinder array	Cooling method
1820	685	1145	1280	99	4stroke	Single	air cooling
Displacement (cc)	Bore (mm)	Stroke (mm)	Compression ratio	Max Power (kW)	Max Torque (Nm)	Max Speed (rpm)	Fuel tank (L)
124	52.4	57.9	11	5.7 (6500rpm)	9.4 (5000rpm)	7500rpm	4.4

Fig. 1 Base Scooter and ICE Specifications **Used for Research**

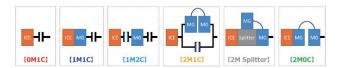


Fig. 2 Hybrid System Topologies (0M1C: BASE, ICE: Engine, MG: Motor Generator, M: Traction Motor, C: Clutch, Splitter: Power Splitter)

As shown in Figure 2, there are generally three topologies of hybrid system. These topologies are: series topologies (2MOC: series hybrids), parallel topologies (1M1C, 1M2C: parallel hybrids), and series/parallel topologies (2M1C: series/parallel switchable hybrids, 2M Splitter: power split type with mechanical planetary gear set). Through previous research and development, it is known that series/parallel topologies generally achieve the lowest fuel consumption rate over a wide range of speeds. In addition, series topology hybrids enable independent drivetrain and ICE operation because they

are not subject to motion condition restrictions related to mechanical shaft fastening structures. As a result, the ICE can operate at the most efficient operating points, thereby increasing drivetrain efficiency.

The authors carried out research and development on a hybrid powertrain with the objective of creating a twowheeled vehicle that consumes as little fuel as possible. A desk study was conducted by applying the three aforementioned topologies to five notable types of hybrid system that have been put into practical use in the automobile market. Specifically, fuel consumption rates were examined in World Motorcycle Test Cycle (WMTC) mode, which is used as an international standard for motorcycles and includes elements such as starting, accelerating and stopping, and desk studies covering cost, vehicle weight with the system equipped and fuel consumption during high-speed riding were carried out.

Cost, in particular, is a crucial element in enabling more users to enjoy the same performance and excitement found with previous two-wheeled vehicles. The price of lithium batteries continues to rise, meaning that fitting a battery significantly increases costs. Two-wheeled vehicles equipped with hybrid systems minimize costs compared to fully battery-powered two-wheeled vehicles, however, they have the side effect of emitting greenhouse gases. At the same time, hybrid electric two-wheeled vehicles can have significantly smaller battery packs than fully battery-powered two-wheeled vehicles. In other words, hybrid electric two-wheeled vehicles can be expected to offer the market a lower-cost option compared to fully battery-powered two-wheeled vehicles. Furthermore, twowheeled vehicles equipped with hybrid systems are significantly more efficient than conventional twowheeled vehicles because they can operate in both a fully electric mode and a regenerative mode using the drive motor.

In addition, vehicle weight with the system equipped is a crucial design element that affects operability by a human driver because two-wheeled vehicles maneuver by tilting left and right. Operational input by shifting body

weight is generally a characteristic of two-wheeled vehicles. Unnecessarily increasing the weight of a twowheeled vehicle must therefore be avoided wherever possible because of the impact it has on convenience, the joy of riding, and human-machine sensibility (technology that creates joy and excitement for people by integrating people and machines on a high level). The left-right and front-rear balance is also important in two-wheeled vehicles because it is closely related to steering stability. For this reason, hybrid systems that are as small and light as possible are desirable.

Fuel efficiency during high-speed riding is an important element for two-wheeled vehicles because it is required when they are used as a means of transportation between cities and for long-distance touring. In addition, because two-wheeled vehicles are used to travel long distances, there is also strong demand for long cruising ranges. Unlike fully electric two-wheeled vehicles, twowheeled vehicles with hybrid systems charge the battery while driving, providing the significant advantage of making it possible to minimize time lost due to charging when compared to fully electric vehicles.

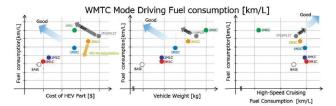


Fig. 3 Results of Study on Hybrid Topologies in Hybrid Electric Two-wheeled Vehicles

The authors carried out evaluation on the basespecification scooter through numerical calculation and carried out a desk study on the feasibility of hybrid systems.

As a result, the characteristics of each hybrid topology were clarified as shown in Figure 3. The findings shown in Figure 3 are as follows. The 1M1C (cell dynamo-type mild hybrid electric two-wheeled vehicle) currently on the market is a direct evolution from a two-wheeled vehicle equipped with ICE only and, while it offers excellent cost effectiveness, there is a limit to improvements in fuel efficiency. The 2MOC (series hybrid) can be considered an extremely effective hybrid system for two-wheeled vehicles, especially because it excels in terms of mode fuel efficiency. This is because the cost is lower than that of 1M2C/2M1C/2M power splits and fuel consumption during mode riding is low. In addition, 2MOC has a simpler structure than 1M2C/2M1C/2M power splits, and the generator and drive motor systems are completely independent. For this reason, there is a strong possibility that it will be possible to use rear wheel drive systems with battery-powered electric two-wheeled vehicles in the future. However, proceeding with the study while optimizing component specifications using numerical calculation modeling showed that it was challenging to improve fuel efficiency during high-speed driving with this system. Two-wheeled vehicle ICEs are generally of a high-speed specification, and the rotation speed of the generator motor and drive motor reaches 6,000 to 10,000 rpm, or more, during high-speed riding. This is because, in this high rotational speed region, a field-weakening current (Id) must be applied to the generator motor and drive motor. Due to this fieldweakening current, it was found that copper loss and iron loss at high rotational speed reduce powertrain efficiency. While 2MOC has disadvantages, if it is applied to twowheeled vehicles with sufficient understanding of this loss generation in high-speed regions, it can be considered a hybrid system with benefits that merit consideration of future development.

When similar studies were conducted on the other topologies, 1M2C was found to have the same cost as 2MOC, but without excellent mode fuel economy. However, the high-speed fuel consumption is excellent. 2M1C is upward compatible with 1M2C, but has higher costs than 1M2C. Of these, 2M Splitter (power split) was found to be upward compatible with 2M1C and achieve higher performance. However, 2M power splits use planetary gears, making them more expensive and heavier than 2M1C for two-wheeled vehicles.

As described above, the authors carried out a desk

feasibility study, and concluded that the two specifications shown below are appropriate for hybrid electric two-wheeled vehicles.

- 2MOC is compatible with fully-electric vehicles, making it effective and giving it high future potential.
- 2M power splits and 2M1C have overall upward compatibility and high drivetrain efficiency, making them suitable for two-wheeled vehicles.

In this research and development, powertrain efficiency was given highest priority, and the 2M Splitter (power split), was selected. In addition, an EVT system that does not use a mechanical planetary gearset was selected for the 2M Splitter (power split). It was determined that EVT systems have room for growth in terms of improved fuel efficiency, cost reduction, and weight reduction in relation to hybrid electric two-wheeled vehicles.

Eliminating mechanical planetary gearsets enables EVTs to reduce costs and weight compared to 2M Splitters (power distribution) with mechanical planetary gearsets. Mechanical friction is also reduced because EVT power uses magnetic coupling for transmission. In addition, as is explained in the section on EVT operating principles, iron loss during operation is also reduced, resulting in unparalleled high transmission efficiency in the powertrain. In the feasibility confirmation performed by the authors, it was determined that EVTs are an extremely effective hybrid powertrain system for hybrid electric two-wheeled vehicles, and the authors proceeded to production.

The authors determined that 2MOC was also effective, and carried out production following evaluation. 2MOC is a series hybrid system. It was selected because is it compatible with fully electric two-wheeled vehicles and drive motors, and can be expected to have possible applications in a wide range of categories and industrial fields.

This paper principally contains explanations of the unique EVT system and comparisons of vehicle performance against series hybrids. Fuel efficiency was a particularly important point of comparison.

EVT FUNCTIONS ON TWO-WHEELED VEHICLES

The electrical variable transmission (EVT) configuration used as the powertrain system in the hybrid electric twowheeled vehicle in the course of this research and development is shown in Figure 4.

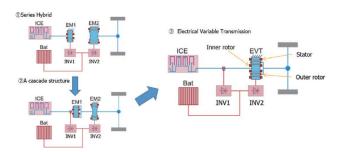


Fig. 4 Electrical Variable Transmission (EVT) **Configuration and Explanation**

Between 2004 and 2010, M.J. Hoeijmakers (Delft University of Technology) and Salem Mourad (TNO, Business Unit Automotive) conducted basic research on the working principle and structure of EVTs, and methods for implementation in vehicles. The basic principles of EVT are not described in detail in this paper. The principles of EVT technology are described in cited references ([1], [2] and [3]). In terms of technology to improve EVT efficiency, M.J. Hoeijmakers is known to have a patent (WO2012/018253 A1 Title: Rotating Electromechanical Converter (09.02.2012)) whereby a DC winding wire is mounted on the outer rotor in order to improve the efficiency and flexibility of the power split machine. (See Fig. 6 for information regarding the DC winding.)

Figure 4 is commonly used in understanding the operating principles of EVT. Figure 4-1 shows a series hybrid. Figure 4-2 shows a cascade structure. Figure 4-2 has a structure whereby the outer part (EM1) and the inner part (EM2) from Figure 4-1 are cascaded. Figure 4-3 shows an EVT. Figure 4-3 has a structure that integrates the outer part (EM1) and inner part (EM2) of Figure 4-2. Understanding Figure 4-1, 2 and 3 in sequence leads to an understanding of the rationality and simplicity of the EVT structure. In this research, the authors shall proceed to provide an explanation based on the aforementioned research results. The EVT includes a set of double rotors mounted inside the stator, as shown in Figure 4-3 and Figure 6. In addition to functioning as a normal electric traction motor, it also functions as a power splitter and can transmit mechanical power while changing speed as a continuously variable transmission from when the vehicle is stopped. The EVT is a powersplit hybrid powertrain that does not have a mechanical gear train. Hybrid functions that can be achieved with EVTs are shown in Figure 5.

Figure 5-1 shows how power splitting of engine torque can be performed as a continuously variable transmission. Figure 5-2 shows how engine power can be transmitted as a clutch using magnetic couplings. Figure 5-3 shows that boost is possible during acceleration. This also means thermal efficiency can be improved by using a low-output ICE to increase the load factor, and the lack of output from a small ICE can be compensated for. Figure 5-4 shows functions as an engine generator. Driving energy can also be recovered, improving powertrain efficiency compared to current ICEs. The strength of deceleration can also be set to fit the user's preference by controlling the regenerative power, enabling the provision of new value. Figure 5-5 shows that fully-electric driving without emitting exhaust gas can be achieved. In other words, the brake specific fuel consumption (BSFC) of the engine is high and the engine can be stopped completely in low efficiency regions. Figure 5-6 shows that reverse motion is possible. This offers new value compared to conventional two-wheeled vehicles. Figure 5-7 shows that the engine can be reliably started. Figure 5-8 shows the richness of the EVTs functions, and shows that, even if the battery SOC drops, reversing is possible by using the ICE power.

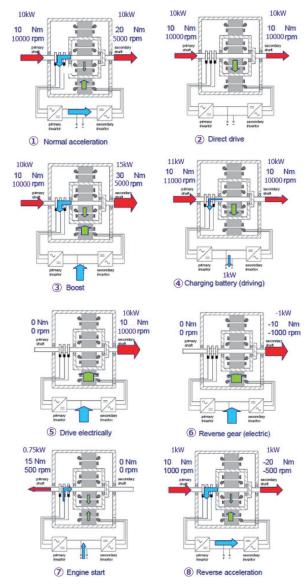


Fig. 5 EVT Hybrid Functions

WORKING PRINCIPLE OF PROTOTYPE **EVT**

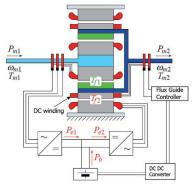


Fig. 6 Detailed Structural Diagram of Prototype EVT (A configuration with a DC winding on the outer rotor section has been adopted in order to improve efficiency compared to the EVT shown in Figure 4-3.)

The EVT structure is shown in Figure 6. Inside the air gap inside the EVT machine, there is an inner rotor with threephase windings, which can create a rotating magnetic field. This can be generated through the mutual relationship through the electrical (AC current) and the mechanical. Next, the mechanical rotational speed of the inner rotor is added as the electrical angular velocity of the AC current. The permanent magnet ties to follow this rotating magnetic field, and the outer rotor begins to rotate. The angle between the magnetic axis of the rotating magnetic field of the inner rotor and the magnetic axis of the permanent magnet should be kept constant, and the torque between the inner rotor and the outer rotor should be the sine of that angle (normal permanent magnet electric motor operation). The torque of this air gap acts on the outer rotor (output shaft) and the inner rotor (input shaft) in the opposite direction. The same can also be said of the outer air gap. In that case, a rotating magnetic field is generated by the stator. The rotational speed can only be controlled by controlling the stator current frequency.

The following section contains a description of the EVT magnetic circuit design. The magnetic field lines of the EVT can be seen in Figure 7. Here, there is no electrical current in the EVT. The magnetic flux lines are generated by a permanent magnet (56a in Figure 7). The inner rotor has high magnetic flux density, and a large number of magnetic field lines can be seen in a small area. In the stator, the low number of magnetic flux lines indicates low magnetic flux density The latter is because most of the magnetic flux generated by the permanent magnet flows from one pole of the magnet to the other pole of the other magnet through the iron of the outer rotor (in area 62 of Figure 7, the magnetic flux density appears low based on the plot, but is actually extremely high).

In EVTs, DC winding wires are wound on the outside of the outer rotor to improve their efficiency. (The DC winding on the outer rotor section is shown at 60a in Figure 7.) When this DC winding (field coil 60a in Figure 7) is used and an appropriate current is applied through flux guide control (see Figure 8), the magnetic flux flowing through area 62 in Figure 8 instead goes through the stator.

This makes it possible to control the magnetic circuit route in the EVT magnetic circuit and the extent of the magnetic flux of the permanent magnet. This can be used to try and improve efficiency. The following section explains why EVT is suitable for use in hybrid electric two-wheeled vehicles, with reference to the aforementioned EVT magnetic circuit design concept.

Internal combustion engines (ICEs) are attached to the inner rotor and the wheels are attached to the outer rotor. The flux guide control through the DC winding (field coil 60a in Figure 7) described above plays a functional role in that it helps to minimize loss. A significant amount of the loss in electric motors comes from copper loss (related to the required current/amount of torque) and iron loss (related to speed).

The speed of a vehicle while driving at the vehicle's typical cruising speed or on the highway can be considered to be constant. The ICE normally supplies mechanical shaft power to the vehicle and provides rotation (during long-distance driving, etc.) Through design with an appropriate gear ratio between the vehicle powertrain and the EVT, the ICE rotational speed (the inner rotor rotational speed) can be matched to the rotational speed of the outer rotor, which is rotated through the gear train from the wheel speed. (The inner rotor and outer rotor can maintain the same speed relative to the typical cruising speed of the vehicle.)

Because the rotational speeds of the inner and outer rotors are the same, the frequency of the magnetic field in the inner rotor must be zero in order to maintain a constant angle between the magnetic axis of the permanent magnet and the magnetic field generated by the three-phase winding.

$$P_{copper} = I^2 R = f(T, B)$$

$$P_{iron} = f(\omega, B)$$

This means that the iron loss in the inner rotor is low. (The rotation speed ω in the formula is low.) Torque for driving the vehicle is transmitted from the inner rotor to the outer rotor. Due to the high magnetic field density in

the inner air gap (high magnetic flux density B in the formula), it is easy to generate torque to drive the wheels between the outer and inner rotors. This can be done at relatively low currents (three-phase winding of the inner rotor), resulting in low copper loss in the inner rotor. The field frequency of the stator is high, but the field strength is extremely low, meaning that the iron loss of the stator is also low. No drive torque is supplied to the outer rotor from the stator. For this reason, there is no copper loss in the stator. In this mode, loss is extremely low when the vehicle is traveling at a constant speed.

