Note 1. For the details of the semi-absolute model, please refer to P.33. RDV-P has an incremental model only.
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P.594 for details.
Note 3. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select 3K/5K/10K. On the RCX221HP, the standard cable is a flexible cable, so enter 3L/5L/10L when ordering.
Note 4. These controllers can be mounted on DIN rails. See P.498 for details.
Note 5. Select this selection when using the gateway function. For details, see P.60.

Note 1. For the details of the semi-absolute model, please refer to P.33. RDV-P has an incremental model only.
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P.594 for details.
Note 3. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select 3K/5K/10K. On the RCX221HP, the standard cable is a flexible cable, so enter 3L/5L/10L when ordering.
Note 4. These controllers can be mounted on DIN rails. See P.498 for details.
Note 5. Select this selection when using the gateway function. For details, see P.60.

Ordering method

Single carriage model

Model
- MF75
- MF75D

Cable carrier entry location

- RH: Horizontal, right
- LH: Horizontal, left

Specifications

Model
- MF75
- MF75D

Driving method
- Servo control linear motor with fall magnet

Repeatability (μm)
- +/−5

Scale (μm)
- Magnetic type: resolution of 1

Maximum speed (mm/sec)
- 2500

Rated thrust (N)
- 260

Maximum payload (kg)
- 160

Stroke (mm)
- 1000 to 4000
- 680 to 3680

Linear guide
- 4 rows of circular arc grooves × 2 rail

Maximum cross-section outside dimensions (mm)
- W150×H100 (except the cable carrier section)

Total length (mm)
- Stroke+660

Cable length (m)
- Standard: 3.5m
- Option: 5m, 10m

Controller
- MR type
- MF type

Operating method
- Programming / I/O point trace / Remote command / Operation using RS-232C communication

Static loading moment

Controller
- SR1-P, RCX221, TS-P, RDV-P

Cable carrier

- Cable and air tube guide: Flexible cable x 2, Air tube x 3

Controller
- SR1-P 516
- RCX221 524
- TS-P 490
- RDV-P 504
MF75/MF75D

MF75 single carriage horizontal model

Remove two top caps. Insert 20 bolts from the lateral side of axis.
Removal cap from each tool hole.

Cross-section of cable carrier

Cross-section of H-H

Detail of section G

Effective stroke

Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. The origin is set on the L side (as shown above) at the time of shipment. It can be changed to the R side by parameter setting.

Note 3. The length under head of M8 hex socket head bolts for installing the robot body must not be longer than 30mm.

Note 4. For models with a 3,000mm or longer stroke, a roller is installed to prevent the cable carrier from sagging.

Note 5. When using a Ø10 H7 hole, do not insert the pin more than the depth stated in the drawing. Otherwise, the motor may break.

Note 6. Depending on the stroke and the operating conditions, the cable carrier bending radius might be larger, making it higher than the dimensions shown in the diagram.

MF75D double carriage model

Remove two top caps. Insert ball from the lateral side of axis.
Removal cap from each tool hole.

Cross-section of cable carrier

Cross-section of H-H

Detail of section G

Effective stroke

Note 1. Position of table carriage when returned to the origin.
Note 2. Stop positions are determined by the mechanical stoppers at both ends.

Note 3. The length under head of M8 hex socket head bolts for installing the robot body must not be longer than 30mm.

Note 4. For models with a 3,000mm or longer stroke, a roller is installed to prevent the cable carrier from sagging.

Note 5. When using a Ø10 H7 hole, do not insert the pin more than the depth stated in the drawing. Otherwise, the motor may break.

Note 6. Depending on the stroke and the operating conditions, the cable carrier bending radius might be larger, making it higher than the dimensions shown in the diagram.