

INFORMATION

CONTENTS

CABLE

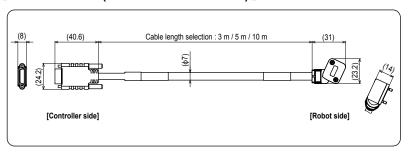
Robot cable table ······732 Single-axis robot cable ·····732
Multi-robot cable ·····738
Cartesian robot cable ·····740
SCARA robot cable·····741
Gripper cable · · · · · 741
Cable terminal table 742 PHASER relay cable 742
Connector converter cable743
Programming box converter cable ···743
I/O control converter cable ·····743
TECHNICAL
TRANSERVO RF type model selection ··· 744 Selecting a model ·······744
List of moment of inertia calculation formulas (Calculation of moment of inertia I) · · · · · · · · · · · · · · · · · ·
Kinds of loads ······745
R-axis tolerable moment of inertia and acceleration coefficient 746 How to find the inertia moment 746 Example of moment of inertia calculation 747
Circuit configuration examples748 Circuit configuration examples (TS-X/TS-P)
(RCX240)·····750

INFO	RM	ATI	ON
------	----	-----	----

Cautions regarding CE specifications ··· 751 CE marking ········751
Cautions regarding compliance with EC Directives751
Installation of external safety circuits …751
Compliance with EMC Directives ····· 751
Cautions regarding official language of EU countries ······751
Cautions on KCs (Korean Certificate Safety) specifications ·······752 About KCs·····752
About measures for KCs ······752
List of robots subject to KCs ·····752
Cautions on Korean EMC specifications ··· 754 About Korean KC······754
About Korean KC compliance ······754
List of KC compliant robots ·····754
About non-compliant models ······754
Approach to complying with EU RoHS
Directive755 EU RoHS Directive 2011/65/EU755
Addition of restricted substances to regulated substances755
Warranty 756 This warranty does not cover any failure caused by: 756
The following cases are not covered under the warranty:756
Repeatability positioning accuracy757

Operating pattern factors ······75
Temperature factors ······75
Fluctuating load factors75
DISCONTINUED

MR12/MR12D · · · · · · 758	
YK400XR761	
RCX240/RCX240S ······762	


Robot cable table

The robot cable is a cable joining the robot to the controller.

■ Single-axis robot cable

YHX cable

[Encoder cable (Common for GX series)]

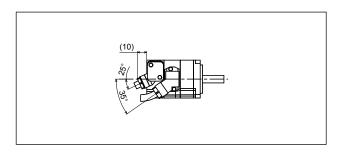

Rear Extraction specifications

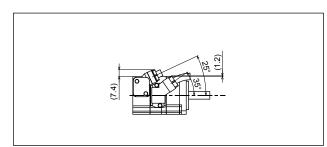
Cable length	Product model	Part No.
3m	GXCC-ENC-R3R	KES-M4751-30
5m	GXCC-ENC-R5R	KES-M4751-50
10m	GXCC-ENC-R10R	KES-M4751-A0

Front Extraction specifications

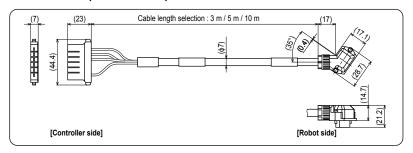
_	-	
Cable length	Product model	Part No.
3m	GXCC-ENC-R3F	KES-M4755-30
5m	GXCC-ENC-R5F	KES-M4755-50
10m	GXCC-ENC-R10F	KES-M4755-A0

[Power cable (GX05 / GX05L / GX07)]



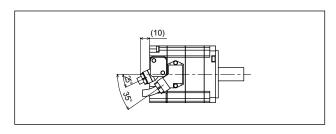

Rear Extraction specifications

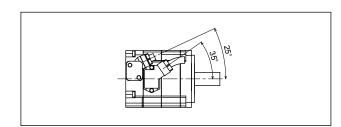
Cable length	Product model	Part No.
3m	GXCC-UVW40-R3R	KES-M4752-30
5m	GXCC-UVW40-R5R	KES-M4752-50
10m	GXCC-UVW40-R10R	KES-M4752-A0


