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Abstract

This study discusses robust control problems related to the fall of two-wheel motor vehicles during parking or
low-speed driving. The robotic motorcycle includes a new rotary axis that can vary the position of the total center of
gravity. Some authors have already reported preliminary control demonstrations using a typical PID controller and
simple LQR. Moreover, the mathematical model of a robotic motorcycle derived using multibody dynamics methods
and its optimal regulator simulation were developed. However, an experimental investigation of a robust control
strategy for practical implementation has not yet been conducted. Therefore, this study proposes a practical method
based on applying a sliding mode controller (SMC) to improve robust stability in a real usage environment. Here, we
introduce the control system design combining a novel mathematical model, including a minor PID control loop and
the SMC, with its hyperplane designed by the frequency-shaped optimal regulator. Finally, its effectiveness is verified

by experiments using an actual robotic motorcycle.

during low-speed driving, which is a primary problem.

INTRODUCTION

Moreover, the rider must support considerable loads.

The automation of motorcycles from a vehicle and
infrastructure perspective is essential. However, the term
“vehicle” mainly refers to four-wheeled automobiles, and
two-wheeled motorcycles are rarely the research focus.
While many drivers enjoy driving a motorcycle itself, it is
also a crucial mobility element in several countries,
where riders use it for commuting and physical
distribution because motorcycles are lighter and more
compact than cars. Nevertheless, although they self-
stabilize after gaining a certain speed, they are essentially

unstable as an inverted pendulum while stationary or

Therefore, instability-related problems may become even
more evident as the average age of motorcyclists
increases, potentially slowing the development of a future
mobile society centered on the autonomous driving of

these systems.

In this regard, motorcycles must automatically self-
stabilize in the parking state and during low-speed
driving to counteract the weakness mentioned above. To
achieve similar purposes, Ouchi et al. proposed a

stabilization mechanism equipped with a gyro!'!, and
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Satoh et al. developed a mechanism that stabilizes the
vehicle by moving a counterweight in a direction
orthogonal to its traveling direction'. A study conducted
by Saguchi et al. on a stabilization control method using
steering is also well known®!. However, the method of
Ouchi et al. often requires installing a relatively large and
heavy gyro at a specific position to obtain a satisfactory
result. Furthermore, the method of Satoh et al. widen the
motorcycle; thus, losing the motorcycle the advantage of
driving through narrow paths. In addition, riders have
also pointed out that it is uncomfortable not to be able to
lean motorcycles on curves. In contrast, the approach of
Saguchi et al. is only practical while driving and cannot
be applied while parked. The Honda Riding Assist
developed by Araki et al. adopted a negative trail length
and used steering to control the center of gravity in the

stationary state!*!

. However, driving in the intended
direction is challenging during extremely low-speed

driving.

In 2017, the authors’ company announced a robotic
motorcycle equipped with an Active Mass Center Control
System (AMCES) axis. This robotic motorcycle adds a
rotation axis to increase the degree of freedom of the
vehicle and allows self-balancing in an upright position by
actively moving its entire mass center’®. Unlike other
systems, the robotic motorcycle does not require large or
heavy additional mechanisms and can remain stable, even
in the stationary state. The demonstration of its capacity
to drive at low speed and stabilize on its own was highly
praised at the Tokyo Motor Show 2017 and other
trade fairs. However, the control method during the
demonstration was not based on a thoroughly examined
mathematical model. Instead, the stabilization was
achieved through the application of a proportional-
integral-derivative (PID) control and an optimal linear
quadratic regulator (LQR) tuned by trial and error'.
From the safety improvement perspective, motorcycles
must become more reliable through more accurate and
transparent modeling with a control system design
method that better suits this problem, rather than a
simple application of PID and LQR controls. With this

objective in mind, Hara et al. attempted to model a
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robotic motorcycle using a multibody dynamic system,
which systematically modeled a complex, actual robotic
motorcycle. The authors also demonstrated through
numerical simulation that this motorcycle could be
controlled satisfactorily by applying an optimal regulator
based on the developed model®. Nevertheless, the
effectiveness of this model and its robustness to
withstand actual conditions have not been verified
empirically, and it has not been compared with the trial-

and-error-based PID control of previous demonstrations.

