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１ 	 INTRODUCTION

The automation of motorcycles from a vehicle and 
infrastructure perspective is essential. However, the term 
“vehicle” mainly refers to four-wheeled automobiles, and 
two-wheeled motorcycles are rarely the research focus. 
While many drivers enjoy driving a motorcycle itself, it is 
also a crucial mobility element in several countries, 
where riders use it for commuting and physical 
distribution because motorcycles are lighter and more 
compact than cars. Nevertheless, although they self-
stabilize after gaining a certain speed, they are essentially 
unstable as an inverted pendulum while stationary or 
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要旨

　本稿では、自動二輪車の静止状態や低速走行中の安定性向上に関するロバスト制御について論じる。著者らは車両の重心
位置を変更できる新しい回転軸を組み込んだロボットバイクを開発し、一般的な PID 制御器と単純な最適レギュレータを使用
した制御の実証について報告した。さらに、マルチボディダイナミクス手法を用いてロボットバイクの数学モデルも導出し、その
モデルに最適レギュレータを適用した。しかし、実用化に向けた頑健な制御戦略に基づく実証実験はまだ行われていない。そこ
で本研究では実際の使用環境におけるロバスト性を実現するため、スライディングモードコントローラ（SMC）を適用した実用的
な手法を提案する。それは、マイナーPID 制御ループと SMC を含む新しい数学モデルと周波数成形最適レギュレータによって
設計された超平面を組み合わせた制御システム設計である。最後に、実際のロボットバイクを用いた実験によりその有効性を
検証する。

Abstract
This study discusses robust control problems related to the fall of two-wheel motor vehicles during parking or 
low-speed driving. The robotic motorcycle includes a new rotary axis that can vary the position of the total center of 
gravity. Some authors have already reported preliminary control demonstrations using a typical PID controller and 
simple LQR. Moreover, the mathematical model of a robotic motorcycle derived using multibody dynamics methods 
and its optimal regulator simulation were developed. However, an experimental investigation of a robust control 
strategy for practical implementation has not yet been conducted. Therefore, this study proposes a practical method 
based on applying a sliding mode controller (SMC) to improve robust stability in a real usage environment. Here, we 
introduce the control system design combining a novel mathematical model, including a minor PID control loop and 
the SMC, with its hyperplane designed by the frequency-shaped optimal regulator. Finally, its effectiveness is verified 
by experiments using an actual robotic motorcycle.
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during low-speed driving, which is a primary problem. 
Moreover, the rider must support considerable loads. 
Therefore, instability-related problems may become even 
more evident as the average age of motorcyclists 
increases, potentially slowing the development of a future 
mobile society centered on the autonomous driving of 
these systems.

In this regard, motorcycles must automatically self-
stabilize in the parking state and during low-speed 
driving to counteract the weakness mentioned above. To 
achieve similar purposes, Ouchi et al. proposed a 
stabilization mechanism equipped with a gyro[1], and 
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Satoh et al. developed a mechanism that stabilizes the 
vehicle by moving a counterweight in a direction 
orthogonal to its traveling direction[2]. A study conducted 
by Saguchi et al. on a stabilization control method using 
steering is also well known[3]. However, the method of 
Ouchi et al. often requires installing a relatively large and 
heavy gyro at a specific position to obtain a satisfactory 
result. Furthermore, the method of Satoh et al. widen the 
motorcycle; thus, losing the motorcycle the advantage of 
driving through narrow paths. In addition, riders have 
also pointed out that it is uncomfortable not to be able to 
lean motorcycles on curves. In contrast, the approach of 
Saguchi et al. is only practical while driving and cannot 
be applied while parked. The Honda Riding Assist 
developed by Araki et al. adopted a negative trail length 
and used steering to control the center of gravity in the 
stationary state[4]. However, driving in the intended 
direction is challenging during extremely low-speed 
driving.