Front Extraction specifications

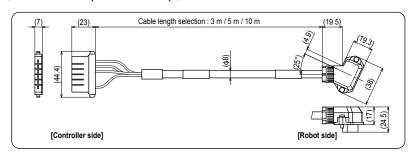
Cable length	Product model	Part No.
3m	GXCC-UVW40-R3F	KES-M4756-30
5m	GXCC-UVW40-R5F	KES-M4756-50
10m	GXCC-UVW40-R10F	KES-M4756-A0

[Power cable (GX10 / GX12)]

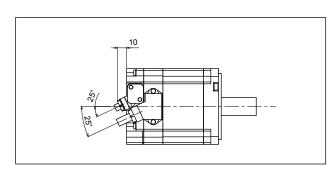



Rear Extraction specifications

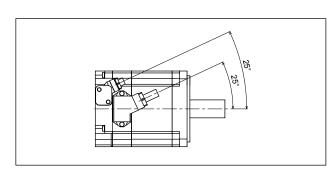
Cable length	Product model	Part No.
3m	GXCC-UVW60-R3R	KES-M4753-30
5m	GXCC-UVW60-R5R	KES-M4753-50
10m	GXCC-UVW60-R10R	KES-M4753-A0


Front Extraction specifications

Cable le	ngth	Product model	Part No.
3m		GXCC-UVW60-R3F	KES-M4757-30
5m		GXCC-UVW60-R5F	KES-M4757-50
10n	ı	GXCC-UVW60-R10F	KES-M4757-A0



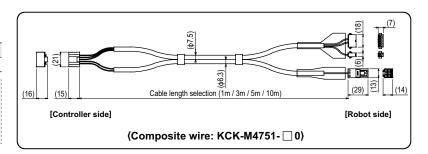
[Power cable (GX16 / GX20)]


Rear Extraction specifications

Cable length	Product model	Part No.
3m	GXCC-UVW80-R3R	KES-M4754-30
5m	GXCC-UVW80-R5R	KES-M4754-50
10m	GXCC-UVW80-R10R	KES-M4754-A0

Front Extraction specifications

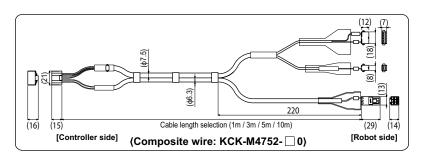
Cable length		Product model	Part No.
	3m	GXCC-UVW80-R3F	KES-M4758-30
	5m	GXCC-UVW80-R5F	KES-M4758-50
	10m	GXCC-UVW80-R10F	KES-M4758-A0



TS-S/TS-S2/TS-SD cable

[Flexible cable]

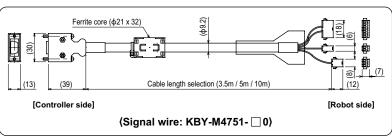
Connected robot ▷ TRANSERVO

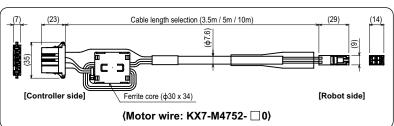

Set	Single item		
- Composite w		vire KCK-M4751- ☐ 0	
		1 3 5	Cable length 1m 3m 5m

TS-S2S cable

[Flexible cable]

Set	Single item			
-	Composite wi	re KCK-	M4752-□ 0	
Note. Notation within slot in model Within Cable length				
types is as shown at right.		1	1m	
		3	3m	
		5	5m	
		Α	10m	

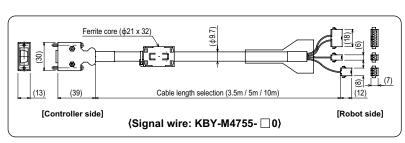

TS-X cable

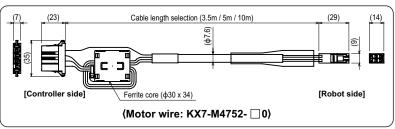

[Standard cable]