When the vehicle needs to be accelerated (when the vehicle speed is high or low), a (relatively small) current can be applied through the DC winding wire of the outer rotor to create a high-density magnetic field in the outer air gap. In such cases, high torque from the stator can act on the outer rotor. The speed also causes the electric field intensity of the stator to increases, temporarily increasing the iron loss. Because significant transient acceleration usually occurs while the vehicle is in motion, these short-time energy losses are not noticeable over the entire time that the vehicle is driven. The principle described above is the underlying reason why this concept is a highly-efficient CVT.

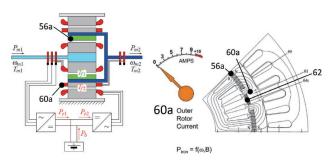


Fig. 7 Cross section of EVT and Magnetic Field Lines (DC Winding Current of 0 A)

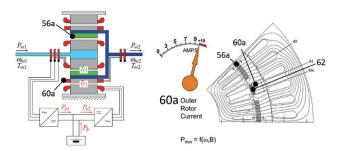


Fig. 8 Cross section of EVT and Magnetic Field Lines (DC Winding Current of 10 A)

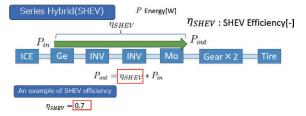


Fig. 9 Path of Power Input from Crankshaft to Series Hybrid (SHEV) System

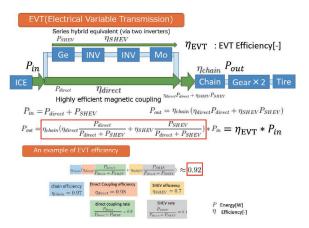


Fig. 10 Path of Power Input from Crankshaft to EVT System

The power path in the series hybrid (SHEV) is shown in Figure 9. The SHEV drives tires via an ICE, a generator, a generator inverter, a drive motor inverter, a drive motor, and gears. If the efficiency in this process is η_{SHEV} , then P_{out} (output energy) is equal to η_{SEHV} multiplied by Pin (input energy).

The power path of the EVT is shown in Figure 10. The power input to the EVT from the EVT crankshaft is transmitted to the output shaft through two paths. One is the direct path that rotates the outer rotor through the magnetic flux generated from the inner rotor. The other is the electrical path, which is transmitted to the stator through the inverter and rotates the outer rotor with the electromagnetic force generated from the stator winding. The latter is less efficient due to the intermediary power conversion. In theory, the closer the input rotational speed and the output rotational speed are, the more dominant the direct power flow through the first path becomes, increasing efficiency. Accordingly, the setting of the point where the input and output rotation speeds synchronize is an extremely important consideration.

In the EVT, the input energy, P_{in} , from the ICE is split into a direct path, P_{direct} , and a path via the SHEV, P_{SHEV} . If the respective efficiencies are η_{direct} and η_{SHEV} , then the energy after merging is obtained by adding η_{direct} multiplied by *Pdirect* to η_{SHEV} multiplied by P_{SHEV} .

In this report, the authors adopted the mechanical structure shown in Figure 16, so when the result is multiplied by the chain efficiency, the output energy, P_{out} , is obtained as shown in the formula in Figure 10.

Arranging these two formulas results in the formula at the bottom of Figure 10, where the red frame indicates the respective efficiencies.

For example, as shown in Figure 29, when the vehicle is running at a speed of 70 km/h, the efficiency of the SHEV is about 0.7.

With regards to EVT efficiency, if a chain efficiency of 0.97, direct coupling efficiency of 0.98, direct coupling rate of 0.9, SHEV efficiency of 0.7 and SHEV rate of 0.1 are used as general values, the EVT efficiency will be about 0.92.

This is why the EVT is so efficient.

In the vehicle that is the subject of this research, the extremely high transmission efficiency in a wide range of driving regions that characterizes the EVT system was achieved through comprehensive consideration of the electrical and mechanical design, and optimizing the design in consideration of the vehicle drive system as a whole.

An external view of the EVT machine is shown in Figure 11.

In order to achieve the side-mounted EVT layout for the two-wheeled vehicle EVT powertrain shown in Chapter 6, the EVT machine was given an extremely thin, disc-like design. In addition, because the EVT comprises a tworotor structure, a cantilever bearing structure was adopted for the outer rotor. In order to supply power to the DC winding section of the outer rotor and the threephase winding section of the inner rotor, a new technology whereby a slip ring is placed inside the inner rotor was developed. For the bearing structure, a new single-sided bearing structure that ensures durability against engine vibration was designed.

Fig. 11 EVT Machine (An angle sensor is visible in the center of the cylinder side, but this may be eliminated to achieve a sensorless design.)

Components associated with the EVT system, such as the inverter and battery system, were specially designed. Air cooling was used to cool the EVT machine, and a dynamic thermal model was created in advance to establish specifications appropriate for the vehicle in terms of aspects such as thermal design. Specifically, a heat management system that can fully withstand the challenging thermal conditions of uphill driving with two riders was achieved. Electromagnetic field analysis using the finite element method was also carried out in order to realize the performance of the EVT machine.

This section presents the results of single unit performance tests using the EVT.

Based on the references used for this paper, in an EVT system, varying the DC winding (field coil) current depending on the vehicle's driving state can be used to achieve points of high-efficiency operation. The variable characteristics of each rotor constant depending on the winding (field coil) current are shown below.

The counter electromotive force characteristics of the inner rotor in the prototype are shown in Figure 12.

The horizontal axis indicates the DC winding (field coil) current, and the vertical axis indicates the counter electromotive force of the inner rotor.

This shows that the counter electromotive force is being varied and controlled by the field coil current from the DC winding (field coil).

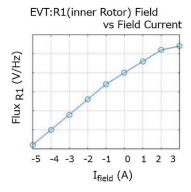


Fig. 12 Counter Electromotive Force **Characteristics of Inner Rotor**

The counter electromotive force characteristics of the stator are shown in Figure 13.

The horizontal axis indicates the DC winding (field coil) current, and the vertical axis indicates the counter electromotive force of the stator.

The counter electromotive force is being controlled by the field coil current from the DC winding (field coil).

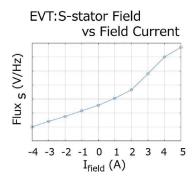


Fig. 13 Counter Electromotive Force **Characteristics of Stator**

The TPA (torque constant: torque per ampere) of the outer air gap is shown in Figure 14.

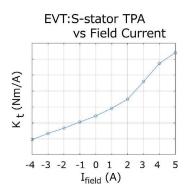


Fig. 14 Torque Constant Characteristics of Stator

For the main electrical components, based on the results of an on-desk configuration study, the authors designed and defined specifications that would maximize energy conversion efficiency in advance, then determined the motor drive method and switching elements that would maximize efficiency and carried out prototyping. In the EVT system, because driving force is transmitted from the inner rotor to the outer rotor through a magnetic path, the load on the inverter is reduced to approximately 2/3 that of series hybrids (2MOC). This is another respect in which the EVT can be considered a more efficient system than series hybrids. As a result, because the heat generation of the inverter is also reduced, the inverter can be made more compact.

CONFIGURATION OF EVT **POWERTRAIN FOR** TWO-WHEELED VEHICLES

The authors created several feasibility study examples of ICE, EVT, reducer, and power transmission layout (chain, etc.) configurations that can be mounted on a twowheeled vehicle.

Simple diagrams of EVTs that can be fitted to a twowheeled vehicle are shown in Figure 15. A, B and C are layouts in which the ICE and EVT are connected directly. This side-mounted EVT layout has the advantage of locating the EVT on the crankshaft, enabling the reduction between the ICE and the EVT to be omitted. Not only does this reduce costs, it also eliminates the mechanical loss associated with this reduction.

In types A and B, the drive chain is positioned on the left side of the vehicle. The difference between A and B is the final reducer.

Layout C features a reduction (chain line) on the outer periphery of the section connecting to the ICE and EVT. This has the advantage of achieving the most compact width among A, B and C, typical layouts with high transmission efficiency.

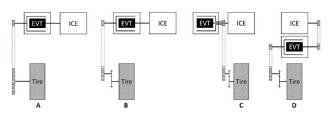


Fig. 15 Two-wheeled Vehicle-mountable EVT Layouts

In addition, the specifications of C can be adapted to conventional scooters with minimal design changes to the structure of the engine section and the reducer around the rear tire. In summary, C provides a layout that is both highly efficient and compact while also enabling easy mounting of an EVT onto an existing scooter with a proven track record in the market.

D shows a back-mount type layout in which the EVT is placed behind the ICE. This has the advantages of being narrower than A, B, and C, and making it easy to maintain the left-right balance. However, D also has disadvantages compared to the other layouts. The addition of a reducer and power transmission elements between the ICE and EVT mean that total transmission efficiency is slightly reduced and the number of peripheral parts increases. Nevertheless, the fact that D has the narrowest layout provides significant ergonomic benefits when it is used in two-wheeled vehicles, and it can therefore be considered suitable for use in twowheeled vehicle design despite its disadvantages.

Based on the results of the above feasibility assessment, the authors decided to adopt layout C for the 125 cc scooter when installing the EVT system.

EVT POWERTRAIN FOR TWO-WHEELED VEHICLES

In this hybrid electric two-wheeled vehicle, a configuration whereby the inner rotor of the EVT machine is connected on the same axis as the engine was adopted. In addition, the outer rotor was connected by a chain through the gear train and is configured to transmit power to the rear wheel. Instead of a large battery, this system featured energy replenishment through the charging functions of a high-efficiency generator using a high-response gasoline internal combustion engine for two-wheeled vehicles. The EVT powertrain unit was designed with ease of assembly in mind, and the EVT machine and drive unit could be easily bolted together without changing the design of the massproduced air-cooled 125 cc scooter engine or massproduced frame.

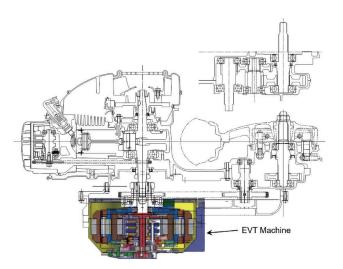


Fig. 16 Cross Section of Two-wheeled Vehicle **EVT Powertrain Unit**

A cross section of the powertrain is shown in Figure 16. In hybrid systems other than EVT systems, the generator and drive motor comprise separate motor components. With the EVT machine, however, integrating components through the two-rotor structure made it possible to concentrate the weight balance of the two-wheeled vehicle around the engine. The result was a vehicle with a weight balance that did not differ significantly from that of a conventional vehicle.

After considering the aforementioned hybrid function in the EVT system, the rate of regenerative braking, the rate of regenerative charging, the battery discharge rate, the depth of discharge, the number of engine starts, and tolerances, the authors' design calculations found the minimum lithium-ion battery capacity to be approximately 0.1 kWh. This is a low capacity compared to non-EVT hybrid systems. This being the case, one helmet can be stored under the seat, and mounting space comparable to that of a conventional scooter can be secured. A numerical feasibility study by the authors found that, in principle, EVT systems can operate without any lithiumion battery capacity. (Condenser only.) This is because the EVT can generate its own power and operate the clutch using only energy from its own power generation. In such cases, it has been found to operate as a highly-efficient transmission that does not use expensive, heavy and bulky lithium-ion batteries. In this way, unlike other hybrid systems, the EVT can minimize the space required for batteries. In the course of this research and development, the lithium-ion battery capacity was set at 0.5 kWh for the purposes of investigating appeal and new experiences as a two-wheeled vehicle and in consideration of battery availability.

Figure 17 shows the prototype battery system used in the prototype vehicle. In this system, the energy input/ output power and its rate and frequency in the hybrid was calculated in advance, and batteries of different capacities and types were designed and prototyped. In the prototype, lithium titanate was used for the negative electrodes to ensure long life, high input/output, and stability.

Fig. 17 Example of Prototype Battery (Voltage: 48 V, Capacity: 0.5 kWh)

The reduction ratio specifications the EVT-equipped twowheeled vehicle were designed to improve fuel efficiency in consideration of the characteristics of the EVT machine. Specifically, in consideration of market surveys of scooter usage, the two-wheeled vehicle's reduction ratio specifications were designed such that the inner and outer rotors of the EVT have synchronous rotation speeds in the low-speed driving range frequently used in urban areas (20-40 km/h) and in the high-speed driving range used in suburban areas (70-90 km/h). The best fuel efficiency can be achieved by increasing the frequency direct magnetic coupling between the engine and the rear wheel. Consideration was given not only to improving fuel efficiency when driving in WMTC mode, but also to improving practical fuel efficiency for users.

EVT POWERTRAIN CONTROL STRATEGY

In the two-wheeled hybrid electric vehicle fitted with an EVT system, in order to enable application to a wide range of hybrid systems, power generation control technology, driving control, and energy management control were constructed into extremely simple and versatile mechanisms. A data flow diagram (DFD) of the hybrid system is shown in Figure 18.

The structural layout and basic operating mechanisms of the EVT vehicle system are shown in the component diagram in Figure 19.

A vehicle control unit (VCU) has the role of controlling the vehicle (driving control, energy control, arbitration control and fail safe control). A motor control unit (MCU) has the role of controlling drive torque. A generator control unit (GCU) has the role of controlling the amount of power generation. A battery management system (BMS) monitors the state of the battery.

In the operation of this system, the VCU receives the rider's accelerator position and power information from the MCU, GCU, and BMS.

First, the power generation control technology features a high-efficiency power generation control strategy that significantly improves fuel efficiency through significant changes to the engine operating point range compared to that of conventional two-wheeled vehicles during power generation. The core means to achieve a highly-efficient hybrid system is to perform power generation control as efficiently as possible relative to the electric power required for driving.

Through accurate control of the rotation speed of the directly-connected inner rotor relative to the engine torque controlled by the electronic throttle valve, it is possible to follow the optimal fuel consumption line and achieve highly-efficient power generation control.

The input/output performance of lithium-ion batteries, engine generators, and drive motor components changes depending on temperature, including when operating in high-temperature and low-temperature environments. This is an important factor with regards to the requirements for a hybrid system containing lithium-ion batteries.

This time, the authors constructed a robust system that can obtain optimum output across a wide temperature range by performing arbitration control (Figure 18) based on state of function (SOF) information regarding the temperature of each component.

In addition, by implementing control that maintains drive output by obtaining output from the engine, the authors have built a system that guarantees performance even when the output that can be taken from the battery is reduced at high or low temperatures.

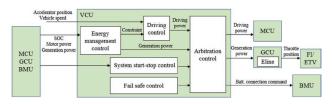


Fig. 18 Data Flow Diagram (DFD) of Hybrid System

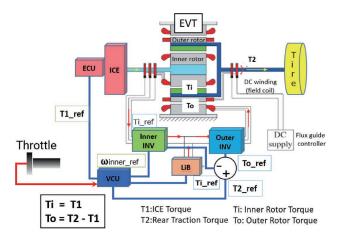


Fig. 19 EVT Vehicle System Component Layout

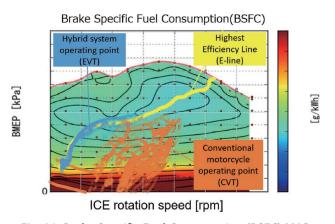


Fig. 20 Brake Specific Fuel Consumption (BSFC) MAP and Highest Efficiency Line Tracking Control

Figure 20 shows the relationship between the fuel consumption rate and engine output. The yellow line indicates the operating points at which fuel consumption is minimized relative to the required engine output. Comparing the history of operating points during WMTC mode driving between existing two-wheeled vehicles (red) and the EVT system (blue), it can be seen that the EVT system follows the highest efficiency line and generates electricity with high efficiency. In conventional twowheeled vehicles and some hybrid systems, there were cases where it was not possible to perform control to track the highest efficiency line because factors such as mechanical constraints relative to the vehicle speed and required driving force restricted the engine rotation speed. The line of operation is particularly inefficient for ICEs at low rotation speeds.