In 2017, the authors’ company announced a robotic 
motorcycle equipped with an Active Mass Center Control 
System (AMCES) axis. This robotic motorcycle adds a 
rotation axis to increase the degree of freedom of the 
vehicle and allows self-balancing in an upright position by 
actively moving its entire mass center[5]. Unlike other 
systems, the robotic motorcycle does not require large or 
heavy additional mechanisms and can remain stable, even 
in the stationary state. The demonstration of its capacity 
to drive at low speed and stabilize on its own was highly 
praised at the Tokyo Motor Show 2017 and other 
trade fairs. However, the control method during the 
demonstration was not based on a thoroughly examined 
mathematical model. Instead, the stabilization was 
achieved through the application of a proportional–
integral–derivative (PID) control and an optimal linear 
quadratic regulator (LQR) tuned by trial and error[5]. 
From the safety improvement perspective, motorcycles 
must become more reliable through more accurate and 
transparent modeling with a control system design 
method that better suits this problem, rather than a 
simple application of PID and LQR controls. With this 
objective in mind, Hara et al. attempted to model a 

robotic motorcycle using a multibody dynamic system, 
which systematically modeled a complex, actual robotic 
motorcycle. The authors also demonstrated through 
numerical simulation that this motorcycle could be 
controlled satisfactorily by applying an optimal regulator 
based on the developed model[6]. Nevertheless, the 
effectiveness of this model and its robustness to 
withstand actual conditions have not been verified 
empirically, and it has not been compared with the trial-
and-error-based PID control of previous demonstrations.

Based on the above scenario, attempts have been 
performed to show experimentally that the robustness 
and stability of the robotic motorcycle can be improved 
and that it can serve as a vehicle to drive in actual traffic 
environments. However, previous studies have only 
implemented numerical simulations relying on a close-to-
ideal problem setting[7]. Moreover, ideal conditions do not 
necessarily apply when running in actual environments, 
and the road surface affects motorcycle driving. Therefore, 
to achieve robust self-stabilization in actual environments, 
this study mainly focused on self-stabilization during a 
stationary state or during low-speed driving. In this 
regard, we introduced a sliding mode controller (SMC) 
with a frequency shaper. And its effectiveness was 
experimentally demonstrated. The SMC considered the 
effect of structured and unstructured uncertainties and 
disturbances.

The structure of this paper is as follows. Section 2 
describes the robotic motorcycle. In Section 3, previously 
presented modeling methods are discussed. In addition, 
the modeling of the control system, including the 
minimum PID control required for stabilization, is 
introduced. In Section 4, a practical control system design 
method that considers the proposed robust stabilization 
is described. The effectiveness of the proposed control 
system design method is demonstrated in Section 5 by 
analyzing the results of a numerical simulation and self-
stabilization experiment during low-speed driving of an 
actual robotic motorcycle. Finally, in Section 6, the 
conclusions and further aspects are summarized.
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2 	 THE	ROBOTIC	MOTORCYCLE	
WITHOUT	FALLING	DOWN

The robotic motorcycle (Fig. 1) is an experimental electric 
motorcycle[5]. The most characteristic item is its rotating 
AMCES axis (Fig. 2). It runs through the center of the 
vehicle to control its center of gravity. The AMCES 
electronically controls and stabilizes the chassis of two-
wheeled motorcycles. An optimal attitude can be 
maintained by controlling the chassis itself. The attitude 
of the machine is controlled by rotating parts of the 
counterweights, such as the battery, swing arm, and rear 
wheel around the AMCES axis. The AMCES axis also 
connects the red part (Q1) and blue part (Q2) in Fig. 2. 
During rotation, the counterweight parts move either 
right or left, enabling the machine to balance and remain 
upright. The intersection point of the AMCES axis and 
ground coincides with the grounding point of the rear 
wheel. Therefore, the grounding point of the rear wheel 
is always fixed even if the AMCES axis is rotated. The 
inner frame unit rotates around the AMCES axis. A 
schematic of this characteristic is shown in Fig. 2.

3 	 MATHEMATICAL	MODELING

The mathematical modeling of the robotic motorcycle has 
already been investigated using multiple methodologies[6][7]. 
The most important part of modeling is the AMCES axis. 
Therefore, the equation of motion for the robotic 
motorcycle was derived by introducing the following 
simplification to the system: The system is divided into 
two bodies (Fig. 2): a front-wheel and a rear-wheel parts. 
The AMCES shaft connects the bodies similar to a 
revolute joint. From the rear view of the main body, this 
mechanism can be regarded as a double pendulum. In 
addition, the system is considered a type of acrobot because 
only the connection portion of the body is actuated[8].