Based on the above scenario, attempts have been
performed to show experimentally that the robustness
and stability of the robotic motorcycle can be improved
and that it can serve as a vehicle to drive in actual traffic
environments. However, previous studies have only
implemented numerical simulations relying on a close-to-
ideal problem setting!”. Moreover, ideal conditions do not
necessarily apply when running in actual environments,
and the road surface affects motorcycle driving. Therefore,
to achieve robust self-stabilization in actual environments,
this study mainly focused on self-stabilization during a
stationary state or during low-speed driving. In this
regard, we introduced a sliding mode controller (SMC)
with a frequency shaper. And its effectiveness was
experimentally demonstrated. The SMC considered the
effect of structured and unstructured uncertainties and

disturbances.

The structure of this paper is as follows. Section 2
describes the robotic motorcycle. In Section 3, previously
presented modeling methods are discussed. In addition,
the modeling of the control system, including the
minimum PID control required for stabilization, is
introduced. In Section 4, a practical control system design
method that considers the proposed robust stabilization
is described. The effectiveness of the proposed control
system design method is demonstrated in Section 5 by
analyzing the results of a numerical simulation and self-
stabilization experiment during low-speed driving of an
actual robotic motorcycle. Finally, in Section 6, the

conclusions and further aspects are summarized.
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THE ROBOTIC.MOTORCY.CLE
WITHOUT FALLING DOWN

The robotic motorcycle (Fig. 1) is an experimental electric
motorcycle®®. The most characteristic item is its rotating
AMCES axis (Fig. 2). It runs through the center of the
vehicle to control its center of gravity. The AMCES
electronically controls and stabilizes the chassis of two-
wheeled motorcycles. An optimal attitude can be
maintained by controlling the chassis itself. The attitude
of the machine is controlled by rotating parts of the
counterweights, such as the battery, swing arm, and rear
wheel around the AMCES axis. The AMCES axis also
connects the red part (Q1) and blue part (Q2) in Fig. 2.
During rotation, the counterweight parts move either
right or left, enabling the machine to balance and remain
upright. The intersection point of the AMCES axis and
ground coincides with the grounding point of the rear
wheel. Therefore, the grounding point of the rear wheel
is always fixed even if the AMCES axis is rotated. The
inner frame unit rotates around the AMCES axis. A

schematic of this characteristic is shown in Fig. 2.

q1

Fig. 2 Schematic figure of AMCES-axis

MATHEMATICALMODELING

The mathematical modeling of the robotic motorcycle has
already been investigated using multiple methodologies'®!”.
The most important part of modeling is the AMCES axis.
Therefore, the equation of motion for the robotic
motorcycle was derived by introducing the following
simplification to the system: The system is divided into
two bodies (Fig. 2): a front-wheel and a rear-wheel parts.
The AMCES shaft connects the bodies similar to a
revolute joint. From the rear view of the main body, this
mechanism can be regarded as a double pendulum. In
addition, the system is considered a type of acrobot because

only the connection portion of the body is actuated'®.

After introducing the absolute coordinate system, the
system is assumed to lie on flat ground. The x-axis is
defined as the axis connecting the grounding points of the
two tires. The z-axis is defined as being normal to the
x-axis in the anti-gravity direction. The y-axis is defined as
normal to the other axes based on the definition of the
right-hand coordinate system. Here, the system differs from
a typical acrobot because the directions of the x-axis and
the AMCES axis are not similar. Therefore, the equation of
motion cannot be simply described on a two-dimensional
plane, and a particular modeling strategy is required. The
front-wheel part of the motorcycle is defined as Q1, and the
rear part is defined as Q2. Let g; be the slant angle of Q1
in the stationary state, and g be the angle between Q1 and
Q2 due to the rotation of the AMCES axis.

Two modeling methods were adopted in previous studies
to obtain a linear approximated model of the robotic
motorcycle. One method relies on Lagrange’s equation of
motion!”. This is a well-known modeling method based
on Lagrangian mechanics'. The second method relies on

[eltoyi1]

multibody dynamics The results of the two

methods are the same. The details can be found in

161171

previous papers™'”. The approximated model is

determined as follows:
x(t) = A,,x(t) + b,,u(t),

xXO=[a®) 4@ &) &o)], (1)

YAMAHA MOTOR TECHNICAL REVIEW 1 6



Robust Control Strategy for Robotic Motorcycle Without Falling Down at Low-Speed Driving

where ¢ (f) and ¢»(t) are the angles in Fig. 2, and «(?) is
the control input. More importantly, the safety of the
experiments should be guaranteed. Thus, the robotic
motorcycle requires a minor feedback loop to stabilize it
in the control and the waiting modes. Its feedback gain
vector k, was selected via trial and error by stabilizing
the vehicle during the waiting mode. In this regard, the
single-input linearized controlled object model, including

minor feedback control, is defined as follows:
xp(t) = Apx,(t) + byult),
O=[a) 4O &0 o], @)

where A, = A, —b,k,, and b, =b,. Hereafter, the system in
Egs. (2) is referred to as the controlled object model. To
identify the elements in 4, and b, the ARX model is
applied to a real motorcycle under the M-sequence
APRBS signal disturbance torque for #(¢) = u,(t), as shown
in Fig. 2. The details of the identification results can be

found in our previous study 2.