In the EVT system, the two-rotor structure means there

are no similar mechanical constraints, making it possible to follow the highest efficiency line.

In terms of the engine sound design, which is a desirable characteristic particular to users of two-wheeled vehicles, control that increases the engine speed as obediently as possible to the power requested by the rider was implemented with the aim of achieving a natural audible sensation and pulsing sensation without discomfort across low- to high-speed regions. The image of a sports motorcycle was a particularly prominent influence.

When the vehicle is running at low speeds, power generation by the engine is stopped, which improved driving efficiency at low speeds by enabling EV-only driving with power supplied from the battery.

In terms of driving control, the rear tire was controlled to provide a natural-feeling riding that responds to the rider's intentions.

With conventional scooters, there is a long response time between the rider opening the throttle and the vehicle gaining acceleration. Users who prefer sporty driving tend to feel that this response in conventional vehicles is poor.

The EV system is a strong hybrid. It is fitted with a large motor that achieves the sharp acceleration unique to electric vehicles in a wide range of speed regions. Due to the two-rotor structure of the EVT, the motor on the outer rotor side has a large outer diameter and can increase the output. In other words, the EVT can achieve more powerful drive torque than non-EVT hybrids.

The regeneration function was used to provide the rider with a new experience. The one-throttle operation function enables the rider to adjust their speed by operating the throttle only, without using the brake lever. This provides enjoyable riding and a new feeling not found with conventional scooters.

Finally, in terms of energy management control,

appropriate integrated control of energy flow arbitration is applied to optimize energy distribution in response to the power requested by the rider, in consideration of the operating state of the engine, EVT machine, and battery.

Three basic energy management control modes were set for operating the EVT system, and a strategy of performing energy management control according to the operating state of the powertrain was adopted. A basic example of the area logic for EV driving modes and HEV driving modes is shown in Figure 21. P* in the diagram indicates the required value for generator generated power. No. I indicates the EV driving mode, and No. II indicates the HEV driving mode. The required power generation depending on the remaining battery was defined.

This formula has been included in the diagram for reference purposes.

No. III is configured to stop charging when the lithiumion battery becomes fully charged in situations such as long downhill sections and discharge regenerative power using the engine as a load.

This made it possible to achieve highly-efficient, optimized energy management and arbitration, even when freely generating driving force in real time according to the driving conditions of the two-wheeled vehicle. The modes are described below.

[I. EV driving mode]

Requirement: Drive is provided using battery power only.

- ①The two-wheeled vehicle is fully electric.
- 2During deceleration, regenerative deceleration energy is recovered with the lithium-ion battery.

Reason: Fuel efficiency is improved by refraining from running the generator and engine when there is leeway in the SOC.

[II. HEV driving mode]

Requirement: When the SOC is low, the power generated exceeds the traction motor's required

output [W], and when the SOC is high, the power generated is less than the motor's required output [W].

- ①The engine power is driven via a magnetic coupling. Drive is provided using electricity generated by the engine.
- 2Drive is provided by the power generated by the engine, and the surplus is charged to the lithium
- 3 Used as a boost mode, using both power generated by the engine and power from the lithium battery to accelerate.

Reason: To stabilize the SOC and reduce battery deterioration and to enable control with a lowcapacity battery.

【III. SHEV (energy consumption) mode】

Requirement: Charges the battery with regenerative power. If the battery cannot be charged, power is consumed by running the engine as a load. (Activated with battery overcharge prevention.)

Reason: To prevent battery deterioration and overcharging while avoiding reducing vehicle braking force as much as possible

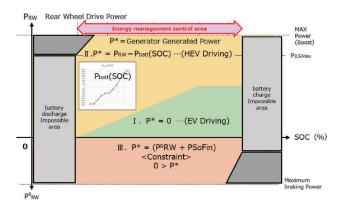


Fig. 21 Basic Example of Hybrid Driving (Energy Management Block)

EVT POWERTRAIN DEVELOPMENT ENVIRONMENT

This section describes the environment and processes in which EVT system development took place.

In the course of this research and development, the

powertrain (the engine, battery, and electric drive unit) is more complex than a conventional engine system. For this reason, in moving forward with the project, research and development was carried out in a time-efficient manner, using digital technology to determine performance trends during the initial stages without manufacturing physical equipment.

In the case of four-wheeled vehicles, SILS, HILS, and Virtual Reality Bench (VRS bench) are known methods used for verification. With two-wheeled vehicles, however, the power train itself is extremely small, and motion systems must have low inertia and high responsiveness. In the past, it had been difficult to apply VRS bench, which is a simulator based on four-wheel vehicles, to the development of hybrid electric two-wheeled vehicles.

As a result, the authors carried out independent development of a dedicated VRS bench system exclusively for hybrid electric two-wheeled vehicles in parallel with their research and development on the EVT powertrain system. This VRS bench, comprises the actual components of the powertrain for the hybrid electric twowheeled vehicle subject to evaluation and a low-inertia motor with a uniquely designed low-inertia, highresponse dynamo function.

Specifically, the authors designed a 10kW highperformance IPM motor system that matches the prototype hybrid system as a bench measurement system.

By coordinating the VRS control and the prototype hybrid control within the same control unit, control safety relative to normal four-wheel or two-wheel VRS benches was ensured.

In addition, unifying the system enabled the realization of an accurate, low-delay energy measurement environment.

The authors constructed a new bench measurement system that can realize appropriate failure processing even in limit tests of prototype hybrid systems.

This vehicle simulator can reproduce specific vehicle driving conditions that based on assumed vehicle behavior by applying a model that virtually reproduces the dynamics of the vehicle.

Through this, it was possible to achieve modeling and system identification regarding the dynamic characteristics the powertrain fitted with a SHEV and an EVT system and implement a theoretical approach to control and compatibility design through front loading.

This made it possible to perform verification relating to evaluation and compatibility processes, which were previously performed on finished vehicles, from the initial stages, including steady and transient states. This succeeded in significantly shortening the evaluation test period and improving efficiency in the development of the hybrid electric two-wheeled vehicle.

Images of the exterior of the dedicated VRS bench system for hybrid electric two-wheeled vehicles is shown in Figure 22 for reference.

Fig. 22 EVT VRS Bench System

This VRS bench was used to identify the mechanism by which mechanism net mean effective pressure (NMEP) is consumed during driving.

This is essential in order to investigate ways to improve the mode fuel efficiency as presented in this report.

For reference, Figure 23 shows NMEP distribution destinations in series hybrids (SHEV) studied using simulation.

In the WMTC mode driving speed range, friction mean

effective pressure (FMEP) and running load resistance are the dominant NMEP distribution destinations, and electronic transmission loss is about 20-25%.

Although no detailed explanation is given in this report, similar studies and verifications were also conducted for existing CVT transmissions and EVT transmissions. In the electronic transmissions, in addition to improved mechanical transmission efficiency, the control strategy for the hybrid system was created after comprehensive organization of fuel efficiency improvement, including control using regeneration.

In addition, the accuracy of the results shown in the comparison of Target and Measurement in Chapter 10 was ensured by feeding the data obtained on the VRS bench back to the desktop simulation and performing analysis that included the chassis test results.

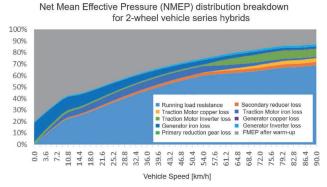


Fig. 23 Net Mean Effective Pressure (NMEP) Distribution Destinations in Series Hybrids (SHEV)

HYBRID ELECTRIC TWO-WHEELED VEHICLE PERFORMANCE AND FUEL CONSUMPTION MEASUREMENT RESULTS

This section describes the results of fuel consumption and performance measurement on the prototype hybrid electric scooter created in the course of this research and development.

Figure 24 shows a comparison of vehicle weight, fuel consumption measurement results, and acceleration time for the series hybrid-equipped vehicle constructed for this research and development and the EVT-equipped vehicle.

The prototype vehicle is fitted with the components required to construct a hybrid system without changing the main engine components or vehicle frame of the existing scooter. In this case, changing the 125 cc scooter to a hybrid system increases vehicle weight by a maximum of approximately 30 kg.

In this study, measurement of fuel consumption in WMTC mode was the first priority when carrying out research and development. For this reason, the acceleration performance target was the same as the BASE vehicle. This is the reason why the 0 to 20 m acceleration times shown in Figure 24 are more or less in equilibrium across all three vehicle types. However, relative to ICE vehicles, the two types of hybrid electric two-wheeled vehicle can generate torque from low vehicle speeds through electrical responses and do not require time to engage the clutch. It is therefore conceivable that acceleration time can be easily improved by rewriting driving control compared to CVT vehicles with engines.

As a result, it can be seen that EVT vehicles offer improvements in acceleration time compared to other vehicles.

The authors intend to continue investigating acceleration performance and to report on this in a subsequent paper.

	Vehicle weight	Transmission		Measurement		
	(kg)	type	Motor Type	Fuel comsumption [km/L]	Acceleration time (0-20m) [sec]	
EVT (2M splitter)	125		Dual Rotor (8P48S) (distributed winding)	WMTC mode full regeneration 84.9 (Target 85.2)	2.63	
Series Hybrid (2M0C)	128	Electric	IPM (8P12S) 2 pieces used (concentrated winding)	WMTC mode full regeneration 81.1 Regeneration equivalent to ICE Brake 74.3	(2.77)	
BASE	99	Mechanical	N/A	62.2	2.77	

Fig. 24 Comparison of Vehicle Weight, Fuel Consumption Measurement Results and Acceleration Time

Fig. 25 Exterior View of Vehicle Fitted with EVT System

Fig. 26 Exterior View of Vehicle Fitted with Series Hybrid

In this research and development, WMTC mode running tests were conducted to confirm the fuel consumption rate of the two types of hybrid vehicle (Figure 25 and Figure 26) for which effectiveness had been confirmed.

Figure 27 shows the WMTC mode driving pattern for this test.

The upper section of Figure 27 shows the WMTC mode vehicle speed.

The lower section of Figure 27 is an enlarged view of the 0 to 600 second portion during WMTC mode driving, showing the operation results of the hybrid control strategy.

The upper half of the lower diagram in Figure 27 shows the vehicle drive control. In terms of vehicle drive control, the EVT components adopt a control strategy that regenerates power in accordance with the rider's target driving speed. In addition, in this research and development, drive control was set up to recover as much regenerative energy as possible.

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

The lower half of the diagram in Figure 27 shows the energy management control strategy by indicating pure electric driving and hybrid driving.

A control strategy that uses electric driving in the lowspeed range where the load is light, and transitions to hybrid driving in the high-load range was adopted.

From the above results, it can be seen that hybrid operation strategy was properly realized through automatic control. Specifications equivalent to existing mass-produced models were applied for the engine control used in this research.

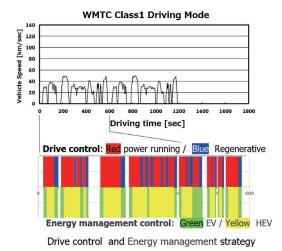


Fig. 27 Top Diagram: WMTC (Worldwide-harmonized Motorcycle Test Cycle Mode) part1 Reduced Bottom Diagram: Hybrid Driving Strategy (Drive Control and Energy Management)

Next, Figure 28 shows the WMTC mode driving fuel efficiency results.

Weak series hybrid system regeneration is a configuration that performs regeneration equivalent to the engine brake of the base CVT vehicle, and strong regeneration is a configuration that recovers as much regenerative energy as possible throughout the WMTC mode.

The EVT uses a configuration that recovers as much regenerative energy as much as possible throughout the WMTC mode.

In research and development relating to the EVT, the target fuel efficiency was 85.2 km/L in WMTC mode, a 37% improvement in fuel efficiency compared to the base vehicle. As shown in Figure 28, it was confirmed that the actual prototype vehicle achieved mode fuel consumption of 84.9 km/L. This means that, not only did the EVT powertrain system of the prototype vehicle improve fuel efficiency by approximately 37% compared to the base vehicle, this highly-efficient system was shown to surpass the series hybrid system that was researched and developed at the same time.

The transmission efficiency relative to speed for the two hybrid systems is shown in Figure 29.

The transmission efficiency was calculated using the η_{SHEV} parameter shown in Figure 9 and the η_{EVT} parameter shown in Figure 10.

Based on the measurement results, it was found that the EVT system had higher efficiency than the series hybrid across all regions.

The EVT's inner and outer rotors are designed to have synchronous rotation speeds in the low-speed driving range (20-40km/h), which is frequently used in urban areas, and in the high-speed driving range (70-90km/h), which is frequently used in suburban areas. As a result, it was confirmed that the EVT efficiency is high.

Furthermore, in the low-speed driving range, where the relative contribution of mechanical loss is large, the maximum efficiency was at 40 km/h, and the EVT was found to have higher efficiency than the SHEV. (Figure. 29)

As mentioned in Chapter 9, series hybrid system losses are 20-25% relative to NMEP.

Since the EVT transmission efficiency is about 15% higher than that of the series hybrid system, the EVT system improves fuel consumption by about 5% compared to that of the series hybrid system.

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

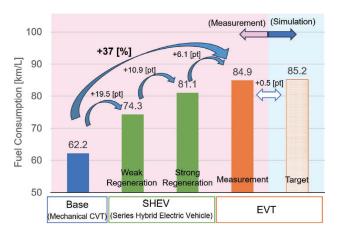


Fig. 28 Fuel Consumption Comparison (Base Vehicle, Series Hybrid (SHEV) and EVT)



Fig. 29 Transmission System Efficiency Comparison (Series Hybrid (SHEV) and Electrical Variable Transmission (EVT)) (Measured with VRS Bench System)

At this stage, further improvements to efficiency merit consideration.

In this test, a control method whereby the EVT's inner rotor tracks the ICE's highest efficiency line was used for the power generation function. Based on this, it may be possible to further improve fuel efficiency by optimizing the power generation function on both the ICE's highest efficiency line and the EVT's efficiency map.

In addition, the efficiency of the EVT powertrain system can be further improved by bringing the two rotors closer to synchronous rotation when in WMTC mode (see Figure 20 and Figure 30). As shown in Figure 30, preliminary test results indicate that optimizing the EVT powertrain system setup in this way can improve system efficiency at 30 to 60 km/h by approximately 5 to 10%. Based on these results, WMTC mode driving fuel consumption of 91.2 km/L (a 47% improvement in fuel consumption compared to the base vehicle (see Figure 31)) would be expected, meaning and further improvements in fuel consumption can be achieved.

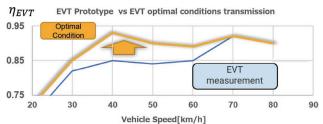


Fig. 30 Transmission Efficiency Improvement when ICE and EVT Efficiency Characteristics are Considered (Measured with VRS Bench System)

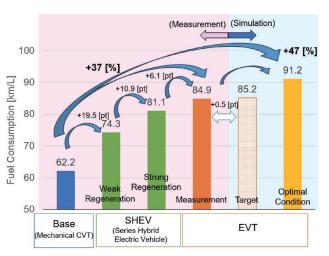


Fig. 31 Fuel Consumption Comparison (Base Vehicle, Series Hybrid (SHEV) and EVT)

In the course of this research and development, massproduced engines were used, no improvements were made to mechanical components, and fuel consumption studies were carried out using conventional massproduced air-cooled single-cylinder ICEs. However, improvement in the efficiency of the engine itself is also a highly significant factor, and it goes without saying that applying fuel efficiency improvements to the engine used in this research can lead to even greater improvements in fuel efficiency.