Connected robot \triangleright **FLIP-X**

Set	Single item		
		KBY-M4751- ☐ 0	
KD1-W4710- U	Motor wire	KX7-M4752- ☐ 0	

	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m



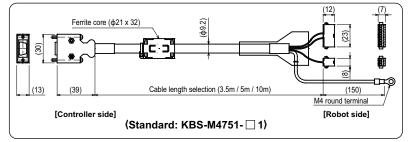

[Flexible cable]

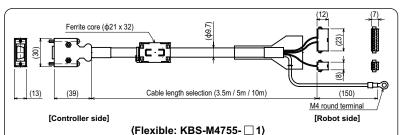
Connected robot ▷ FLIP-X

Set	Single item				
KBY-M4720- □ 0	Signal wire KB		KBY	∕-M4755- 🗌 0	
KB1-W4720- LJ U	Motor wire KX7-		-M4752- □ 0		
Note. Notation within slot in model			thin 🗌	Cable length	
types is as shown at right.			3	3.5m	
			5	5m	

10m

TS-P cable

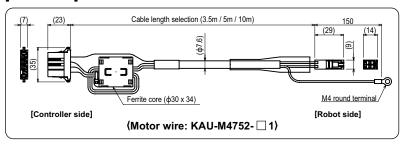

[Standard cable]


Connected robot ▷ PHASER

Set	Single item		
KBS-M4710- □ 0	Signal wire	KBS-M4751- ☐ 1	
	Motor wire	KAU-M4752- 🗌 1	

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

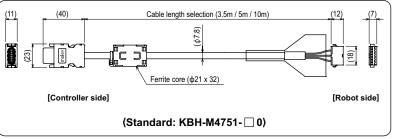
Connected robot ▷ PHASER

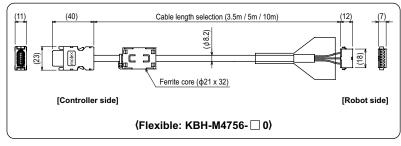
Set		ingle item
KBS-M4720- □ 0	Signal wire	KBS-M4755- ☐ 1
NB3-IVI472U- □ U	Motor wire	KAU-M4752- 🗌 1

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

RDV-X cable (No-brake specifications)

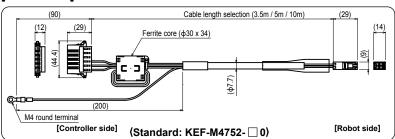

[Standard cable]


Connected robot \triangleright **FLIP-X**

Set Single item		
	Signal wire	KBH-M4751- □ 0
KEF-M4710- □ 0	Motor wire	KEF-M4752- 🗌 0
	I/O connector	KBH-M4420-00

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

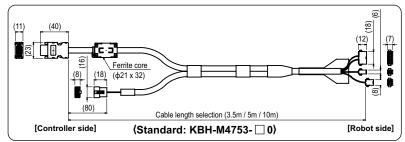
Connected robot ▷ FLIP-X

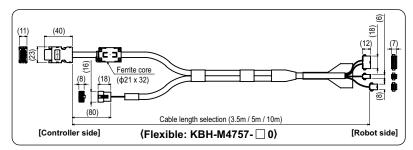
Set	Single item		
KEF-M4730- ☐ 0		KBH-M4756- ☐ 0	
	Motor wire	KEF-M4752- 🗌 0	
	I/O connector	KBH-M4420-00	

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

RDV-X cable (models with brake and sensor)

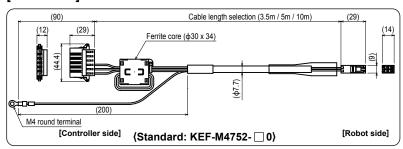

[Standard cable]


Connected robot ▷ FLIP-X

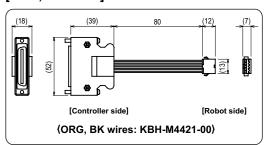
Set	Single item		
KEF-M4720- ☐ 0	Signal wire	KBH-M4753- □ 0	
	Motor wire	KEF-M4752- □ 0	
	ORG, BK wires	KBH-M4421- 00	