After introducing the absolute coordinate system, the 
system is assumed to lie on flat ground. The x-axis is 
defined as the axis connecting the grounding points of the 
two tires. The z-axis is defined as being normal to the 
x-axis in the anti-gravity direction. The y-axis is defined as 
normal to the other axes based on the definition of the 
right-hand coordinate system. Here, the system differs from 
a typical acrobot because the directions of the x-axis and 
the AMCES axis are not similar. Therefore, the equation of 
motion cannot be simply described on a two-dimensional 
plane, and a particular modeling strategy is required. The 
front-wheel part of the motorcycle is defined as Q1, and the 
rear part is defined as Q2. Let q1 be the slant angle of Q1 
in the stationary state, and q2 be the angle between Q1 and 
Q2 due to the rotation of the AMCES axis.

Two modeling methods were adopted in previous studies 
to obtain a linear approximated model of the robotic 
motorcycle. One method relies on Lagrange’s equation of 
motion[7]. This is a well-known modeling method based 
on Lagrangian mechanics[9]. The second method relies on 
multibody dynamics[6][10][11]. The results of the two 
methods are the same. The details can be found in 
previous papers[6][7]. The approximated model is 
determined as follows:
　　

x A b( ) ( ) ( ),t x t um m� � t
 

(1)
　　

x( ) ( ) ( ) ( ) ( ) ,t q t q t q t q t� �� ��1 1 2 2 

T

Fig. 1 The robotic motorcycle with a rotating shaft

Fig. 2 Schematic figure of AMCES-axis
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where q1(t) and q2(t) are the angles in Fig. 2, and u(t) is 
the control input. More importantly, the safety of the 
experiments should be guaranteed. Thus, the robotic 
motorcycle requires a minor feedback loop to stabilize it 
in the control and the waiting modes. Its feedback gain 
vector km was selected via trial and error by stabilizing 
the vehicle during the waiting mode. In this regard, the 
single-input linearized controlled object model, including 
minor feedback control, is defined as follows:

　　 x A x bp p p pt t u t( ) ( ) ( ),� �  
(2)　　xp t q t q t q t q t( ) ( ) ( ) ( ) ( ) ,� �� ��1 1 2 2 

T

where A A b kp m m m= – and b bp m= . Hereafter, the system in 
Eqs. (2) is referred to as the controlled object model. To 
identify the elements in Ap and bp, the ARX model is 
applied to a real motorcycle under the M-sequence 
APRBS signal disturbance torque for u t u td( ) ( )= , as shown 
in Fig. 2. The details of the identification results can be 
found in our previous study [12].

4 	 CONTROL	SYSTEM	DESIGN
4.1.	 Frequency-shaped	 LQ	 control	 hyperplane	
design	for	the	controlled	object	model	including	
the	minor	feedback
In contrast to previously published studies[5]-[7], the 
objective of this study is to achieve robust self-stabilization 
of a real robotic motorcycle in actual environments. In 
such a situation, the effects of uncertainties and 
disturbances cannot be ignored. As previously pointed 
out[12], a real robotic motorcycle includes unstructured 
uncertainties such as high-order dynamics. The effect of 
high-order dynamics is reduced in this study by adopting 
a frequency-shaped optimal regulator (frequency-shaped 
LQ regulator, FSLQ) to reduce the control input signal in 
the high-frequency range[13]. If low-speed driving is also 
considered, the influence of structured uncertainties, such 
as mass variations, must be handled more aggressively. 
To reduce the effect of both uncertainties simultaneously, 
this study adopts SMC using the FSLQ-control-based 
hyperplane design[14]. SMC effectively reduce the effects 
of structural uncertainties, such as parameter variations 
and disturbances, such as Coulomb friction (the disturbances 

that meet the matching condition). Moreover, we discuss 
an appropriate SMC design method for this control 
problem.