Although not described in this report, changing from an air-cooled engine to a water-cooled engine is widely known to improve fuel efficiency. If the ICE were to be water-cooled, it may be possible to achieve fuel consumption of 100 km/L or more. In summary, the use of hybrid electric two-wheeled vehicles can make it possible to satisfy the conflicting requirements of environmental performance in terms of fuel efficiency

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

and elements that make two-wheeled vehicles enjoyable to ride, such as acceleration performance. Hybrid electric two-wheeled vehicles make it possible to achieve improved environmental performance, new sensations and enjoyable riding particular to electric vehicles, and long-distance cruising with large energy storage particular to ICEs. Reporting on exhaust gas is not carried out in this report. Hybrid systems have the advantage of enabling ideal driving conditions to be maintained by using a large motor in the engine to change the operating point. At the same time, adaptation including engine control elements such as engine and catalyst warming control, change of mind and evaporative control is needed, meaning that thorough examination is required.

The authors intend to report on this in a subsequent paper.

POSSIBILITIES FOR HYBRID ELECTRIC TWO-WHEELED VEHICLES

This two-rotor technology is compact because the generator and drive motors are integrated, making it effective for use in two-wheeled vehicles with strict component mounting requirements.

However, with regards to increased mass due to hybridization, it will be necessary to carry out sufficient preliminary verification of the front-rear and left-right balance, which are design conditions particular to twowheeled vehicles, and the impact of additional mass on vehicle behavior.

This section describes an example of study based on the aforementioned approach. Specifically, it is possible to expand application of the EVT machine from the small scooter category to the motorcycle category while maintaining the same outer diameter. This is achieved by changing the overall length of the EVT machine. According to on desk calculations by the authors, the EVT machine mechanical shaft output can be improved from 10 kW to 30 kW equivalent by changing the EVT machine voltage from 48 V to 96 V.

At present, while the availability of space to store the lithium-ion battery, which is an important component separate from the EVT machine, remains to be confirmed before a maximum output of 30 kW can be achieved, the authors consider this to be a possibility. In this regard, a lithium-ion battery that can be laid out threedimensionally to fit the narrow mounting space on twowheeled vehicles is desirable. The mounting position must also be selected after considering future improvements in lithium-ion battery performance.

In another study of specifications conducted by the authors, in which the EVT system functions were limited, preliminary studies showed that an EVT's magnetic coupling torque is sufficient for operation without using lithium-ion batteries, which are expensive, bulky, and heavy. In such cases, the fact that no lithium-ion battery is required would make the EVT system smaller and lighter. In this system that limits the functions of the EVT according to the purpose, while limitations include the difficulty of achieving electric driving and boost modes, it is known that ICE driving efficiency can be improved, and that fuel consumption and acceleration performance can be improved compared to conventional vehicles by combining idling stop and regeneration functions.

Below are examples of a hybrid electric two-wheeled vehicles fitted with powertrains featuring the EVT system with an output equivalent to 30 kW envisaged by the authors earlier in this paper (see Figure 32 and Figure 33).

Fig. 32 Example of Side-mounted EVT (30 kW) on Large Scooter

According to the authors' configuration study, it is possible to generate a maximum output of 30 kW, which exceeds that of the conventional two-wheeled vehicle

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

category, while reducing greenhouse gases by combining a high-output EVT system with an ICE of 15 to 20 kW.

Fig. 33 Example of Rear-mounted EVT (30 kW) on Motorcycle (Example of back mounting: EVT mounted behind ICE)

As described above, based on the authors' study, EVT machines can be easily scaled to changes in the mechanical shaft output of the two-wheeled vehicle and can be expected to improve output by increasing voltages. In other words, application in a wide range of two-wheeled vehicle categories may be possible. Prototype EVTs up to 180 kW already exist for fourwheeled vehicles, and the authors believe that there are wide-ranging potential future applications.

CONCLUSION

The basic principle of the EVT system is based on a power transmission (F. Porsche) invented in 1909. (See Figure 34.)

In research and development on new hybrid systems, in contrast to previous two-wheeled vehicle development mainly focused on the mechanical domain, the authors took on the challenge of innovating to create value by reaffirming electrical machinery technology built 110 years ago and combining it with modern advancements. By taking on this challenge, the authors were able to put forward a hybrid electric two-wheeled vehicle that can play a part in environmental protection measures and provide value for new users.

By adopting the EVT system for two-wheeled vehicles, the authors were able to improve power performance, environmental performance, and drivability, which were considered to be mutually exclusive in conventional twowheeled vehicles, in accordance with their respective requirements. This has shown that hybrid electric twowheeled vehicles equipped with EVTs are highly effective.

In the two-wheeled vehicle category, the use of highlyefficient strong hybrids, as typified by hybrid electric two-wheeled vehicles with EVTs, will make it easier to comply with future laws and regulations, as has been shown in the realm of four-wheeled vehicles.

With two types of hybrid system with different mechanical structures as the subject, the authors posited and constructed a platform hybrid system control that can flexibly respond to different hybrid topologies. This makes it possible to flexibly meet diverse performance, appearance, and design requirements for two-wheeled vehicles.

Moving forward, there is an urgent need to protect the environment and build a sustainable society for future generations. Use of fossil fuels must be reduced. In recent years, there has also been a shift towards synthetic fuels, with the aim of realizing a more sustainable society. It is hoped that hybrid electric motorcycles that adopt the EVT system used in the course of this research and development will be able to provide customers with the same enjoyable riding they have experienced up to now while also significantly improving fuel efficiency.

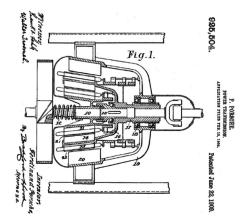


Fig. 34 Two-rotor Transmission Invented in 1909 (F. Porsche)

REFERENCES

- [1] Kruse, R., Mourad, S., Foster, D., and Hoeijmakers, M.J., "Concept and Functionalities of the Electric Variable Transmission," in 15th Aachener Kolloquium - Automobile and Engine Technology, October 9-11, 2006, 1387-1398, https://martinhoeijmakers.nl/pubs/.
- [2] Hoeijmakers, M.J. and Ferreira, J.A., "The Electrical Variable Transmission," in Conference Record of the 2004 IEEE Industry Applications Conference 39th IAS Annual Meeting, Seattle, WA, October 3-7, 2004, 04IAS70P7.
- [3] Hoeijmakers, M.J. and Rondel, M., "The Electrical Variable Transmission in a City Bus," in Proceedings 2004 35th IEEE Power Electronics Specialist Conference, Aachen, Germany, June 20-25, 2004, 2773-2778
- [4] Verbelen, F., Lhomme, W., Vinot, E., Stuyts, J. et al., "Comparison of an Optimized Electrical Variable Transmission with the Toyota Hybrid System," Applied Energy 278: 115616.
- [5] Druant, J., De Belie, F., Sergeant, P., and Melkebeek, J., "Power Flow in an Induction Machine Based Electrical Variable Transmission," in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM).
- [6] Druant, J., Vansompel, H., De Belie, F., Melkebeek, J. et al., "Torque Analysis on a Double Rotor Electrical Variable Transmission with Hybrid Excitation," Applied Energy 278 (2020): 115616.

■著者

古田 秀樹 Hideki Furuta 技術•研究本部 技術開発統括部 制御システム開発部

吉田 潤 Jun Yoshida 技術 · 研究本部 技術開発統括部 制御システム開発部

技術論文

乗り心地の良い「PAS」サドルを設計するための 感性設計技術

Kansei Design Technology to Design a Comfortable "PAS" Saddle

丹羽 將勝 小関 泰子 小林 光司 藤田 英之 古澤 隆志中林 雄介 伊藤 努 堀 啓一 芳賀 健太

要旨

近年の消費者ニーズの多様化に伴い、製品に対して"心地よさ"などの感性価値が重視されるようになり、消費者の嗜好に合わせた感性価値の設計技術の構築が求められている。この課題に対応するため、本研究では、電動アシスト自転車のサドルを対象とし、嗜好の有無、および違いが生まれた要因をユーザー属性から抽出した。その結果、乗り心地には嗜好の違いがあり、その違いはユーザーの体格、運動習慣、走行環境などが影響している可能性が示唆された。また、感性価値を予測するために必要な因子を臀部の体圧分布から考察した。その結果、感性価値を予測するためには、性差、体格、乗車位置、許容圧力といった因子を考慮する必要があることがわかった。今後は、抽出したユーザー属性に対して検証を行い、嗜好に合わせた感性価値の設計方法を構築していく。

Abstract

In recent years, the diversification of consumer needs has led to an increased emphasis on affective values, such as "comfort," in products. This has created a demand for the development of design techniques that cater to consumer preferences regarding affective values. To address this issue, this study focuses on the saddle of electrically power assisted bicycles and derives factors from user attributes that contribute to the presence or absence of preferences, as well as the differences observed. The analysis reveals that there are differences in riding comfort preferences, which may be influenced by factors such as the user's physique, exercise habits, and riding environment. Additionally, factors necessary for predicting affective values were examined based on pressure distribution in the seating area. The findings indicate that, to predict affective values, it is essential to consider factors such as gender differences, physique, riding position, and tolerable pressure. Moving forwards, the study aims to validate the derived user attributes and develop design methods for affective values that align with preferences.

1

はじめに

近年、ライフスタイルや価値観の多様化に伴い、消費者のニーズや嗜好もまた多様化している。特に工業製品においては、単に機能的な性能を追求するだけではなく、"楽しさ"や"心地よさ"のような感性的な価値(以降、"感性価値"と記載)を提供する製品が求められている。これらの背景から、製品開発においては、消費者の嗜好に合わせて、狙った感性価値を設計する技術が必要とされている。従来の製品開発では、感性価値を設計する技術が必要とされている。従来の製品開発では、感性価値を設計する場合、訓練された評価者(以降"専門家"と記載)による官能評価が実施されてきた。しかし、限られた専門家だけで嗜好の違いに対応することは難しく、特に性別や体格が影響している場合は、感性価値の違いを評価することは困難である。

本研究では、消費者の嗜好に合わせた感性価値を提供する ため、感性価値と製品の物理設計値を結びつける予測式を構 築して、狙った感性価値を設計する技術の構築を目指してい る。今回は研究対象として電動アシスト自転車「PAS」のサドルを選択した。理由としては、当社の主力商品であると同時に座り心地に関する研究事例が少なく感性価値を向上させる手法が確立されていないことがあげられる。

また、サドルは人体の荷重の6割を支える重要な部品である ことから [1]、感性価値に与える影響が大きいと考えた。

本稿では、以下の2項目について検証を行う。

検証1:嗜好の違いの要因分析

ターゲットユーザー(今回は女性ユーザー、以降"ユーザー" と記載)を対象に、サドルの官能評価を実施し、乗り心地に嗜好 の違いがあるか確認する。違いがある場合は、その要因をユー ザーの属性情報(体格や運動習慣など)から考察する。

検証2:感性価値に影響を与える要因分析

検証1と同様な試験を専門家に対して実施し、その評価結果を基に、感性価値と設計値の関係性を示す予測式を構築する。 その予測評点とユーザー官能評点(以下評点)の差、および

ユーザー間の評点ばらつきの原因を属性情報から考察するこ とで、感性価値に影響を与える要因を明らかにする。

実験方法

棟近ら [2] の研究では、感性的なニーズを把握する調査で使 われる SD 法について、評価用語選定の指針を示している。ま た、評価用語を認知・知覚モデルに基づき分類し、階層構造(感 性評価構造)を仮定して、分析を行っている。本稿でも、その選 定指針と階層構造を参考に、以下のようなステップで検討を 行った。

- (1) "乗り心地のよさ" を構成する感性価値の抽出
- (2)ユーザーと社内専門家に対する官能評価
- (3)検証1 嗜好の違いの要因分析
- (4)検証2 感性価値に影響を与える要因分析

各ステップの詳細を以下に示す。

- (1)ユーザーと開発部門へのヒアリングを行い、サドルに重 要な感性価値を官能評価用語として抽出し、4つの階層に分け た。4つの階層は文献 [2] に従い、人の嗜好や感情に近い "総合 感性" "心理的反応" の上位2階層と、物理特性を知覚する言葉 に置き換えた"複合感覚""単感覚"になる。
- (2)官能評価用語を用いて、ユーザーと社内専門家による乗 車評価を行い、それらの結果に対して2つの検証を行った。
- (3)検証1では、ユーザーの評価結果からサドルに対して嗜 好の違いの有無を確認し、嗜好ごとに乗り心地に紐づく感性価値 が異なるかを比較した。また、嗜好が分かれた要因を考察した。
- (4)検証2では、社内専門家の評価結果から、サドルの物理 量を説明変数とする"単感覚""複合感覚"の予測式を構築し た。得られた予測評点とユーザー評点およびユーザー間の評 点を比較し、差異がある官能評価用語については属性情報か ら考察を行った。

2-1. 官能評価用語の選定

シティ車のメインターゲットである女性ユーザーと電動アシ スト自転車の設計・開発部門からヒアリングを行い、サドルの乗 り心地に関連する官能評価用語を抽出した。抽出した用語を認 知・知覚モデルに基づき4階層に分類し、社内評価で重要視す る用語および回答容易性から19個に厳選した(表1)。本研究 では心地の良いサドルを作ることを目的としたため、総合感性 を "心地の良さ" とし、嗜好の違いを確認するため "好き-嫌い" の評価項目を加えた。

表1 官能評価用語

総合感性	心地よい		
松口窓住	好き		
	こぎやすさ		
	疲れ		
	安心感		
	好みの柔らかさ		
心理的反応	フィット感		
	どっしりと座れる		
	(安定感)		
	好みの位置に座		
	れるか		

	滑り		
複合感覚	圧迫感		
	ペダリングした時		
	の当たり		
	サドルの揺れ		
	座面の広さ		
	座面の凹か凸か		
単感覚	傾き		
平	衝擊吸収性		
	クッションの厚み		
	柔らかさ		

2-2. 物理量選定と計測

検証2において、感性価値の物理量による予測式を構築する ため、設計値に関係するサドル物理量の計測を行った。設計部 門からのヒアリングによりサドルの設計可能変数を定義し、物 理量の選定を行った。選定した物理量の計測のために類似す る試験規格 [4][5] を参考にして評価ジグの作成と試験条件を決 定した(表2、図1)。形状寸法は自転車への標準取り付け状態 (サドル上面が地面と平行な状態)を基準とし各寸法を算出し た(図2)。

表2 計測物理量詳細

物理量	単位	詳細
ASSY ばね定数(K ₂₀₀)	N/mm	サドル製品を押したときのばね定数 10Nと200N印加時の2点の変位からばね定数を算出
ASSY ばね定数(K ₃₀₀)	N/mm	サドル製品を押したときのばね定数 300N 印加時のばね定数を算出
クッションばね定数(<i>K</i> 。)	N/mm	クッション単独のばね定数(計算) $K_{200} & K_f \geq K_c \text{ の直列ばねとみなして算出} \\ \frac{1}{K_{200}} = \frac{1}{K_c} + \frac{1}{K_f}$
フレームばね定数(K _f)	N/mm	フレーム単独のばね定数(実測)
表皮摩擦係数	_	サドル表皮の静止摩擦係数
サドル寸法	_	設計可能変数から形状寸法を選定(図2)

図1 サドルばね定数説明

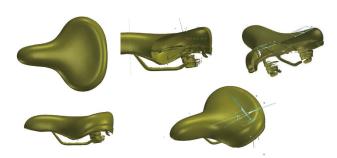
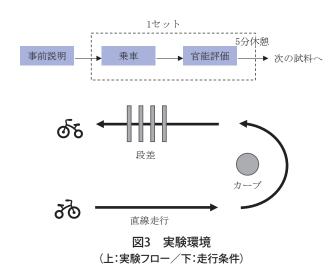