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

Connected robot ▷ FLIP-X

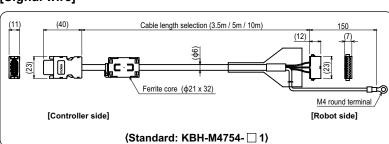

Set	Single item		
KEF-M4740- ☐ 0	Signal wire	KBH-M4757- □ 0	
	Motor wire	KEF-M4752- ☐ 0	
	ORG, BK wires	KBH-M4421-00	

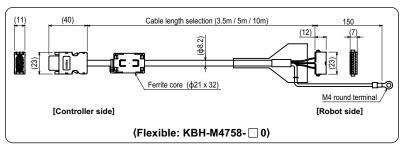
	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

[ORG, BK wires]

RDV-P cable

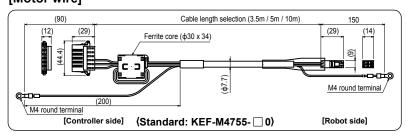

[Standard cable]


Connected robot ▷ PHASER

Set	Single item		
KEF-M4711- 🗌 0	Signal wire	KBH-M4754- ☐ 1	
	Motor wire	KEF-M4755- □ 0	
	I/O connector	KBH-M4420-00	

Note. Notation within slot in model	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

Connected robot ▷ PHASER

Set	Single item		
KEF-M4712- ☐ 0	Signal wire	KBH-M4758- ☐ 0	
	Motor wire	KEF-M4755- □ 0	
	I/O connector	KBH-M4420-00	

,		
	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

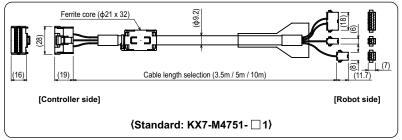
(150)

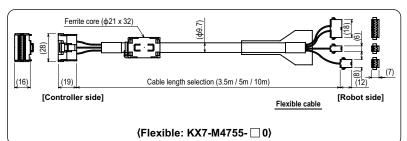
M4 round terminal

[Robot side]

(12)

SR1-X cable

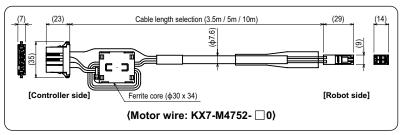

[Standard cable]


Connected robot ▷ FLIP-X

Set	Single item	
		KX7-M4751- ☐ 1
	Motor wire	KX7-M4752- ☐ 0

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

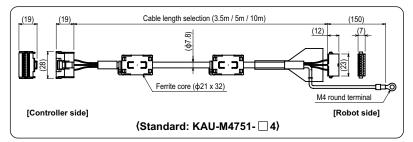
Connected robot ▷ FLIP-X

Set	Single item		
KX7-M4720- □ 0	Signal wire	KX7-M4755- ☐ 0	
KX7-W4720- 🗆 U	Motor wire KX7-M4752- □ 0		

Note. Notation within slot in model	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

SR1-P cable


[Standard cable]

Connected robot ▷ PHASER

Set	Single item		
KAU-M4710- □ 0		KAU-M4751- 🗌 4	
KAU-1014710- 🗆 0	Motor wire	KAU-M4752- 🗌 1	

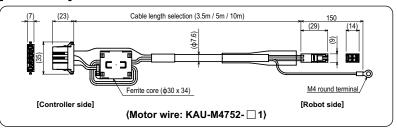
Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]

Cable length selection (3.5m / 5m / 10m)

Ferrite core (\$\phi21 x 32)

[Flexible cable]


Connected robot ▷ PHASER

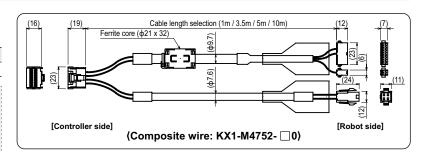
Set	Single item			
KAU-M4720- □ 0	Signal w	rire	KAU	-M4755- 🗌 0
KAU-IVI472U- □ U	Motor w	Motor wire		-M4752- 🗌 1
Note. Notation within slot		Wit	hin 🗌	Cable length
Note. Notation within slot types is as shown a		Wit	hin 🔲	Cable length 3.5m
		Wit	hin 3 5	