CONTROL,SY.STEMDESIGN

4.1. Frequency-shaped LQ control hyperplane
design for the controlled object model including
the minor feedback

In contrast to previously published studies®”, the
objective of this study is to achieve robust self-stabilization
of a real robotic motorcycle in actual environments. In
such a situation, the effects of uncertainties and
disturbances cannot be ignored. As previously pointed
out!"? a real robotic motorcycle includes unstructured
uncertainties such as high-order dynamics. The effect of
high-order dynamics is reduced in this study by adopting
a frequency-shaped optimal regulator (frequency-shaped
LQ regulator, FSLQ) to reduce the control input signal in
the high-frequency range!'®!. If low-speed driving is also
considered, the influence of structured uncertainties, such
as mass variations, must be handled more aggressively.
To reduce the effect of both uncertainties simultaneously,
this study adopts SMC using the FSLQ-control-based
hyperplane design!'*. SMC effectively reduce the effects
of structural uncertainties, such as parameter variations

and disturbances, such as Coulomb friction (the disturbances
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that meet the matching condition). Moreover, we discuss
an appropriate SMC design method for this control

problem.

For the FSLQ regulator design, the second-order
Butterworth low-pass characteristic with a cutoff
frequency of 5 Hz on the control input is applied. Its
dynamic characteristics are determined using the

following state equation:

X/(t)ZAfo(t)+bea(t), uf(t)ZCfo(t)
0
:|,bf —|:w;:|,(i‘f :[1 0], (3)

where o, and ¢ are the cutoff frequency (5 Hz) and

y 0 1
"0l 20,

damping ratio (1/+/2: Butterworth type), respectively.
Subsequently, the feedback control system obtained using
the LQ control feedback gain vector &, :I:kp kf:l for the

augmented system is expressed as follows:
X, (t) = A, x,(t) + b1, (1),

Ua(£) =~k pxp () — K ;1 (£) = —ky X, (1)

B x,(®) | Ay byey 10
()= L‘f(t)} A { 0 4 } b _L’f} @
Disturbance
uq(t) Plant
e e e e I
o . |
g)’_"' bp + X (t) l X (t) I yp(t)
| + s 1
I |
| I
: 4 1
B o i i o ) ), o e S ) ! 4

uq(t) + & (6)

.| State vector
| | augmentation

e

_ka

Fig. 3 Block diagram of the FSLQ control system
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The block diagram of the FSLQ regulator is shown in
Fig. 3. The hyperplane distance o(t) for SMC in this study

was designed using Egs. (4), as follows:
o (t) = 5,%,(0), ()

where s, is a linear operator and is set to the optimal
feedback gain vector k, of the LQ control solution of the
augmented system in Eqs. (4) and the appropriate
weighting matrices @, and 7,. This procedure is similar to
the hyperplane design method based on using the system

ZeI‘OS[IS].

4.2. Sliding mode control design

The SMC system design relied on a two-step design!'..
The first step was the equivalent linear system design of
the switching hyperplane. As the reference!’, the

eigenvalues of the equivalent linear system:
xa(t):{Aa _baz(saba)71 saAa}xa(t)7 (6)

consists of five stable poles and one origin pole. The

augmented system can be written as follows:
sa=[s1 2],

§1 = Szkppm,

x()= (An - A12kppm)x1(t),

x®=[a®) a® O &O HO],

A b 04><1 04><1
An_{oli (ﬂ, AlZ_I: 0 :ly h—{ 1 },
Ay =[0" —0f |, Ap=[-240,], b= 0f |- (7)

The hyperplane normal vector s, can be determined using
kyy, provided that x,(¢) can be stabilized with s, as an
arbitrary value other than zero. In this study, the
equivalent control input #(¢) is derived from Eq. (8) for a
constant hyperplane distance (o(¢) = const.) to obtain Egs.