図2 サドル寸法計イメージ図


2-3. 官能評価

ユーザーおよび社内専門家を対象とした官能評価の概要を 示す。

2-3-1. 実験環境

被験者は普段から電動アシスト自転車を使用する成人女性 30名(Mean ± SD = 48.2 ± 7.7歳) および、社内専門家1名(男 性・40代)であった。実験プロトコルを図3に示す。実験参加者 は電動アシスト自転車に乗車し、直線、カーブ、段差乗り越えの 条件で走行し、その後、サドルに対する官能評価を行った。官能 評価用語は2-1の19項目とし、官能評価方法は5段階評価の SD 法とした。5種のサドルに対して同様の評価を行い、合計5 回の走行を行った。試料の評価順番は5パターンを用意し、被 験者ごと評価順番が偏らない様に配慮した。最後に5つのサド ルの好き嫌いについて順位をつけてもらった。

また、嗜好性に影響があると想定された普段の運動習慣や 走行環境や時間などについてもアンケートを行った。

2-3-2. 実験試料

実験試料として、5つの特性の異なる市販サドル(図4)を用 意した。物理量計測の結果を表3に示す。試料Pの物理量を1 とした時の他の試料の物理量を表している。

社内専門家評価では官能評価用語と設計値の予測式を構 築するため、実験試料は7つとした。

実験試料例

表3 実験試料の物理量

試料	P	Q	R	S	Т
ASSY ばね定数(<i>K</i> ₂₀₀)	1	0.67	0.89	0.55	0.92
フレームばね定数(<i>K_f</i>)	1	0.21	0.32	0.31	0.68
クッションばね定数(<i>K</i> _c)	1	0.97	1.20	0.63	0.97
着座部前後傾斜	1	0.28	0.55	0.19	0.74
摩擦係数	1	1.86	1.78	1.80	1.85
着座部面積	1	1.16	1.03	1.27	1.18

2-3-3. 臀部の体圧分布計測

官能評価試験とは別に、すべてのユーザーに対して同じ試料 に対して着座した際の体圧分布を計測した。使用したセンサは novel 社製 pliance である。計測時に走行は行わず、車体を固 定した状態で乗車を行い、ペダリング動作と静止状態で計測を 行った。

2-4. 検証1. 嗜好の違いの確認

田中ら [3] の研究では、飲料缶の "開けやすさ" について、感 性評価構造の構築を行っている。その際、"開けやすさ" に対す る嗜好の個人差を層別している。本稿でも同様の手法で乗り心 地の好みについて、層別を行った。

官能評価用語の "好き" の官能評点(以下評点)でクラスター 分析を行った。"好き"の評点に対して、二重中心化を行い、主 成分分析を行った。得られた主成分得点にクラスター分析 (Ward 法)を適応し、被験者を嗜好別に分類した。次に各クラ スターに対して、4階層に分けた官能評価用語の評点を用いて、 各階層間で重回帰分析を実施した。具体的には "総合感性" を 目的変数、"心理的反応"を説明変数として回帰式を構築した。

次に説明変数として残った"心理的反応"に属する官能評価用 語を目的変数、"単感覚"と"複合感覚"を説明変数として回帰 式を構築した。回帰式構築時には P 値が5%を下回る説明変 数のみ採用した。抽出された目的変数および説明変数を "乗り 心地の良さ"を構成する感性評価構造とした。

2-5. 検証2. 感性価値に影響を与える要因分析

要因分析に先立って、感性価値の物理予測式の構築を行っ た。この時、社内専門家は物理量の変化を正確に官能評価の 変化としてとらえられることから、彼らの評価結果を用いて、"単 感覚"と"複合感覚"に分類される官能評価用語の評点の物理 予測式を構築した。

手法としては官能評点を目的変数、物理量を説明変数として 重回帰分析による予測式の作成を行った。この時、多重共線性 を排除すべく、VIF値が10以下になるように説明変数を選定し た。また重回帰分析では予測精度が悪かった、もしくは重回帰 分析で得られた説明変数では整合性ある説明ができない官能 評価語については、評価コメント・体圧分布などから現象の仮 説を立てて予測式を作成した。

結果と考察

3-1. 検証1 結果. 嗜好の違いの確認

図5にクラスター分析で得られたデンドログラムを示す。本研 究では図5中の横線(a)の位置クラスターを3つに分けた(クラ $X_{9}-1:N = 10 \ D_{7}X_{9}-2:N = 14, D_{7}X_{9}-3:N = 6$ 各クラスターの "好き" の評点の平均値を比較すると Q と S に 対する評価がクラスター間で異なることが分かった(図6)。〇に 対して、クラスター1と2は評点4.2と評点4の高評価だが、クラ スター3は1.7の低評価傾向である。Sに対してはクラスター2と 3は4.6と4.3の高評価傾向だが、クラスター1は2.2と低評価傾 向となった。

次に各クラスターの感性評価構造を構築した結果を図7に 示す。重回帰分析におけるすべての決定係数 R^2 は0.57以上で あった。3つのクラスターの感性評価構造を見てわかるようにク ラスターごとに "心地よさ" と紐づく評価語が異なることが分 かった。特にクラスター1は他のクラスターに比べ、"柔らかさ" や "広さ" が "心地よさ" に影響しない傾向がみられた。

これらの結果からサドルには嗜好の違いがあり、クラスター ごとに重要視するサドルの感性価値が異なることが分かった。

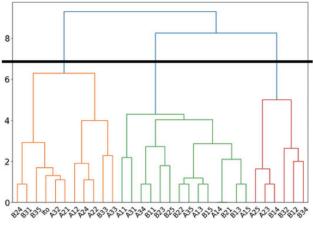


図5 デンドログラム (横軸:被験者の ID)

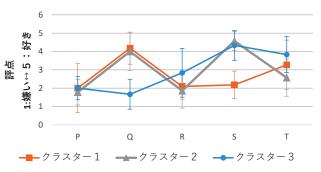
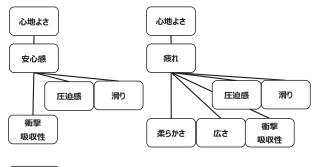


図6 各クラスターの "好き" の評点



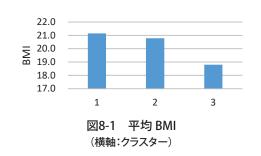


図7 各クラスターの感性評価構造 (左上:クラスター1、右上:クラスター2、左下:クラスター3)

3-2. 検証1 考察. 嗜好の違いの背景要因

クラスターが分かれた要因を考察するため、ユーザーの属性 情報を比較した。その結果、クラスター間で BMI(図8-1)、運動 習慣(図8-2)、走行環境(図8-3)に違いがある可能性が示唆さ れた。また、ペダリング時の重心位置に差があり、クラスター1は 他のクラスターよりも重心が前寄りの傾向が見られた(図9)。こ れらの結果より、各クラスターの特徴について下記に示す仮説 を構築した。クラスター1は普段から坂道走行が多いため、着 座位置が前方、運動習慣があり比較的足をよく動かすためサド ルは動作性を重視する。そのため、ペダリングの邪魔になりや すい座面の広いSは低評価になった可能性がある。クラスター 2は多数派であり、クラスター1に比べて、平坦路をゆったりと走 行するため、着座面積が広く・柔らかなQやSを好んだ可能性 がある。クラスター3は痩せ型であり、体重が軽いことから、フ レームのバネが柔らかいQよりもクッションの柔らかいSを好 んだ可能性がある。

以上の結果仮説から、嗜好が3つのクラスターに分かれた要 因として、BMI、走行環境、運動習慣、乗車位置の影響が示唆さ れた。

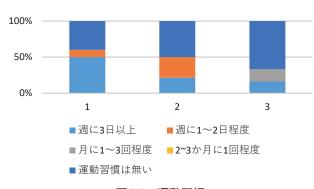


図8-2 運動習慣

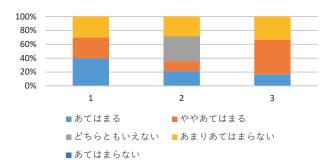


図8-3 走行環境(普段の走行環境が坂道か)

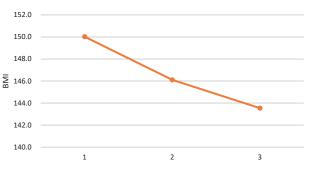


図9 ペダリング時の平均重心位置 (サドル後方からの距離)

3-3. 検証2 結果. 感性価値の物理予測式構築

検証2では3-1で構築したクラスター1と2の感性評価構造に 現れる"単感覚" "複合感覚" についてのみ予測式の構築を行っ た。具体的には "柔らかさ" "衝撃吸収性" "広さ" "滑り" "圧迫 感"の5つである。

官能評価によって得られた評点と物理量の関係式を重回帰 分析によって求めた。その結果 "柔らかさ" では以下の回帰式 (1)が得られ、その時の予測式と実測式の関係を図10に示す。

柔らかさ= $\alpha \times ASSY$ ばね定数 K_{200} + $\beta \times 着座部面積+ \gamma$ $\cdots (1)$ $R^2 = 0.98$

 $(\alpha, \beta, \gamma = 定数)$

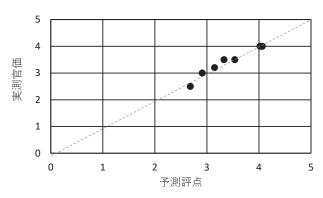


図10 重回帰分析による予測と実測評点の比較(柔らかさ)

Kansei Design Technology to Design a Comfortable "PAS" Saddle

また、"衝撃吸収性" については以下の回帰式(2)が得られた。

衝撃吸収性= $\delta \times ASSY$ ばね定数 $K_{300} + \varepsilon \times \hat{A}$ 座部面積 + ζ (2)

 $R^2 = 0.96$

 $(\delta, \varepsilon, \zeta = 定数)$

この時、ASSY ばね定数 K_{300} は300N 負荷時の ASSY ばね定数である(表2参照)。ここで、300N は段差を乗り上げた際にサドルにかかる荷重を計測した値である。

先行研究によれば、人は柔らかさを判断する際にヤング率と全体剛性の両方で判断していることが知られている $^{[6]}$ 。このことから、クッションばね K_c (=ヤング率)とフレームばね K_f (=全体剛性)の要素を包括している ASSY ばね定数 K_{200} がサドルの柔らかさを表現するのに適していたと考えられる。

一方、"広さ" "滑り" "圧迫感" については重回帰分析の決定 係数 R²が低かったため、乗車コメントや体圧分布より現象の仮 説を立て、それに基づいて予測式を作成した。例えば、圧迫感 については、専門家評価では恥骨部から前方にかけて圧迫感 が強くあるとコメントがあり、該当部位の面圧と評点の相関が 高かった。そのため、着座時に前方へ滑ることによって恥骨部 への圧力が高くなるという仮説から図11に示す物理モデルを 構築し予測式(3)を作成した。具体的には着座時のサドルの傾 斜角度 (θ) をサドル着座部傾斜 (θ) と着座時のフレームの 傾き(θ2)の差分から算出し、そのときに発生する前方へ滑ら せようとする力(前滑り力)と、着座時に臀部に発生する表皮と の摩擦力に起因する滑らせない力(抵抗力)の差分によって圧 迫感が発生するというモデルを作り、係数フィッティングにより 予測式を作成した、その時の予測式と実測式の関係を図12に 示す。"滑り"と"広さ"についても同様にコメントや体圧分布よ り仮説を立て、それに基づいて予測式の作成を行った。

圧迫感=

着座時臀部荷重[N]×着座時角度 $(\sin\theta)$ ×係数-抵抗力[N] …(3)

 $**\theta = \theta_1 - \theta_2$ $\theta_1 =$ サドル取り付け時の着座部のサドルの傾斜角 $\theta_2 =$ 人着座時のボトムの傾斜

図11 傾斜角度(01,2)定義イメージ図

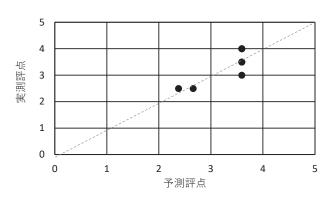


図12 予測評点と実測評点の比較(圧迫感)

3-4. 検証2 考察. 感性価値に影響を与える要因分析 3-4-1. 社内専門家とユーザーの比較による要因分析

3-3で作成した予測評点と2-2の官能評価でのユーザー評点 (N=30の平均)の相関係数を算出したところ、"柔らかさ"、"衝撃吸収性"、"広さ" "滑り" については、それぞれ、0.92、0.98、0.88、0.72と比較的良好な値が得られたが、"圧迫感" については0.34と低い値となった(図13)。

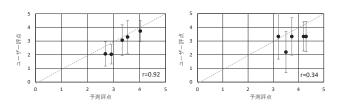
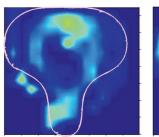
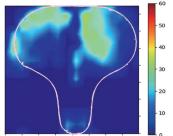


図13 ユーザー評点と予測評点の比較 (左:柔らかさ、右:圧迫感)

この原因を究明するために、各被験者が着座した際の体圧 分布に注目した。以下に、社内専門家(男性)と体格が近い女性 ユーザー(被験者 A)が同じサドル(サドル P)に着座したときの 体圧分布を示す(図14)。この図では、計測した体圧分布のう ち、サドル上に発生した圧力のみ抽出し実際のサドルの外形状 に投影している。圧力単位は [kPa] であり、赤くなるほど圧力が 高いことを示している。

図14 着座時の臀部体圧分布比較(サドル P) 左:社内専門家 右:被験者 A

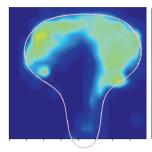

結果として、専門家は恥骨部(図中破線)から前方にかけて 局所的な圧力が出ているのに対し、被験者 A では同様の部位 で局所的な圧力は確認されなかった。評価コメントでも、専門 家は恥骨から前方への当たりに言及していたが、被験者Aで は該当部位での当たりのコメントは確認されなかった。これは 男女の性差による身体的特徴に起因するものと考えられる。

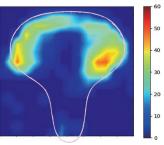

したがって、サドル設計においては性差が影響する官能評価 用語を明確にし、その官能評価用語については性別による予 測式の変更が必要である。

3-4-2. ユーザー間の比較による要因分析

次に、ユーザー間のばらつきについて考察を行った。本報で は3-4-1でユーザーと専門家評点に顕著な差がみられた "圧迫 感"の解析結果を示す。解析の結果、"圧迫感"の評価に影響を 与える主要因として、"体格"、"着座位置"、"許容圧力" の3つが あることが分かった。以下に詳細を述べる。

最初に"着座位置"の影響について述べる。以下にクラス ター2に属しており体格が近い二人が同じサドル(サドル T)に 着座した際の体圧分布を示す(図15)。具体的には、身長 157cm、体重56kg(被験者B)と、身長153cm、体重55kg(被 験者 C)である。





着座時の臀部体圧分布(サドルT) 図15 (左:被験者 B、右:被験者 C)

図15より被験者 B は比較的前方に着座し、後端部にはほと んど圧力がかかっていない。一方、被験者 C は比較的後方に 着座し、後端部に圧力がかかっていることがわかる。この時、被 験者Bはもも裏への圧迫感を、被験者Cは後端部への圧迫感 について言及している。つまり類似した体格であっても着座位 置が異なり、それによって圧迫感を覚える場所が異なることが 分かる。

次に "体格" の影響について述べる。着座位置が近く、体格 (主に体重)が異なる2名の被験者が同じサドル(サドルP)に着 座した際の体圧分布を示す(図16)。具体的には、身長156cm、 体重69kg、BMI28 (被験者 D)と、身長171cm、体重57kg、 BMI20(被験者 E)である。

着座時の臀部体圧分布(サドル P) (左:被験者 D、右:被験者 E)