[Motor wire]

[Controller side]

(19)

(Flexible: KAU-M4755- □ 0)


ERCD / ERCX cable

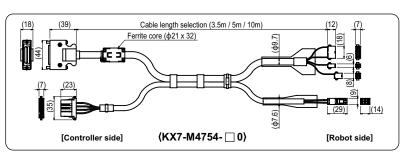
[Flexible cable]

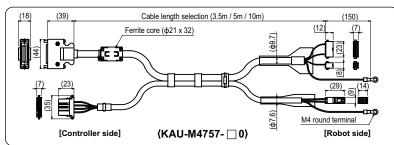
Connected robot ▷ FLIP-X

Set	Single item		
-	Composite wire	KX1-M4752- ☐ 0	

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	1	1m
	3	3.5m
	5	5m
	Α	10m

■ Multi-robot cable


Single axis multi-robot cable

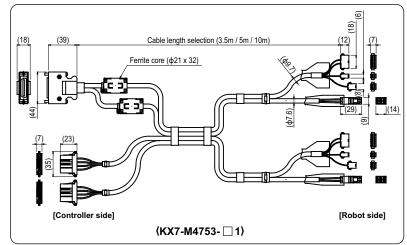

[Flexible cable]

Connected controller ▷ RCX240

Robot	Cable type
FLIP-X	KX7-M4754- ☐ 0
PHASER	KAU-M4757- ☐ 0

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

2-axes multi-robot cable

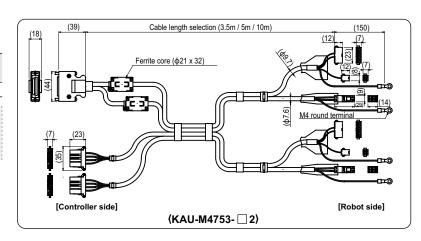

[Flexible cable]

Connected controller ▷ • RCX221 / RCX222

- RCX240 / RCX320 / RCX340
- DRCX

Robot combinations		Cable type	
First axis	Second axis	Cable type	
FLIP-X	FLIP-X	KX7-M4753- ☐ 1	

Note. Notation within slot in model	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	A	10m

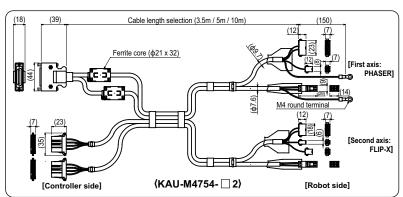


[Flexible cable]

Connected controller > RCX221 / RCX240

ble type
ible type
M4753- 🗌 2

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

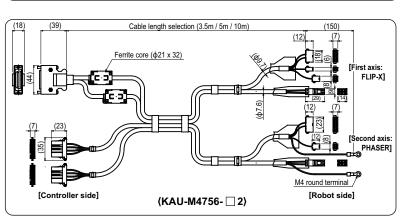


[Flexible cable]

Connected controller ▷ RCX221 / RCX240

Robot con	nbinations	Cable type	
First axis	Second axis		
PHASER	FLIP-X	KAU-M4754- ☐ 2	
Note. Notation within slot in model Within ☐ Cable length			

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m



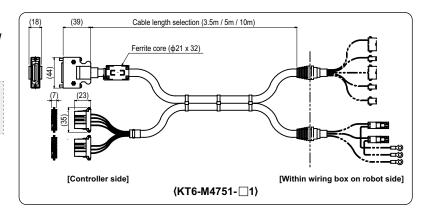
[Flexible cable]

Connected controller ▷ RCX221 / RCX240

Robot con	nbinations	Cable tune
First axis	Second axis	Cable type
FLIP-X	PHASER	KAU-M4756- ☐ 2

Note. Notation within slot in model	Within	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

Cartesian robot cable

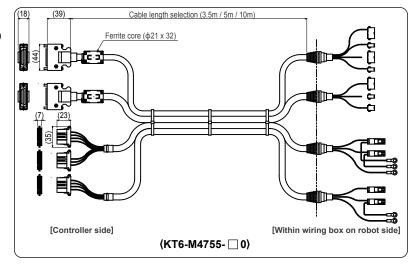

Cartesian 2-axes cable

[Standard cable]