For the FSLQ regulator design, the second-order 
Butterworth low-pass characteristic with a cutoff 
frequency of 5 Hz on the control input is applied. Its 
dynamic characteristics are determined using the 
following state equation:

　　 x A x b c xf f f f a f f ft t u t u t t( ) ( ) ( ), ( ) ( )� � �  

(3)
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where ω f  and ζ f  are the cutoff frequency (5 Hz) and 
damping ratio (1 2/ : Butterworth type), respectively. 
Subsequently, the feedback control system obtained using 
the LQ control feedback gain vector k k ka p f��� ��  for the 
augmented system is expressed as follows:

　　
x A x ba a a a at t u t( ) ( ) ( ),� �
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Fig. 3 Block diagram of the FSLQ control system
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The block diagram of the FSLQ regulator is shown in 
Fig. 3. The hyperplane distance σ( )t  for SMC in this study 
was designed using Eqs. (4), as follows:

　　�( ) ( ),t ta a� s x  (5)

where sa is a linear operator and is set to the optimal 
feedback gain vector ka of the LQ control solution of the 
augmented system in Eqs. (4) and the appropriate 
weighting matrices Qa and ra. This procedure is similar to 
the hyperplane design method based on using the system 
zeros[15].

4.2.	Sliding	mode	control	design
The SMC system design relied on a two-step design[15]. 
The first step was the equivalent linear system design of 
the switching hyperplane. As the reference[15], the 
eigenvalues of the equivalent linear system:

　　
x A b s b s A xa a a a a a a at t( ) ( ),� � � �� ��1  (6)

consists of five stable poles and one origin pole. The 
augmented system can be written as follows:

　　 s s sa � �� ��1 2 ,

　　 s s k1 2= ppm ,
　　

x A A k x1 11 12 1( ) ( ),t tppm� �� �
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� � � � �f f f f, , .  (7)

The hyperplane normal vector sa can be determined using 

kppm  provided that x1( )t  can be stabilized with s2 as an 
arbitrary value other than zero. In this study, the 
equivalent control input u tl( ) is derived from Eq. (8) for a 
constant hyperplane distance ( ( ) .)� t � const  to obtain Eqs. 
(9), which corresponds to Eq. (6).
　　

 � t t t u ta a a a a a a� � � � � � � � � � �� � �s x s A x b 0.
 

(8)

　　 u t tl a a� � � � � �k x ,

　　
k s b s Aa a a a a� � ��1 .

 
(9)

Equation (8) corresponds to the popular equivalent 

control input in Eqs. (10) when the hyperplane distance 
is set to zero ( )( )� t � 0 [15]. The control design using Eq. 
(8) generalizes the constraint of the state on the 
hyperplane and increases the design degrees of freedom.
　　

x A A k x1 11 12 1( ) ( ),t tppm� �� �

　　k s b s A s A s A s A s sppm � � � �� � � �� ��� ��
� �

2 2
1

1 11 2 21 1 12 2 22 2
1

1 . (10)

The second step is a nonlinear control design to restrain 
the state of the switching hyperplane. A smoothing 
function is considered to obtain the following equation 
for the constrained control input (nonlinear feedback 
control input) u tn( ) in the hyperplane [15]:

　　
u t

t

t
n � � � � � �

� � �
�

�

� �
,
 

(11)

where α and ε respectively represent the sliding mode 
control gain α [Nm], and the mitigation coefficient ε is 
introduced to suppress chattering. Moreover, σ( )t  based 
on Eq. (5) is the inner product of the hyperplane normal 
vector sa and expanded state variable xa t( ). Setting the 
sliding mode control gain α and the mitigation coefficient 
to suppress chattering ε enable the design of the 
nonlinear control input u tn( ).

Figure 4 shows a block diagram summarizing the entire 
control system based on the proposed two-step design.

Fig. 4 Block diagram of the robust control system
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The most important factor in FSLQ control is the fall 
prevention of the vehicle. Therefore, the weights were set 
only to the vehicle roll angle and its derivative. Even if the 
weights of the elements related to the AMCES angle and 
the frequency shaper element are set to 0, the purpose of 
the control, such as fall prevention and residual mode 
suppression, works well. The weight to the control input 
is set to 1, specifically, Qa=diag[1×104 1×103 0 0 0 0], 
ra=1.