図16より被験者 D は臀部全体に圧力がかかっているが、被 験者Eは座骨部に局所的な圧力が発生していることが分かる。 この時、被験者Dは圧迫感についての言及はなく、被験者Eは 座骨部の圧迫感について言及していた。つまり、体格の差によっ ても圧迫感を覚える場所が異なることが分かる。

最後に"許容圧力"について述べる。横軸に圧迫感の評点 (座骨部に対する圧迫感。評点が低いと圧迫感がある)を、縦軸 に該当部位の最大圧力をプロットした結果を示す(図17)。

●が圧迫感を感じた人、○が感じていない人を示している。

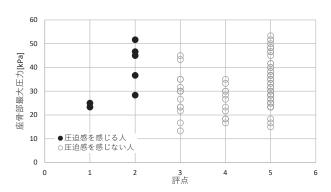


図17 座骨最大圧力と圧迫感の評点の関係性

図から、"圧力が高くて評点が低い=座骨の最大圧力が高く それを不快に感じている人"、"圧力が高くて評点が高い=座 骨の最大圧力が高いが圧迫感を感じない人"がいることがわ かる。このように最大圧力と圧迫感に明確な相関性がみられな い理由としては、圧迫感に対して最大圧力以外の因子も影響し ていることや人による圧力の感じ方に違いがあったことが考え られる。これらについては先行研究^[7]でも同様なことが示唆さ れている。

以上より、感性価値の予測式精度向上のためには、着座位置 に影響を及ぼす身体情報(腕、足の長さなど)、および体圧分布 に影響を及ぼす体格情報を明らかにして、人の属性情報から 着座時の体圧分布を予測する技術と、人が不快に感じる圧力 閾値(=許容圧力)を予測する技術が必要になる。

前者は FEM などのシミュレーション技術を用いることで、後 者は人に対する圧迫感 - 圧力の計測数を増やし、累積確率密 度などの統計的手法などを用いることで、対策が可能であると 考えられる。

結論と課題

本稿では電動アシスト自転車(シティ車)のサドルを対象と し、設計値から嗜好に合わせた感性価値を予測するために、嗜 好の違いの要因分析と、感性価値に影響を与える要因分析を 試みた。

2つの検証から以下の結果を得た。

(1)検証1 嗜好の違いの要因

サドルに対して乗り心地の嗜好性があり、嗜好ごとに重要視 する感性価値が異なることが分かった。嗜好で分けたクラス ター間には BMI、走行環境、運動習慣の違いがあることが示唆 された。

(2)検証2 感性価値に影響を与える要因

専門家評点とサドル物理量を用いて感性価値の物理予測式 を構築した。予測評点とユーザーの評点の差が大きかった "圧 迫感"においては、"性差"、"乗車位置"、"体格"、"許容圧力"の4 つの要因が評価結果に影響を与えることが示唆された。

これらの知見を生かして開発されたサドルが現在市販されて おり、微力ではあるが製品開発に貢献することができた。

今後は、狙ったユーザーに対し感性価値を高める技術の構 築を目指す。そのために、嗜好の違いと感性価値の違いを生む 要因の検証を行い、予測式に組み込むユーザー属性を検討す る。これにより、嗜好を考慮した感性価値を予測できる技術の 獲得を目指していく。

■謝辞

本研究にあたり、貴重なご指導をいただいた静岡大学学術 院情報学領域の梶原千里准教授に改めて深謝の意を表しま す。

■参考文献

- [1] 高橋,中村,林「サドルの体圧分布に関する調査研究第2報」 自転車技術情報, 1984, No. 24, pp. 1-19
- [2] 棟近, 三輪「感性品質の調査に用いる評価用語選定の指針」 品質, Vol. 30, No. 4, pp. 96-108
- [3] 田中, 棟近「飲料缶に関する感性品質の評価方法」 日本品 質管理学会第64回研究発表要旨集, 2000, pp. 69-72
- [4] JASOB407-87 自動車用シートのクッション性試験方法

[5] JISD9313-7 自転車-第7部:座席装置の試験方法 [6] 岡本「触力学による柔らかさ・硬さ知覚」 システム制御情 報学会誌, 2020, Vol. 64, No. 4, pp. 121-125 [7] 眞谷, 加藤, 中村「圧力感度分布に基づく座り心地改善手

法」自技会春季大会学術講演予稿集, 2023, No. 126

■著者

丹羽 將勝 Masakatsu Niwa 技術•研究本部 技術開発統括部 先進プロダクト開発部

小関 泰子 Taiko Koseki 技術 · 研究本部 技術開発統括部 先進プロダクト開発部

小林 光司 Koji Kobayashi 技術 · 研究本部 技術開発統括部 先進プロダクト開発部

藤田 英之 Hideyuki Fujita 技術·研究本部 技術開発統括部 先進プロダクト開発部

古澤 隆志 Takashi Furusawa ランドモビリティ事業本部 SPV 事業部 第2開発部

中林 雄介 Yusuke Nakabayashi ランドモビリティ事業本部 SPV 事業部 第2開発部

伊藤 努 Tsutomu Ito ランドモビリティ事業本部 SPV 事業部 第2開発部

堀 啓― Keiichi Hori ランドモビリティ事業本部 SPV 事業部 第2開発部

芳賀 健太 Kenta Haga ランドモビリティ事業本部 SPV 事業部 第2開発部

技術論文

二輪車の操縦訓練方法に関する一検討

A Study on Motorcycle Riding Training

小島 儀隆 品川 晃徳

本稿は、一般財団法人 日本機械学会 第32回 交通・物流部門大会 (TRANSLOG2023) において「ポスターセッション優秀発表賞」を受賞した内容に基づくものであり、同会の許可を得て転載したものです。本論文の著作権は一般財団法人 日本機械学会に属し、無断複製・転載を禁じます。

要旨

二輪車の車両運動を解析する場合、必要な情報を直接計測し解析する手法が一般的であるが、センサの車載に工数を要する場合が多い。そこで、計測に工数をかけなくとも、必要最小限の情報から「走る・止まる・曲がる」の運動解析を間接的に可能とする手法を構築した。車載が容易な小型 GPS データロガーを用い、物体運動の基本である位置・速度を計測し、前後・横加速度を推定した。一例として、二輪車の操縦訓練に本手法を活用した。難易度を下げた単純な操作となる走行方法を導入した。指導員が行う技量判定の要素を明らかにする指標を設け、段階的に訓練を実施した。計測データを活用することで、被験者と指導員のコミュニケーションが充実し、訓練をより効果的にした取り組みの一事例について、紹介する。

Abstract

When analyzing the vehicle motion of a two-wheeled vehicle, there are general methods of directly measuring and analyzing necessary information available. But, it often requires man-hours to mount sensors on the vehicle. Therefore, we have created a method that indirectly enables the motion analysis of "driving, stopping, and turning" from the minimum necessary information without the need for spending man-hours on the measurement itself. Using a small GPS data logger that can be easily mounted on a vehicle, the position and velocity, which are the basics of object motion, can be measured, and the longitudinal and lateral acceleration can be estimated. As an example, this method was applied to motorcycle riding training. A riding method that reduces the level of difficulty and makes more simpler to operate was introduced. Indicators were set to clarify the elements that instructors use to judge skill, and training was carried out in stages. This article introduces one example of an initiative in which the use of measurement data improved communication between the rider and the instructor, making training more effective.

1

はじめに

二輪車の車両運動を解析する場合、必要な情報を直接計測 し解析する手法が一般的であるが、センサの車載に工数を要 する場合が多い^[1]。そこで、計測に工数をかけなくとも、必要最 小限の情報から「走る・止まる・曲がる」の運動解析を間接的に 可能とする手法を構築した^[2]。

車載が容易な小型 GPS データロガーを用い、物体運動の基本である位置・速度を計測し、前後・横加速度を推定した。一例として、二輪車の操縦訓練に本手法を活用した。

難易度を下げた単純な操作となる走行方法を導入した。指導員が行う技量判定の要素を明らかにする指標を設け、段階的に訓練を実施した。

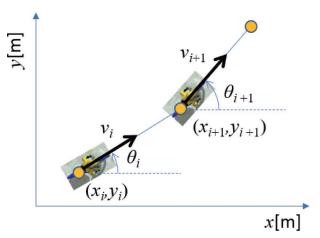
2 車両運動の簡易計測システム

小型 GPS データロガーを用い、物体運動の基本である位置・速度を計測し、前後・横加速度を推定する。二輪車やライダーの複雑な運動をひとまとめにして、図1のように俯瞰的に見た一つの点の2次元的な動きとして考える。図2に示す小型 GPS データロガーは、位置・速度が計測可能で、車載も容易であるが、加速度センサは内蔵されていない。そこで、サンプリング時間 Δt [s]、位置 x, y[m]、速度 v[m/s]、位置の変化により算出される方位角 θ [rad] から、以下の式を用いて、前後加速度 a_{LON} [m/s²] と横加速度 a_{LAT} [m/s²] を算出した。

$$\Delta \theta = \tan^{-1} \left(\Delta v \div \Delta x \right) \tag{1}$$

$$a_{\text{LON}} = \Delta v \div \Delta t$$
 (2)

$$a_{\text{LAT}} = \Delta \theta \div \Delta t \times v$$
 (3)



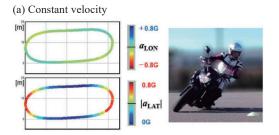

図1 GPS ロガーによる位置と速度の計測

図2 小型 GPS ロガー

二輪車の運転特性

GPS ロガーにて位置・速度を計測、前後・横加速度を推定す る手法を構築した。一例として、二輪車の操縦訓練に本手法を 活用し、有効性について検証する。運転特性の抽出を容易にす るため、ライン取りの影響が大きい複合的なコース形状や、難 易度の高い極端な小旋回は避け、走行が容易と考える旋回半 径6m、直線距離30mの左回りオーバルコースを走路として工 学的に設定した。車両は排気量600cm3の大型車を使用し、使 用するギアは2速とした。次に、コース走行時の教示方法につい て検討する。1セット目は一定速度での走行とし、「曲がる」の運 転特性を抽出する。2セット目は、直線路で加減速操作を行う。 運転特性の差が出にくいコース設定と想定していたが、指導員 と被験者の差が顕著に表れた(図3~5)。その結果、ライダー被 験者の「走る・止まる・曲がる」の運転特性を、定性的に抽出で きた。

(b) Acceleration and deceleration

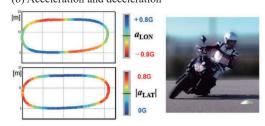
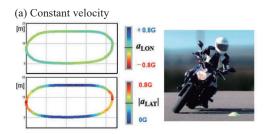



図3 指導員の運転特性

(b) Acceleration and deceleration

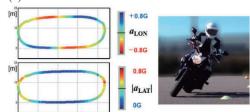
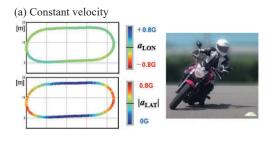
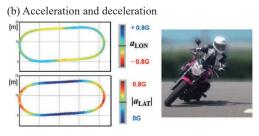




図4 被験者の運転特性(訓練前)

被験者の運転特性(訓練後)

二輪車の運転熟練度

二輪車の実験開発業務において、確実な開発品質を導出す る為には、適切な運転操作での仕様間比較試験が必須となる。 従って、操作の絶対値よりも、偏差が小さいことが非常に重要 な要素となる。本論文では、再現性に着目した運転技術を「運 転熟練度 |と称し、「熟練度=最大値+偏差小」と定義、指標化 を試みた。特に、訓練前後での成長度をよりわかりやすく表し たい。様々なライダーの乗車姿勢の画像から、車両を傾ける技 術に熟練度の差の一部が現れていた。今回は、R=6m 固定の ため、計測データの一つである「車速」に注目した。旋回中の最 低車速を抽出(N=5)し、棒グラフで表した(図6~8)。最大値 と偏差(=最大値-最小値)、加減速有無の影響が読み取れる。 これにより、「熟練度=最大値+偏差小」の一部を指標化でき る可能性を示すことができた。

Velocity at corner [km/h]

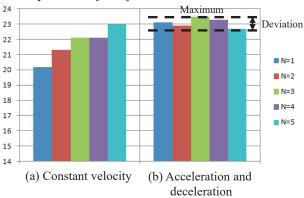


図6 指導員の運転熟練度

Velocity at corner [km/h]

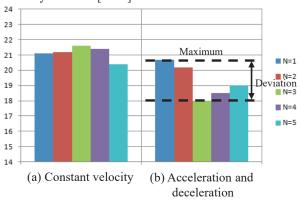
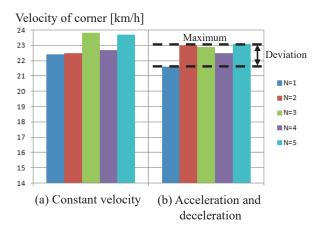



図7 被験者の運転熟練度(訓練前)

被験者の運転熟練度(訓練後)

訓練方法の事例紹介

計測データから抽出した「走る・止まる・曲がる」の「運転特 性」と、「旋回中の最低車速の最大値と偏差」に着目し、再現性 の高い操縦技術を指標化した「運転熟練度」を用いた、訓練方 法の一事例を紹介する。

5-1.「運転特性」と「運転熟練度」

図4より、この被験者の「運転特性」は、一定速走行の旋回速 度が低く、旋回中の乗車姿勢はリーンウイズであった。加減速 操作を加えた走行では、一定速度での走行よりも旋回速度が低 く、旋回中の乗車姿勢はリーンアウトになっていることがわかっ た。図7より、この被験者の「運転熟練度」は、一定速走行での旋 回速度が低めであるものの、速度の偏差は少ない。加減速操作 を加えた走行では、一定速度での走行よりも旋回速度が低くな り、速度の偏差が大きいことがわかった。

5-2. 訓練目標の設定

次に、被験者が自ら、抽出した現状の「運転特性」と「運転熟 練度」を考察して現状を把握した。そして、自身が目指す成長の 方向や訓練の目標を検討して、「旋回速度を高めたい」ことを目 標として自己申告した。被験者と指導員が面談しコミュニケー ションを深め、現状と目指す方向を共有した。旋回速度を高め るためには、車両を傾斜させなければならないことを相互に理 解した。目標とする旋回速度に見合った車両傾斜角と乗車姿勢 の両方が改善した「運転特性」と「運転熟練度」の習得を訓練目 標として設定した。

5-3. 訓練方法の検討と実施

指導員は、被験者の自己申告と現状から訓練方法を検討し た。この被験者は、車両を傾斜させることに課題を感じており、 基礎訓練が必要であった。旋回半径6mの定常円旋回コース を設定し、速度と傾斜の関係を習得する訓練を行った。走行方 法を教示し、走行ライン・車両傾斜角・乗車姿勢を観察して、常 にコミュニケーションを取り、反復訓練で理解を深めて段階的 に習得した。訓練後の傾斜角の増加に伴い乗車姿勢がリーン アウトになっていた。適切な乗車姿勢を習得するために、指導 員と二名乗車で訓練を行った。被験者は後部座席で深い車両 傾斜角を体験しながら、運転する指導員の乗車姿勢を見本に してリーンウイズを学んだ。その後、被験者が自ら走行して反復 訓練しリーンウイズを習得した。

5-4. 訓練成果

この被験者の訓練成果を、訓練後に実施したオーバルコー ス走行での「運転特性」と「運転熟練度」を用いて示す。図5より、 「運転特性」は、一定速走行の旋回速度が高く、旋回中の乗車 姿勢は美しいリーンウイズであった。加減速操作を加えた走行 では、旋回速度が高く一定速度での走行と同等であった。旋回 中の乗車姿勢は一定速度での走行と同様の美しいリーンウイ ズであることがわかった。訓練前に対し、明らかに「運転特性」 が改善していた。図8より、「運転熟練度」は、一定速走行の旋回 速度の最大値が向上していた。全体的な偏差はあるものの、訓 練前に対し最大値が高い方向の偏差であり、N=5中N=3で 偏差が極めて少なかった。加減速操作を加えた走行でも、一定 速度での走行と同等に旋回速度の最大値が向上していた。全 体的な偏差も少なく、N=5中 N=4で偏差が少なかった。訓練 前に対し、明らかに「運転熟練度」が向上していた。

5-5. 訓練の総括

二輪車の運転「走る・止まる・曲がる」を可視化する「運転特 性」と、再現性の高い操縦技術を「運転熟練度」として指標化 し、現状を明らかにすることができた。二輪車の操縦訓練に運 用することで、被験者と指導員が現状と目標を具体的に共有す ることができた。被験者と指導員のコミュニケーションが充実 し、段階的な訓練を実現した。その結果、効果的に被験者の操 縦技術を向上することができた。

6

まとめ

計測に工数をかけなくとも、必要最小限の情報から「走る・止 まる・曲がる」の運動解析を間接的に可能とする手法を構築し た。車載が容易な小型 GPS データロガーを用い、物体運動の 基本である位置・速度を計測し、前後・横加速度を推定した。一 例として、二輪車の操縦訓練に本手法を活用した。難易度を下 げた単純な操作となる走行方法を導入した。指導員が行う技 量判定の要素を明らかにする指標を設け、段階的に訓練を実 施した。計測データを活用することで、被験者と指導員のコミュ ニケーションが充実し、訓練がより効果的となる可能性を示す ことができた。

■参考文献

[1] 藤井茂, 塩澤総一, 品川晃徳, 岸知昭, "二輪車の操縦特性 調査",ヤマハ発動機技報, No. 45(2009), pp. 2-13. [2] 品川晃徳、小林寛、小島儀隆、"二輪車・車両運動の簡易的 な計測・解析技術の開発と活用",ヤマハ発動機技報, No. 56 (2021), pp. 131-136.