Connected controller ▷ DRCX / RCX222 / RCX320 / RCX340

Type	KT6-M4751- ☐ 1		
Note. Notation within slot in model types is as shown at right.		Within [Cable length
		3	3.5m
		5	5m

10m

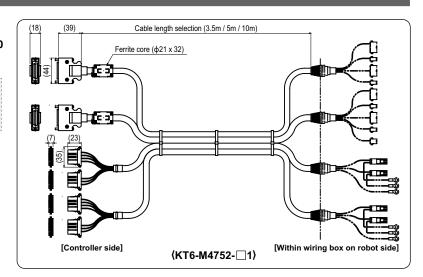

Cartesian 3-axes cable

[Standard cable]

Connected controller ▷ RCX142 / RCX240 / RCX340

Type	KT6-M4755- ☐ 0	

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	A	10m


Cartesian 4-axes cable

[Standard cable]

Connected controller ▷ RCX142 / RCX240 / RCX340

	·
Type	KT6-M4752- ☐ 1

·		
Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

SCARA robot cable

Note. SCARA robot cables all use the same size connectors but different models use different cables.

[Standard cable]

Connected robot > • YK-XG (No including YK120XG / YK150XG / YK180XG)

- YK-XGS
- YK-TW
- YK400XR / YK-XE

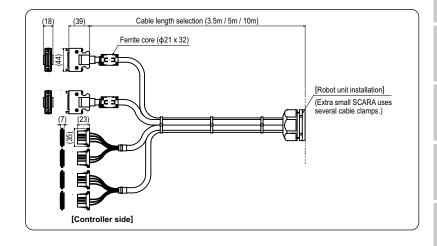
Cable length	Туре
3.5m	KBF-M6211-00
5m	KBF-M6211-10
10m	KBF-M6211-20

Connected robot ▷ • YK120XG

- YK150XG
- YK180XG

Cable length	Туре
2m	KCB-M6211-31
3.5m	KCB-M6211-01
5m	KCB-M6211-11
10m	KCB-M6211-21

Connected robot ▷ • YK-XGP


• YK-XGC

Cable length	Type				
3.5m	KDP-M6211-00				
5m	KDP-M6211-10				
10m	KDP-M6211-20				

Connected robot \triangleright • YK-XC (Large type)

- YK-XS
- YK-XP

Cable length	Туре					
3.5m	KN3-M6211-00					
5m	KN3-M6211-10					
10m	KN3-M6211-20					

Cable length	Туре
3.5m	KN6-M6211-00
5m	KN6-M6211-10
10m	KN6-M6211-20

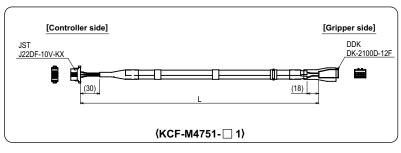
Connected robot ▷ • YK1200X

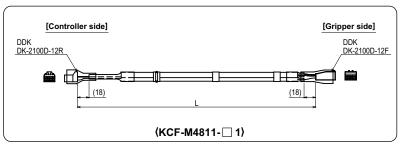
Connected robot ▷ • YK180X

- YK220X
- YK180XC
- YK220XC

Cable length	Type
3.5m	KBE-M6211-00
5m	KBE-M6211-10
10m	KBE-M6211-20

■ Gripper cable

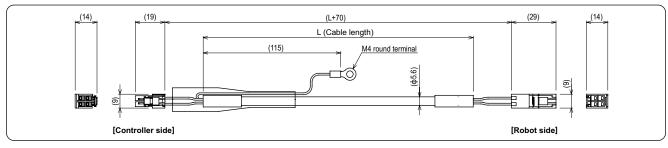

Robot cable [Flexible cable]


Cable length	Туре
3.5m	KCF-M4751-31
5m	KCF-M4751-51
10m	KCF-M4751-A1

Relay cable [Flexible cable]

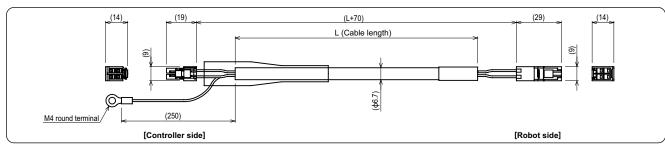
Type	KCF	-M48	311-[_				
Within 🗌	1	2	3	4	5	6	7	8
Length (mm)	0.5	1	1.5	2	2.5	3	3.5	4

Note. Be sure to adjust the total length of the robot (for gripper) cable and relay cable to 14m or less.