Fig. 5 FSLQ closed-loop poles and  
hyperplane design poles

For the hyperplane design of the SMC, we applied a pole 
placement design using five poles (Fig. 5) with the origin 
pole removed from the poles, including the feedback of 
the FSLQ control. s2,kppm and sa  in Eqs. (7) are 1, [-1.3×
105 -2.7×104 2.4×104 3.1×103 4.8×101] and 
1.35×105, respectively where sa  is the hyper plane 
normal vector length. The equivalent control input u tl( ) 
was used in Eqs. (9). The sliding mode control gain α of 
the nonlinear control input u tn( ) was set to 500 Nm, 
approximately twice the maximum torque of the actuator 
at 298 Nm. The mitigation coefficient ε was set to 
5.0×104 by trial and error, representing 37% of sa . In 
this paper, we assumed the roll angle range and 
disturbance roll torque range in which the vehicle can 
avoid overturning. Accordingly, α and ε are adjusted so 
that the nonlinear control input becomes the maximum 
value of the actuator at the limited boundary. Large 
mitigation coefficient is also intended to suppress 
unmodeled higher-order vibration modes.

5 	 SIMULATIONS	AND	EXPERIMENTS

All simulations and experiments were performed using 
the same parameters. The sampling and control periods 
were set to 1.0 ms.

The simulation and experiment results were evaluated by 
applying two types of disturbances. Figure 6 shows an 
experiment simulating the left-right shift of the center of 
gravity of the rider. The disturbance was a bump 
disturbance where a maximum of 150 Nm was loaded on 
the AMCES shaft in 0.5 s and unloaded in 0.5 s, and 
u t td( ) ( / )� 150 22cos � .

Fig. 6 Experiment applying a disturbance  
to the AMCES shaft

Figure 7 shows an experiment simulating the effect of a 
crosswind with a wind speed of 6 m/s. A 5 kg weight was 
placed at the end of the handle. Hereafter, the experiment 
in Fig. 6 is referred to as disturbance(a), and the 
experiment in Fig. 7 is referred to as disturbance(b).

Fig. 7 Experiment applying a weight to the handle end
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5.1.	Simulations
Figure 8 shows the results for disturbance(a). The 
disturbance torque (black dashed line) to the AMCES axis 
was applied counterclockwise for 2 s after starting the 
experiment and clockwise 7 s later. With only minor loop 
control (blue one-dot chain line), there was no plant 
control input u tf ( ). The maximum roll angle is 2.50°, and 
the roll angle does not completely converge to the origin 
in 4 s. With FSLQ control (blue dashed line), the 
maximum plant control input is 71 Nm (47% 
compensation), the maximum roll angle is 1.45° (42% 
improvement), and the roll angle completely converges in 
4 s. With SMC (solid red line), the maximum plant control 
input is 128 Nm (86% compensation), the maximum roll 
angle is 0.65° (74% improvement), and the roll angle 
completely converges within 4 s.

Fig. 8 Simulation of applying a bump disturbance  
to the AMCES shaft in the stationary state

Figure 9 shows the results of the disturbance(b). A 5 kg 
weight was placed at the end of the handle and stabilized 
with only minor loop control, and each control was 
started after 5 s. With FSLQ control, the improvement in 
the rolling angle is 0.21° (12.6% improvement). With the 
SMC, the improvement is 0.97° (58.5% improvement). In 
addition, SMC is 4.6 times better than the FSLQ control.

Figure 10 shows the time transition of the state in SMC 
using a scatter diagram. The rolling angle and AMCES 
rotation angle (blue line), hyperplane (black dashed line), 
and hyperplane distance σ( )t  (red dashed line) are plotted. 
For the hyperplane, zeros were assigned to state variables 
other than the rolling angle and AMCES rotation angle. The 
state was controlled to approach the hyperplane immediately 
after starting the control and then to the origin.

Fig. 9 Simulation of load at end of handle  
in the stationary state

Fig. 10 Time transition of vehicle attitude with  
the handle-end load in SMC

Figure 11 details Fig. 10 and plots the roll angle, AMCES 
angle, frequency shaping control input, hyperplane distance, 
equivalent control input and nonlinear control input. At 
the start of control, the nonlinear control input acts more 
dominantly than the equivalent control input and the AMCES 
angle increases. After that, the vehicle roll angle decreases 
as the AMCES angle increases. The SMC compensates for 
the load on the handle end with a nonlinear control input 
that constrains the state variables to the hyperplane.
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5.2.	Experiments
In the stationary state, disturbance(a) and disturbance(b) 
were experimented. However, in the low-speed driving 
condition, only disturbance(a) was experimented.