■著者

小島 儀隆 Yoshitaka Kojima 技術·研究本部 技術開発統括部 制御システム開発部

品川 晃徳 Akinori Shinagawa 技術 • 研究本部 技術開発統括部 制御システム開発部

技術論文

感情状態の変化が感動の喚起に及ぼす影響

Kando could be evoked by a transition in emotional state

檜垣 秀一 栗本 佳祐 新田 吾一 水口 暢章 菅 唯志 末神 翔

要旨

本研究は感動喚起のために感情状態の変化が重要であるかを明らかにするため、感情を惹起させる2つの異なる画像を継時 呈示して生み出した感情状態の差が感動の喚起に及ぼす影響を検討した。実験の結果、覚醒度が高まると感動が喚起されたこと から、感情状態の変化が感動の喚起に必要であることが示唆された。

Abstract

This study examined the effect of transition in emotion on 'Kando.' Two different pictures were used to evoke emotion (s), and the participants rated the second picture using the Kando Reaction Scale. The results showed that the transition between emotions, rather than a single emotion, could evoke Kando.

はじめに

ヤマハ発動機(以降、当社とする)は企業目的に "感動創造 企業"を掲げている。感動は多くの人が体験したことのある現 象にもかかわらず、感動が喚起されるメカニズムやその効果に ついては科学的に不明な点が多く、その学術的定義も不明瞭 なのが現状である。当社は立命館大学と "感動(KANDO)を科 学する"と題した共同研究を2022年から2024年にかけて実 施した。その一環として Yasuda et al.[1] は感動の性質を明ら かにするための調査研究を実施し、感動は関連する現象(例え ば英語で "心を動かされる" を意味する "being moved" や、サン スクリット語で "愛によって心を動かされる" を意味する "kama muta" など)を包摂する概念であるとした。さらに、感動体験を 調査するための感動尺度を開発した [2]。感動に関する先行研 究としては他に、Tokaji [3] が感動の構造モデルを提案している。 感動の構造モデルによると、感動は事象や結果に対する期待 感と、終結した事象に対する評価が行われることで喚起される。 Tokaji の実験では、悲しみを伴う経験でも、その経験に対する 最終的な評価が良いものであった場合、感動が喚起されること が示された。ただし、彼らの実験では事象に対する悲しみの有 無のみが条件となっており、事象や結果に対する期待感と、終 結した事象に対する評価との間でどのような感情の変化が生じ たかについては言及されていない。また Tokaji は、感動は、低 次の情動ではなく、より高次の認知的プロセスによって喚起さ れると述べているが、その実験的検証は行われていない。そこ で本研究では、感動の喚起において感情状態の変化がおよぼ す影響を実験的に検討することを目的とする。

実験方法

感動の喚起における感情状態の変化の影響を検討するた め、異なる2つの画像を継時呈示する実験を実施した。具体的 には、特定の感情を惹起させる画像(以降、標的画像とする)に 対して感動尺度による評定を行う際、直前に標的画像と同じ感 情、または、標的画像と異なる感情を惹起させる画像(以降、先 行画像とする)を呈示し、先行画像と標的画像が惹起させる感 情の違いが標的画像に対する感動尺度評定値に及ぼす影響 を検討した。

2-1. 画像選定のための予備実験

本研究で使用した先行画像および標的画像はいずれも、 OASIS と呼ばれる画像データベースから選定した [4]。OASIS は 感情価および覚醒度が7段階のリッカート尺度(回答者が設問 に対してどの程度同意するかを評価するための尺度)によって 評価された "動物" "物体" "人物" "風景" の4カテゴリで構成さ れる900枚の画像からなるデータベースである。ただし、OASIS が作成された米国と、本研究が実施された日本との宗教的・文 化的背景の違いによる影響を考慮し、本研究では "風景" カテ ゴリに属する画像のみを用いた。本実験で使用する画像の選 定においては、まず、1から7までの値を取る感情価と覚醒度の 二軸が各軸の中間点で交差する二次元座標を作成した(図1。 以降、画像評価座標とする)。なお、感情価と覚醒度とは Russell^[5] が提唱した感情状態を表現するための次元で、それ ぞれ快一不快、および、覚醒一沈静で構成される。その上で、先 行研究 [4] で得られた感情価と覚醒度に基づいて各風景画像 を画像評価座標に配置し、各象限から11枚ずつ画像を選定し た。

操作チェックとして、選定した画像の感情価および覚醒度を

評価する予備実験を実施した。予備実験では当社社員99名 (男性88名、女性11名。平均年齢41.6歳、標準偏差10.7)を対 象としたオンライン質問紙によって、上記方法で選定された44 枚の画像に対して感情価または覚醒度のいずれかが評価され た。感情価または覚醒度の評価には、先行研究と同様に7段階 リッカート尺度が用いられた。同一参加者が感情価と覚醒度の 両方を評価すると、一方の評価が他方の評価に影響を及ぼす 可能性があるため、実験参加者のうち無作為に抽出された49 名は感情価の評価のみ、残りの50名は覚醒度の評価のみを 行った。

予備実験の結果、感情価および覚醒度の評価平均の95%信 頼区間の上下限値のいずれかが想定した象限内にある画像の うち、各軸の中間点である4との差の絶対値が大きいものから 順に8枚ずつを象限ごとに選定し、計32枚を本実験で使用する 画像として選定した。

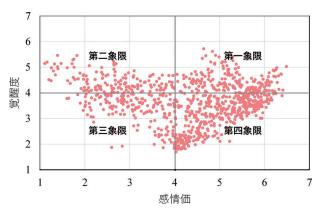


図1 OASIS 画像群と象限定義 各点が1枚の画像を示す。

2-2. 本実験

2-2-1. 感情価•覚醒度評価実験

予備実験で選定した4象限8枚ずつ計32枚について、全ての 画像が等しく標的画像および先行画像にそれぞれ4回ずつ使 用されるように、本実験で使用される標的画像と先行画像のペ アを作成した。具体的には、各象限8枚ずつの画像をそれぞれ 4群に分け、各群に異なる象限の画像2枚ずつを先行画像とし て割り当てることで、4つの象限に属する先行画像が各2枚ずつ 計8ペア作成された。さらに、このように作成された計128ペア を、標的画像が属する象限、および、各標的画像とペアとなる先 行画像が属する象限の比率を維持しつつ、同じペアを含まな い8通りの画像セットを作成した(図2)。

本実験には、予備実験に参加していない当社社員118名(男 性103名、女性15名。平均年齢38.0歳、標準偏差11.0)が参加 した。一方の評価が他方の評価に影響を及ぼす可能性がある ため、予備実験と同様に実験参加者のうち無作為に抽出された 59名は感情価の評価のみ、残りの59名は覚醒度の評価のみ を行った。実験実施の前に別室にて本実験の目的、リスク、実験 手順を説明し、インフォームドコンセントを実施した後、実験室 に移動した。実験室では最大5名が同時に実験に参加した。た だし、各参加者が互いに見えない位置に着座した上で参加者 間に仕切り板を設置し、他の参加者の存在が実験に影響しな いよう配慮した。

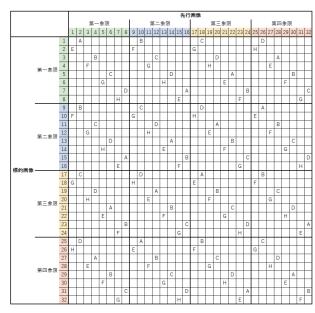


図2 画像セット表 アルファベットは各画像セット、数字は各画像を示す。

実験ではまず練習課題として、先行画像を評価する練習試 行、および、標的画像を評価する練習試行を、それぞれ各参加 者が任意の回数繰り返して練習できるようにした。その後、感情 価または覚醒度評価に対する教示を表示した。教示は OASIS 画像評価に用いられた文章を日本語に訳したものを使用し、1) 画像の評価には良否がないこと、2)回答に長い時間をかけな いこと、3)感情価については画像に対するイメージの良し悪し によって評価すること、4)覚醒度についてはイメージの良し悪 しにかかわらず生起した感情の強さを評価することを、文章で 説明した。各参加者には感情価または覚醒度のどちらかを評価 する課題が割り当てられた。課題の割り当ては参加者間で疑似 ランダム化された。評価時の画面構成は先行研究 [4] と同様と し、画像ペアの呈示順は疑似ランダム化された。

本実験では先行画像が惹起した感情状態が標的画像の感 情価または覚醒度に及ぼす影響を検討した。よって、先行画像 の呈示も標的画像と同様に実験参加者の感情状態に影響した ことが重要である。そのため本実験では、標的画像への感情価

Kando could be evoked by a transition in emotional state

または覚醒度評価の中に、先行画像に対する感情価または覚 醒度評価を課すダミー課題を織り交ぜた。ダミー課題には、予 備実験による画像選定で採用されなかった画像が用いられ、 各画像セットについて6試行用意された。ダミー試行は本実験 の途中にランダムなタイミングで挿入された。

各参加者には8通りの画像セットのいずれかが割り当てられ た。各試行ではまず先行画像が4,000ms 呈示され、先行画像 の消失と同時に標的画像が呈示された。標的画像の呈示開始 から4,000ms後、標的画像の感情価または覚醒度の評価のた めの7段階リッカート尺度が画面に呈示された。標的画像の感 情価または覚醒度に対する評価の取得後、標的画像と7段階 リッカート尺度の消失とともに、標的画像が次の先行画像に及 ぼす影響を減らすためにランダムドットパタンが1,000ms 呈示 された。その後、次試行が開始された。ダミー課題6試行を含め た計22試行の実施をもって感情価・覚醒度評価実験を終了し、 各参加者は任意に休憩を取ることができた。各参加者は任意 のタイミングで次の感動尺度評価実験に移行した。

2-2-2. 感動尺度評価実験

標的画像に対して感動尺度による評価を行う課題を、感情 価・覚醒度評価実験に参加した118名が同日に行った。なお、 感動尺度評価実験は感情価・覚醒度評価実験の後に実施した。

課題ではまず教示として、標的画像を見たときに感じた印象 について、感動尺度の43項目の各質問に対してどの程度当て はまるかを、7段階で回答するよう文章で説明した。先行研究で は、ネガティブな過程を経ることはあっても、最終的には対象と なる事象に価値を見いだしてポジティブな経験となった場合に 感動が喚起されることが示唆されているため [6]、半数の参加者 では第一象限(感情価が"快"、覚醒度が"覚醒")に属する画像、 残りの半数の参加者では第四象限(感情価が"快"、覚醒度が "鎮静")に属する画像が、それぞれ標的画像として呈示された。 参加者は、第一象限または第四象限のいずれかに属する標的 画像が含まれる4組のペアに対し、感動尺度の各項目について 評価した。なお、各参加者が評価した4ペアの標的画像は異な る画像であり、各標的画像にペアとして組み合わされた先行画 像は第一象限から第四象限の画像が1枚ずつ用いられた。

各試行ではまず先行画像が4.000ms呈示され、先行画像の 消失と同時に標的画像が呈示された。その後、標的画像につい て、感動尺度の43項目を1項目ずつ順に7段階リッカート尺度 で評価した。標的画像は感動尺度の全43項目について評価が 終了するまで呈示された。感動尺度の評価の終了をもって、標 的画像と7段階リッカート尺度が消失すると同時に、標的画像 が次の先行画像に及ぼす影響を減らすためにランダムドットパ

タンが1,000ms 呈示された。ランダムドットパタンの消失後、改 めて教示を呈示して次試行に移行し、計4試行実施した。

2-2-3. 単一画像評価実験

本実験で使用された画像について、予備実験の結果から想 定された感情価および覚醒度が本実験の参加者でも得られた かどうかを確認するため、感情価・覚醒度評価実験、および、感 動尺度評価実験の実施から1カ月以上経過後、予備実験と同 様に各画像に対する感情価または覚醒度を評価するオンライ ン質問紙を実施した。本実験に参加した118名のうち96名(男 性82名、女性14名。平均年齢36.9歳、標準偏差10.3)から回答 が得られた。オンライン質問紙では、参加者は予備実験で用い られたものと同じ44枚の画像に対し、予備実験で実施した評価 と同じ感情価または覚醒度のどちらか一つのみを、予備実験と 同様の7段階リッカート尺度にて評価した。

3 結果と考察

3-1. 感情価•覚醒度評価実験

各象限の標的画像において、先行画像の象限ごとに感情価 または覚醒度の全参加者平均を算出した。その上で、先行画像 の影響を検討するため、単一画像評価実験における象限ごと の標的画像に対する感情価および覚醒度の参加者平均を算出 し、感情価・覚醒度評価実験の結果と比較した(図3)。全体の傾 向として、単一画像評価実験で感情価が高かった(感情価が4 を超えていた)標的画像は、感情価・覚醒度評価実験での感情 価は単一画像評価実験で得られた感情価よりも低かった。ま た、単一画像評価実験で感情価が低かった(感情価が4未満 だった)標的画像は、感情価・覚醒度評価実験での感情価は単 一画像評価実験で得られた感情価よりも高かった。さらに、覚 醒度においても感情価と同様の傾向がみられた。

単一画像評価実験では感情価・覚醒度評価実験と同一の画 像が用いられたため、単一画像評価実験の実施日から1カ月以 上の期間が経過していたとはいえ、画像に対する慣れの影響 で、初見である感情価・覚醒度評価実験よりも感情価および覚 醒度が低く評価されると予測される。しかし本実験の結果では、 初見のため最も感情価および覚醒度の評価が顕著となるはず の感情価・覚醒度評価実験で、二度目の評価である単一画像 評価実験時よりも感情価および覚醒度が中立値(感情価、覚醒 度いずれも4)に近かった。このことは、先行画像の感情価およ び覚醒度が、標的画像に対する感情価および覚醒度に影響し た、すなわち、先行画像によって標的画像が惹起する感情状態 が異なったことを示すと考えられる。