(9), which corresponds to Eq. (6).
6 (£) = $ak () = Sa (Aaxa () + bathy (£)) = 0. (8)
w (t) =—kox,(t),

ky= (saba )7 Sa A (9)

Equation (8) corresponds to the popular equivalent

control input in Egs. (10) when the hyperplane distance
is set to zero (o(t) —» 0)!"*!. The control design using Eq.
(8) generalizes the constraint of the state on the

hyperplane and increases the design degrees of freedom.
x(H)= (Au — Aiok )xl(t),
kppm = (Szbz )71 |:(SIA11 + 5oy ) - (S1A12 + 52A22)55151J~ (10)

The second step is a nonlinear control design to restrain
the state of the switching hyperplane. A smoothing
function is considered to obtain the following equation
for the constrained control input (nonlinear feedback

control input) «,(¢) in the hyperplane %

: (11)

where a and ¢ respectively represent the sliding mode
control gain a [Nm], and the mitigation coefficient ¢ is
introduced to suppress chattering. Moreover, o(t) based
on Eq. (5) is the inner product of the hyperplane normal
vector s, and expanded state variable X,(t). Setting the
sliding mode control gain « and the mitigation coefficient
to suppress chattering ¢ enable the design of the

nonlinear control input #,(z).

Figure 4 shows a block diagram summarizing the entire

control system based on the proposed two-step design.

Disturbance
Hakes Plant
= ¥p(t)
*a(t) State vector
u, (t) a(t) o(t) augmentation
- le®)|+& Sa

Fig. 4 Block diagram of the robust control system
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The most important factor in FSLQ control is the fall
prevention of the vehicle. Therefore, the weights were set
only to the vehicle roll angle and its derivative. Even if the
weights of the elements related to the AMCES angle and
the frequency shaper element are set to O, the purpose of
the control, such as fall prevention and residual mode
suppression, works well. The weight to the control input
is set to 1, specifically, @,=diag[1 X 10* 1 X 10°0 0 0 0],

7,=1.
|
30 Pole
® O FsLQ
207} X SMC
t 10}
o
&
g 0 ® 0
£
op
(]
£-10t
-20
®
_30 L 1 L i

-25 -20 =15 -10 =] 0
Real part

Fig. 5 FSLQ closed-loop poles and
hyperplane design poles

For the hyperplane design of the SMC, we applied a pole
placement design using five poles (Fig. 5) with the origin
pole removed from the poles, including the feedback of
the FSLQ control. s;,k,,, and |s,| in Eqgs. (7) are 1, [-1.3 X
10° -2.7x10* 2.4x10* 3.1 x10° 4.8x10'l and
1.35 X 10°, respectively where |s,| is the hyper plane
normal vector length. The equivalent control input ()
was used in Egs. (9). The sliding mode control gain o of
the nonlinear control input «,(t) was set to 500 Nm,
approximately twice the maximum torque of the actuator
at 298 Nm. The mitigation coefficient ¢ was set to
5.0 X 10 by trial and error, representing 37% of |s,}. In
this paper, we assumed the roll angle range and
disturbance roll torque range in which the vehicle can
avoid overturning. Accordingly, « and ¢ are adjusted so
that the nonlinear control input becomes the maximum
value of the actuator at the limited boundary. Large
mitigation coefficient is also intended to suppress

unmodeled higher-order vibration modes.

1 9 YAMAHA MOTOR TECHNICAL REVIEW

SIMULATIONS,AND,EXRERIMENI;S

All simulations and experiments were performed using
the same parameters. The sampling and control periods

were set to 1.0 ms.

The simulation and experiment results were evaluated by
applying two types of disturbances. Figure 6 shows an
experiment simulating the left-right shift of the center of
gravity of the rider. The disturbance was a bump
disturbance where a maximum of 150 Nm was loaded on
the AMCES shaft in 0.5 s and unloaded in 0.5 s, and
,(t) =150 cos®(xt / 2) .

Fig. 6 Experiment applying a disturbance
to the AMCES shaft

Figure 7 shows an experiment simulating the effect of a
crosswind with a wind speed of 6 m/s. A 5 kg weight was
placed at the end of the handle. Hereafter, the experiment
in Fig. 6 is referred to as disturbance(a), and the

experiment in Fig. 7 is referred to as disturbance(b).