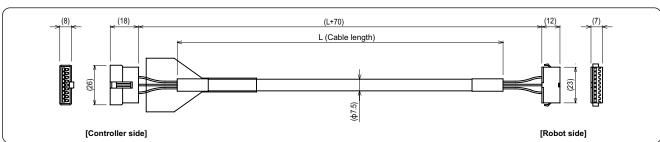

Cable terminal table

This is a relay cable used between the robot body and the robot cable such cable carrier wiring, etc.

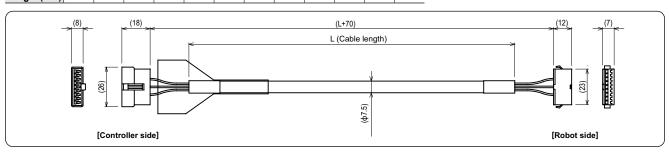
■ PHASER relay cable


Motor wire (350mm to 1450mm) Note. Common to MR types and MF types

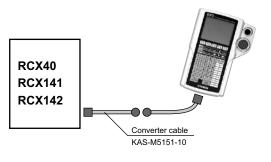
Туре	KAU-M4813- ☐ 0											
Within 🗌	1	2	3	4	5	6	7	8	9	Α	В	С
Length (mm)	350	450	550	650	750	850	950	1050	1150	1250	1350	1450


Motor wire (1500mm to 2600mm) Note. Not usable on MR type

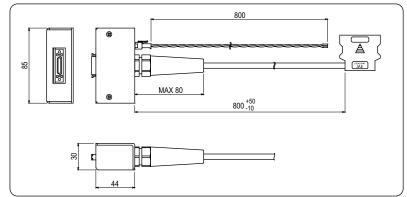
Туре	KBD-M4813- ☐ 0											
Within 🗌	6	7	8	9	Α	В	С	D	Е	F	G	М
Length (mm)	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600


Signal cable (350mm to 1450mm) Note. Common to MR types and MF types

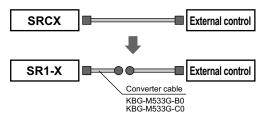
Туре	KA	NU-M4	812- 🗌]1								
Within 🗌	1	2	3	4	5	6	7	8	9	Α	В	С
Length (mm)	350	450	550	650	750	850	950	1050	1150	1250	1350	1450


Signal cable (1500mm to 2600mm) Note. Common to MR types and MF types

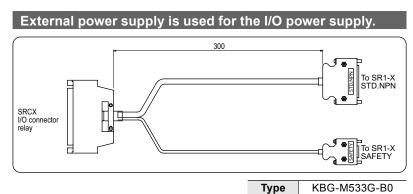
Туре	KE	BD-M4	812- 🗌] 1								
Within 🗌	6	7	8	9	Α	В	С	D	Е	F	G	J
Length (mm)	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600

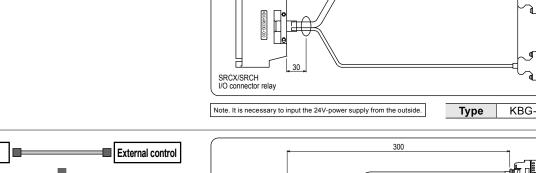

Connector converter cable

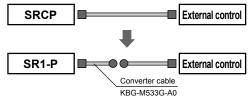
■ Programming box converter cable



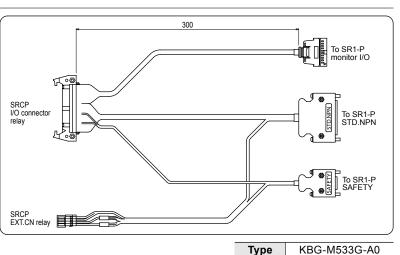
Converter cable for operating the RCX40, RCX141, RCX142 by RPB.