Kando could be evoked by a transition in emotional state



図3 感情価・覚醒度評価結果

プロットは平均値を示しており、色が標的画像の想定象限を、形が先行画像の想定象限を示す。また、エラーバーは95%信頼区間を示す。

3-2. 感動尺度評価実験

標的画像と先行画像のペアごとに、感動尺度における感動因子の得点の全参加者平均を算出した。標的画像が同一、かつ、先行画像が異なる象限に属する4ペアに対してクラスカル・ウォリス検定¹⁾を実施した結果、第一象限に属する標的画像8枚のうち6枚において、先行画像の違いによって感動因子得点に有意な差が認められた(ps < .030)。さらに統計的な有意差が得られたペアに対し、下位検定としてマンホイットニーのU検定(多重比較のためp値をボンフェローニ法により補正)を実施したところ、24ペアのうち7ペアにおいて先行画像の違いによって感動因子得点に有意な差が認められた(表1)。

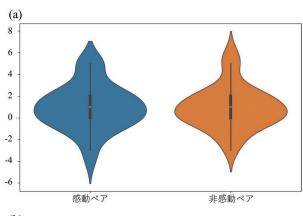
1)各ペアの評価者は6名程度であり正規性を担保できないので、ノンパラメトリック検定であるクラスカル・ウォリス検定を実施した。

3-2-1. 感動生起に特徴的な感情状態変化の検証

先行画像の違いによって標的画像に対する感動因子得点に統計的な有意差が認められた各ペアに対し、感動生起に特徴的な感情状態変化を検討するため、先行画像と標的画像のそれぞれに対する感情価および覚醒度評価の差分(以降、それぞれ感情価変化量、および、覚醒度変化量とする)を算出し、感動因子得点が大きいペア(以降、感動ペアとする)と感動因子得点が小さいペア(以降、非感動ペアとする)との間でマンホイットニーの U 検定を行った(図4)。

まず、感情価変化量においては、感動ペア(平均値 0.972、標準偏差 2.10)と非感動ペア(平均値 0.938、標準偏差 1.97)との間に統計的な有意差は認められなかった(p=.871)。感動ペアと非感動ペアそれぞれについてウィルコクソンの符号順位和検定を実施したところ、いずれのペアにおいても標的画像に対する感情価は先行画像に対する感情価よりも統計的に有意に高かった(感動ペア p=.009、非感動ペア p=.016)。これらの結果から、先行画像に続いて標的画像を呈示することで感情価

表1 感動因子の差異に関する検定結果


標的画像	先行画像と所属象限	標的画像に対する感動因子得点	p 値
画像 1	画像26(第四象限)	3.50	.002
	画像18(第三象限)	1.75	
画像2	画像9(第二象限)	4.33	.001
	画像25(第四象限)	2.57	
画像3	画像20(第三象限)	3.70	.003
	画像12(第二象限)	2.13	
画像4	画像27(第四象限)	3.93	.007
	画像3(第一象限)	2.23	
画像4	画像19(第三象限)	3.43	.010
	画像3(第一象限)	2.23	
画像5	画像30(第四象限)	3.53	.042
	画像6(第一象限)	2.37	
画像7	画像8(第一象限)	3.70	.021
	画像32(第四象限)	2.17	
粉字は図2に示した	·而俛采旦 生气而俛	- 加上側が右音に咸齢国子得 。	らが十キ

数字は図2に示した画像番号。先行画像列上側が有意に感動因子得点が大きかった画像ペア。

Kando could be evoked by a transition in emotional state

が快方向に変化しても、標的画像に対する感動因子得点には 影響しないことが示唆された。

一方、覚醒度変化量においては感動ペア(平均値 0.900、標 準偏差 2.11) の方が非感動ペア (平均値 -0.075、標準偏差 2.34) よりも変化量が大きい傾向が認められた(p=.050)。感 動ペアと非感動ペアそれぞれについてウィルコクソンの符号順 位和検定を実施したところ、感動ペアにおいては標的画像に対 する覚醒度は先行画像に対する覚醒度よりも有意に高かった (ク=.028)。しかし、非感動ペアでは標的画像と先行画像それ ぞれに対する覚醒度に統計的な有意差は認められなかった (b=.823)。これらの結果から、先行画像に続いて標的画像を 呈示することで覚醒度が覚醒方向に変化すると、標的画像に対 する感動因子得点は高くなることが示唆された。先行研究 [3] で は感動事象における結果とプロセスのギャップが感動喚起に 重要であることが示唆されていたが、本研究の結果は覚醒度が 覚醒方向に変化することがギャップとして機能して感動を喚起 する可能性を示している。

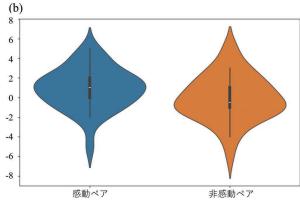
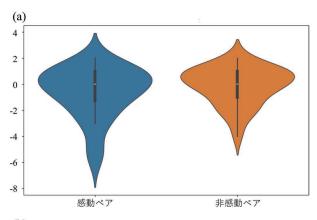



図4 感動ペアと非感動ペア間における感情状態変化 (a) は感情価、(b) は覚醒度。

3-2-2. 感動生起と感情状態変化の因果関係の検証

感動が喚起されたことで感情価や覚醒度が変化したのか、 それとも、感情価や覚醒度が変化したことで感動が喚起された のかを検討するため、先行画像の違いによって標的画像に対 する感動因子得点に統計的な有意差が認められた各ペアの標 的画像に対し、感情価・覚醒度評価実験と単一画像評価実験 における感情価および覚醒度の差分(以降、それぞれ感情価評 価変化量、および、覚醒度評価変化量とする)について、感動ペ アと非感動ペアでマンホイットニーの U検定を実施した(図5)。 その結果、感情価評価変化量においては感動ペア(平均値 -0.639、標準偏差 1.96)と非感動ペア(平均値 -0.125、標 準偏差 1.43)との間に統計的な有意差は認められなかった (p=.353)。同様に、覚醒度評価変化量においても感動ペア (平均値 -0.250、標準偏差 1.62)と非感動ペア(平均値 -0.475、標準偏差 2.15)との間に統計的な有意差は認めら れなかった(p=.422)。これらの結果は、標的画像が感動を喚 起させたかどうかは、感情価や覚醒度に影響しないことを示唆 する。よって、本研究で得られた先行画像の違いによる標的画 像に対する感動因子評価の差は、先行画像と標的画像を継時 呈示することで覚醒度が変化したために感動が喚起された可 能性を示し、標的画像によって感動が喚起されたことで標的画 像に対する覚醒度が変化したのではないことが推察できる。

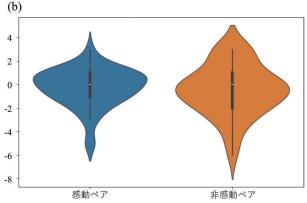


図5 感動ペアと非感動ペア間における感情価・覚醒度 評価実験と単一呈示画像評価実験の差 (a) は感情価、(b) は覚醒度。

総合考察

本研究では感動の喚起において感情状態の変化が及ぼす 影響について明らかにするため、それぞれが感情を惹起する 異なる2つの画像を継時呈示することで生じさせた感情状態の 差が、感動の喚起に及ぼす影響を実験的に検討した。実験の 結果、まず、感情を惹起する他の画像を呈示した後に対象となる 画像を呈示した場合、対象となる画像を単体で呈示した時とは、 対象となる画像に対する感情価および覚醒度が異なる可能性が 示された。このことから、本研究では異なる画像を継時呈示す ることで感情状態に変化を生じさせた可能性が高いといえる。

次に、感情を惹起する他の画像を呈示した後に対象となる 画像を呈示した場合、対象となる画像が喚起する感動の強度 が変化することが示唆された。一方、対象となる画像が感動を 喚起させたかどうかは、感情状態に影響を及ぼさなかった。こ れらの結果から、感動は感情状態の変化によって喚起されると 推察できる。

さらに、感情価が快方向に変化した場合でも、感動が喚起さ れる場合と、喚起されない場合があることが示された。このこと から、感情価の増大は感動喚起の十分条件ではないと考えら れる。一方、覚醒度が覚醒方向に変化した場合は感動が喚起さ れることが示唆された。本研究の結果だけでは、感情価と覚醒 度が共に高くなることで感動が喚起されるのか、それとも、感情 価によらず覚醒度が高くなることで感動が喚起されるのかを論 じることはできない。感情価と覚醒度それぞれが感動の喚起に どう関与するのか、今後のさらなる検討が望まれる。

先行研究 [6] ではネガティブな過程を経ることはあっても、最 終的には対象となる事象に価値を見いだしてポジティブな経験 となった場合に感動が喚起されることが示されており、このこと は感情価が快方向に変化することで感動が喚起される可能性を 示している。一方で本研究では、感情価のみの変化は感動の喚 起に影響しなかった。この点については、先行研究では、感情価 と覚醒度を明確に区別していなかったことに加え、感情を惹起さ せる方法の違いも影響していた可能性がある。すなわち、先行研 究では感情を惹起させるため参加者に小説を用いてストーリー を想起させたが、本研究では感情の惹起に風景の静止画像が使 用されたため、惹起された感情が先行研究に比べて弱かった可 能性がある。これらの点についてはさらなる検討が必要である が、少なくとも本研究から示された覚醒度が覚醒方向に変化す ることで感動が喚起されるという結果は、感情状態の変化が感 動の喚起に影響するという先行研究の結果と矛盾せず、感動の 喚起において感情価だけでなく覚醒度の変化も重要である可能 性も示しており、感動のメカニズム解明の一助となる成果である。

また、本研究の結果は感情価、および、覚醒度の変化が感動 の喚起とは独立する可能性も示しており、このことから感情価 や覚醒度の評価と感動の喚起が異なるプロセスであると考え られる。これは、感動は、喜びや悲しみといった低次の情動とは 異なると主張した先行研究 ^[3] とも一致しており、感情価や覚醒 度といった感情状態の変化に対して、感動というラベル付けを 行う認知的プロセスによって感動が喚起されるという説を支持 する。このことから、画像呈示や体験の想起など何らかの手段 によって単純に感情を惹起させるよりも、感情状態を変化させ る過程を考慮し、その感情状態の変化に対して感動というラベ ル付けを行う認知的プロセスを設定することで、より効果的に 感動を喚起させることができると考えられる。

今後の展開

本研究から、感動の喚起には、感情の惹起だけでなく、感情 の時系列変化を認知するプロセスが必要であることが示唆さ れた。このことから、感情の時系列変化にストーリーや文脈を付 加して感情の時系列変化を認知しやすくすれば、より感動が喚 起されやすくなると推測できる。例えば本研究のように先行画 像に続いて標的画像を呈示するような実験では、2つの画像に 文脈やストーリーを付加することで、標的画像に対する感動尺 度評価を高くすることが可能かもしれない。文脈やストーリー を付加することが感動の喚起に有効であれば、ヤマハ発動機 のさまざまな商材やサービスでさらなる感動を提供するための 手掛かりになるため、今後さらなる研究が望まれる。

本研究で使用した感動尺度は8つの因子(あたたかさ、ポジ ティブ感情、畏怖、感動、驚き、克服、困難さ、爽快感、超越した 力、鳥肌、涙)によって構成されているが、本研究では上記の8 因子のうち感動因子に着目した。そのため本研究で得られた結 果は感動因子に限定される可能性がある。そこで、今後は他の 因子についても感情変化との関係について検討することで、感 情変化と感動の喚起の関係性について汎用性の高い知見が 得られると考えられる。また、感情価や覚醒度について生理指 標を同時に計測することで、感動を喚起させるメカニズムに関 する理論の精緻化はもちろん、人工的に感動を喚起するデバイ ス等の開発にもつながることが期待される。

■謝辞

本研究に対して多大なる助言をくださった立命館大学 正田 悠 助教(現:京都市立芸術大学 専任講師)、伊坂 忠夫 教授に 厚く御礼申し上げます。また、実験協力者の方々にも重ねて御 礼申し上げます。

■参考文献

- [1] Shoko Yasuda, et al. A review of psychological research on kando as an inclusive concept of moving experiences. Frontiers in Psychology, 2022.
- [2] Haruka Shoda, et al. Uncovering the essence of moving experiences in Japanese culture: Development and validation of a Kando Reaction Scale, PLOS ONE, in press.
- [3] Akihioko Tokaji, Research for determinant factors and features of emotional responses of "kandoh" (the state of being emotionally moved). Japanese Psychological Research, 2003.
- [4] Benedek Kurdi, et al. Introducing the open affective standardized image set (OASIS). Behavior Research Methods, 2017.
- [5] James A. Russell. A circumplex model of affect. Journal of Personality and Social Psychology, 1980.
- [6] 加藤樹里, ほか. 友情をテーマとする小説における別れ描写は感動を強めるか?—社会的価値の見出しによる媒介効果の検討—. Japanese Journal of Research on Emotions, 2017.

■著者

檜垣 秀一 Shuichi Higaki 技術・研究本部 技術開発統括部 プロジェクト推進部

栗本 佳祐Keisuke Kurimoto
技術・研究本部
技術開発統括部
制御システム開発部

新田 吾一 Goichi Nitta パワートレインユニット PT 先行企画開発統括部 先導開発部

水口 暢章 Nobuaki Mizuguchi 立命館大学 総合科学技術研究機構

菅 唯志Tadashi Suga
立命館大学
総合科学技術研究機構

末神 翔
Takashi Suegami
技術・研究本部
技術戦略部

ヤマハ発動機 技報企画委員会

委 員 **荒木** 治 ヤマハモーターエンジニアリング(株) コーポレートデザイン部

伊藤 正二 技術・研究本部 共創・新ビジネス開発部

大石 善功 PF 車両ユニット PF 車両開発統括部 PF 戦略部

岡田 芳郎 ヤマハモーターパワープロダクツ(株) 開発統括部 設計部

奥山 高志 マリン事業本部 開発統括部 技術管理部

菅崎 拓真 クリエイティブ本部 プランニングデザイン部

神 田 大 ソリューション事業本部 UMS 事業推進部 開発部

木 村 隆 ヤマハモーターハイドロリックシステム(株) 開発統括部 技術戦略部

楠木 寿幸 ソリューション事業本部 ロボティクス事業部 技術統括部

沢 渕 敦 志 パワートレインユニットプロダクト開発統括部 第2PT 設計部

土居 航介 生産技術本部 材料技術部

野澤 伸治郎 ランドモビリティ事業本部 SPV 事業部 第1開発部

原 以起 マリン事業本部 開発統括部 先行開発部

村松 恭行 技術・研究本部 共創・新ビジネス開発部

編集事務局 池田 厚司 人事総務本部 法務・知財部

田 中 裕 人事総務本部 法務・知財部

三宅 英典 クリエイティブ本部 ブランドマーケティング部

菅崎 拓真 クリエイティブ本部 プランニングデザイン部

加藤隆輔 技術・研究本部 技術戦略部

片 川 純 技術・研究本部 技術戦略部

久米 裕子 技術・研究本部 技術戦略部

ヤマハ発動機 技報 第59号

YAMAHA MOTOR TECHNICAL REVIEW 2024 No.59

印刷 2024年12月1日 発行所 ヤマハ発動機株式会社

発 行 2024年12月2日 〒438-8501 静岡県磐田市新貝2500

発 行 人 丸山平二

デ ザ イン レタープレス株式会社

印 刷 所 レタープレス株式会社

〒739-1752 広島県広島市安佐北区上深川町809-5

お問い合わせ 技報編集事務局 TEL 0538-37-1864

(技術・研究本部 技術戦略部)

、お取替えいたします。 ホームページ https://global.yamaha-motor.com/jp/design_technology/technical/

※無断転載を禁じます。
※落丁本・乱丁本は、小社技報編集事務局
宛てにお送りください。お取替えいたします。