5.2.1.	Experiments	on	a	vehicle	stationary	state
Figure 12 shows the experimental results for disturbance(a) 
in the stationary state. With only minor loop control, the 
maximum rolling angle is 2.2°, and the rolling angle does 
not converge to the origin in 4 s. In contrast, with FSLQ 
control, the maximum rolling angle is 1.1° (50% 
improvement), and the rolling angle converges to the 
origin in 4 s. With SMC, the maximum rolling angle is 
0.6° (73% improvement), and the rolling angle converges 
to the origin in 4 s. For all controls, the simulation and 
experimental results shown in Fig. 7 were correlated.

Figure 13 shows the experimental results for disturbance(b) 
in the stationary state. With FSLQ control, almost no 
control input was required when the control was started, 
and the rolling angle hardly improved. With SMC, a 
control torque of 150 Nm was input at the start of the 
control, and the rolling angle improved by 50% in 1 s. 
Similar to the previous experiments, for all controls, the 
simulation and experimental results shown in Fig. 8 were 
correlated.

Fig. 11 Time series response in SMC to the handle-end 
load at stationary state: roll angle, AMCES angle, 

frequency shaping control input, hyperplane distance, 
equivalent control input and nonlinear control input

Fig. 12 Experiment involving applying a bump 
disturbance to the AMCES shaft at stationary state

Fig. 13 Experiment involving applying a disturbance to 
the handle-end load at stationary state

5.2.2.	Experiments	on	a	vehicle	low-speed	driving
Figure 14 shows the experimental results for 
disturbance(a) during low speed straight driving at 0.5 
km/h. With only a minor loop control, the maximum 
rolling angle was 2.9°, which was 32% lower than that of 
2.2° in the stationary state. In addition, the convergence 
of the rolling angle owing to the disturbance was worse 
in low-speed driving than in the stationary state. This is 
because the AMCES structure and the driving force push 
the vehicle sideways. With the FSLQ control, the 
maximum rolling angle was 1.2° (58% improvement), but 
the rolling angle did not converge to the origin. With the 
SMC, the maximum rolling angle was 0.8° (72% 
improvement), and the rolling angle converged to the 
origin. The SMC estimated the disturbance more 
accurately than the FSLQ control, and the timing to start 
the compensation was earlier. The superiority of SMC 
over FSLQ control during low-speed driving tends to be 
the same as that in the stationary state.
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Figure 15 shows the time transition of the SMC during 
low-speed driving. As shown in the block diagram in Fig. 
4, the sum u ta( ) of the equivalent control input u tl( ) and 
the nonlinear control input u tn( ) is the input of the 
frequency shaper. The frequency shaper removes the 
high-frequency control input and becomes the plant 
control input u tf ( ). The u tf ( ) responded well to the 
applied torque disturbance u td( ), and u tf ( ) was highly 
correlated with u tn( ). When the state began to be peeled 
off from the hyperplane by the applied disturbance 
torque, the compensation by the nonlinear control input 
u tn( ) had already started, and the nonlinear control input 
u tn( ) almost compensated the applied disturbance torque 
u td( ).

of 30° (turning radius of 3 m) at a speed of 0.5 km/h. 
And the control input for bump disturbance of SMC was 
the same as in a straight-line driving[16].

6 	 CONCLUSION

This paper introduced the robust control problem for a 
motorcycle without falling to a new mobility system. 
Improving motorcycles in a stationary state or during 
low-speed driving is a non-negligible factor for future 
mobile societies. Moreover, how to ensure low-speed 
driving stability using the robotic motorcycle was 
discussed. This motorcycle is equipped with a new axis of 
rotation named AMCES and can change the position of 
the total center of gravity. We developed a system model 
that included stabilizing the PID control, as previously 
demonstrated. In addition, a sliding mode controller 
(SMC) with a frequency-shaped optimal regulator (FSLQ) 
was developed to suppress the effects of structural and 
nonstructural uncertainties. The effectiveness of the 
developed approach was verified by a low-speed driving 
experiment using a real robotic motorcycle.

In the future study, the nonlinearity of the controlled 
object may be an important subject. When the vehicle 
stands up from the kickstand state, the AMCES axis 
rotates 50°. Centrifugal force due to vehicle speed cannot 
be ignored when turning. If the roll angle can be properly 
controlled, the performance of the vehicle dynamics will 
be improved even at low-speed driving.
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