Fig. 7 Experiment applying a weight to the handle end
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5.1. Simulations

Figure 8 shows the results for disturbance(a). The
disturbance torque (black dashed line) to the AMCES axis
was applied counterclockwise for 2 s after starting the
experiment and clockwise 7 s later. With only minor loop
control (blue one-dot chain line), there was no plant
control input u,(t). The maximum roll angle is 2.50°, and
the roll angle does not completely converge to the origin
in 4 s. With FSLQ control (blue dashed line), the
Nm (47%

compensation), the maximum roll angle is 1.45° (42%

maximum plant control input is 71

improvement), and the roll angle completely converges in
4 s. With SMC (solid red line), the maximum plant control
input is 128 Nm (86% compensation), the maximum roll
angle is 0.65° (74% improvement), and the roll angle

completely converges within 4 s.

Roll angle of the vehicle to the AMCES shaft load at standing still

''''' Min. ---FSLQ — SMC ---Dist.

Filter output torque [Nm] ”
100 - /‘\.\ 4
0 . N~ D Pt
v »

-100 - B 1

Disturhant;é torque [Nm]‘

0 2 4 6 8 10
Time [s]

-200

Fig. 8 Simulation of applying a bump disturbance
to the AMCES shaft in the stationary state

Figure 9 shows the results of the disturbance(b). A 5 kg
weight was placed at the end of the handle and stabilized
with only minor loop control, and each control was
started after 5 s. With FSLQ control, the improvement in
the rolling angle is 0.21° (12.6% improvement). With the
SMC, the improvement is 0.97° (58.5% improvement). In
addition, SMC is 4.6 times better than the FSLQ control.

Roll angle of the vehicle to the handle-end load at standing still
<= Min. = == FSLQ — SMC

Only minor loop

Roll angle [deg]

150

100 -
Only minor loop
50 -

Filter output torque [Nm]

50 L L H L

0 2 4 6 8 10
Time [s]

Fig. 9 Simulation of load at end of handle
in the stationary state

Figure 10 shows the time transition of the state in SMC
using a scatter diagram. The rolling angle and AMCES
rotation angle (blue line), hyperplane (black dashed line),
and hyperplane distance o(¢) (red dashed line) are plotted.
For the hyperplane, zeros were assigned to state variables
other than the rolling angle and AMCES rotation angle. The
state was controlled to approach the hyperplane immediately

after starting the control and then to the origin.

Compensation for handle load using SMC method

— — — — Hypemlane -1
10 ——— State P
— — — — Hypemlane distance - 7
8t
"of
o
S 6
o~
-3
4t
2|
0 1 1 1 1
0 0.5 1 15 2

Fig. 10 Time transition of vehicle attitude with
the handle-end load in SMC

Figure 11 details Fig. 10 and plots the roll angle, AMCES
angle, frequency shaping control input, hyperplane distance,
equivalent control input and nonlinear control input. At
the start of control, the nonlinear control input acts more
dominantly than the equivalent control input and the AMCES
angle increases. After that, the vehicle roll angle decreases
as the AMCES angle increases. The SMC compensates for
the load on the handle end with a nonlinear control input

that constrains the state variables to the hyperplane.

YAMAHA MOTOR TECHNICAL REVIEW
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10 Hyperplane distance and torque for handle—end load at stationaly state

i q

S5F 1 lﬂ_
. ot —
i -
H . .

O Angle [deg] |

200 T T T T

Control input‘ torque [Nm]

x10*

-2
4}
—6 | Hyperplane distance i

Torque [Nm]l th | ]

2 4 6 8 10
Time [s]

Fig. 11 Time series response in SMC to the handle-end
load at stationary state: roll angle, AMCES angle,
frequency shaping control input, hyperplane distance,
equivalent control input and nonlinear control input

-200
0

5.2. Experiments
In the stationary state, disturbance(a) and disturbance(b)
were experimented. However, in the low-speed driving

condition, only disturbance(a) was experimented.

5.2.1. Experiments on a vehicle stationary state

Figure 12 shows the experimental results for disturbance(a)
in the stationary state. With only minor loop control, the
maximum rolling angle is 2.2°, and the rolling angle does
not converge to the origin in 4 s. In contrast, with FSLQ
control, the maximum rolling angle is 1.1° (50%
improvement), and the rolling angle converges to the
origin in 4 s. With SMC, the maximum rolling angle is
0.6° (73% improvement), and the rolling angle converges
to the origin in 4 s. For all controls, the simulation and

experimental results shown in Fig. 7 were correlated.

Roll angle of the vehicle to the AMCES shaft load at standing still
----- Min. ---FSLQ — SMC --- Dist.

™

2 Roll angle [deg]

-100

Disturbance torque [Nm]

0 2 4 6 8 10
Time [s]

-200

Fig. 12 Experiment involving applying a bump
disturbance to the AMCES shaft at stationary state
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Figure 13 shows the experimental results for disturbance(b)
in the stationary state. With FSLQ control, almost no
control input was required when the control was started,
and the rolling angle hardly improved. With SMC, a
control torque of 150 Nm was input at the start of the
control, and the rolling angle improved by 50% in 1 s.
Similar to the previous experiments, for all controls, the
simulation and experimental results shown in Fig. 8 were

correlated.

Roll angle of the vehicle to the handle—end load at standing still
---FSLQ —SMC

Only minor loop

Roll angle [deg]
0 .
200

150 -

100 -
Only minor loop
50 -

Filter output torque [Nm]
2 4 6 8 10
Time [s]

-50
0

Fig. 13 Experiment involving applying a disturbance to
the handle-end load at stationary state

5.2.2. Experiments on a vehicle low-speed driving

Figure 14 shows the experimental results for
disturbance(a) during low speed straight driving at 0.5
km/h. With only a minor loop control, the maximum
rolling angle was 2.9°, which was 32% lower than that of
2.2° in the stationary state. In addition, the convergence
of the rolling angle owing to the disturbance was worse
in low-speed driving than in the stationary state. This is
because the AMCES structure and the driving force push
the vehicle sideways. With the FSLQ control, the
maximum rolling angle was 1.2° (58% improvement), but
the rolling angle did not converge to the origin. With the
SMC, the maximum rolling angle was 0.8° (72%
improvement), and the rolling angle converged to the
origin. The SMC estimated the disturbance more
accurately than the FSLQ control, and the timing to start
the compensation was earlier. The superiority of SMC
over FSLQ control during low-speed driving tends to be

the same as that in the stationary state.
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Roll angle of the vehicle to the AMCES shft at running

3
2 - Roll angle [deg]

12
/ N

-100 -

Disturbance torque [Nm]

-200
0 2 4 6 8 10

Time [s]

Fig. 14 Experiment results for bump disturbance applied
during straight line low-speed driving

Figure 15 shows the time transition of the SMC during
low-speed driving. As shown in the block diagram in Fig.
4, the sum #,(¢) of the equivalent control input #(t) and
the nonlinear control input #,(¢) is the input of the
frequency shaper. The frequency shaper removes the
high-frequency control input and becomes the plant
control input #y(¢). The u#(f) responded well to the
applied torque disturbance #,(¢), and «,(t) was highly
correlated with #,(¢). When the state began to be peeled
off from the hyperplane by the applied disturbance
torque, the compensation by the nonlinear control input
,(t) had already started, and the nonlinear control input
u,(t) almost compensated the applied disturbance torque
uy(t).

Straight driving with SMC method
T

sE
® —l
Ty —— el e, oo e |
=TT
=
o
sl
o —uf -—ud .
3E - i | _ | s |
§= D-—L——-«-\\/ --------- e St TN e
= N
—-200
|

Time [s]

Fig. 15 Experiment results for bump disturbance applied
during driving at a speed of 0.5 km/h

In addition to straight-line driving, only SMC permitted

drive stably in a turning examination at a steering angle

of 30° (turning radius of 3 m) at a speed of 0.5 km/h.

And the control input for bump disturbance of SMC was

the same as in a straight-line driving!'®.

CONCLUSION

This paper introduced the robust control problem for a

motorcycle without falling to a new mobility system.
Improving motorcycles in a stationary state or during
low-speed driving is a non-negligible factor for future
mobile societies. Moreover, how to ensure low-speed
driving stability using the robotic motorcycle was
discussed. This motorcycle is equipped with a new axis of
rotation named AMCES and can change the position of
the total center of gravity. We developed a system model
that included stabilizing the PID control, as previously
demonstrated. In addition, a sliding mode controller
(SMC) with a frequency-shaped optimal regulator (FSLQ)
was developed to suppress the effects of structural and
nonstructural uncertainties. The effectiveness of the
developed approach was verified by a low-speed driving

experiment using a real robotic motorcycle.

In the future study, the nonlinearity of the controlled
object may be an important subject. When the vehicle
stands up from the kickstand state, the AMCES axis
rotates 50°. Centrifugal force due to vehicle speed cannot
be ignored when turning. If the roll angle can be properly
controlled, the performance of the vehicle dynamics will

be improved even at low-speed driving.
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