KAS-M5151-10 Type


I/O control converter cable

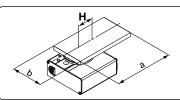


Converter cable allows connecting to the SRCX connector when system using the SRCX was changed to the SR1-X.



Internal power supply of the SRCX is used for the I/O power supply. 30 (Only sheath is removed.) To SR1-X STD.NPN SRCX/SRCH I/O connector relay KBG-M533G-C0

Converter cable allows connecting to the SRCP connector when system using the SRCP was changed to the SR1-P.



Type

TRANSERVO RF type model selection

Selecting a model

Operating conditions

Rotary type: RF03 Installation posture: Horizontal Kind of load: Inertial load Ta

Shape of load: 150 mm x 80 mm (rectangular plate)

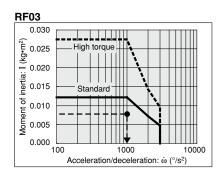
Oscillating angle θ : 180°

Acceleration/deceleration α: 1,000 °/sec2

Speed ω: 420 °/sec Load mass m: 2.0 kg

Distance between shaft and center of gravity H: 40 mm

Step 1 Moment of inertia Acceleration/deceleration


- Calculating the moment of inertia.
- 2 Checking the moment of inertia vs. acceleration/deceleration.
 Select an appropriate model from the moment of inertia vs. acceleration/deceleration while referring to the moment of inertia vs. acceleration/deceleration graph.

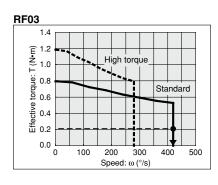
Calculation formula

 $I = m \times (a^2 + b^2)/12 + m \times H^2$

Selection example

$$\begin{split} I = & 2.0 \times (0.15^2 + 0.08^2) / 12 + 2.0 \times 0.04^2 \\ = & 0.00802 kg \bullet m^2 \end{split}$$

Step 2 Selecting a torque


- Kinds of loads
 - Static load: T
 - · Resistance load: Tf
 - Inertial load: T
- Checking the effective torque Check that the speed can be controlled by the effective torque by the speed while referring to the effective torque vs. speed graph.

Calculation formula

Effective torque≥Ts
Effective torque≥Tf x 1.5
Effective torque≥Ta x 1.5

Selection example

Inertial load: Ta Ta×1.5= $I \times \dot{\omega} \times 2\pi/360 \times 1.5$ =0.00802×1,000×0.0175×1.5 =0.21N•m

Step 3 Allowable load

- Checking the allowable load
 - Radial load
 - Thrust load
 - Moment

Calculation formula

Allowable thrust load≥m×9.8 Allowable moment≥m×9.8×H

Selection example

Thrust load 2.0×9.8=19.6N<Allowable load OK Allowable moment 2.0×9.8×0.04 =0.784N•m<Allowable moment OK

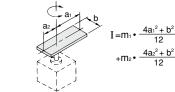
■ List of moment of inertia calculation formulas (Calculation of moment of inertia I)

■ Thin rod

Position of rotation axis: Passes through one end perpendicularly to the rod.

2 Thin rod

Position of rotation axis: Passes through the center of gravity of the rod.


Thin rectangular plate (rectangular parallelepiped)

Position of rotation axis: Passes through the center of gravity of the rod.

I: Moment of inertia m: Load mass 4 Thin rectangular plate (rectangular parallelepiped)

Position of rotation axis: Passes through one end perpendicularly to the plate.

(Same position for the rectangular parallelepiped with the plate thickened.)

Thin rectangular plate (rectangular parallelepiped)

Passes through one end perpendicularly to

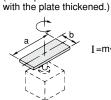
(Same position for the rectangular parallelepiped

Position of rotation axis:

 $I=m^{\bullet}\frac{a^{\circ}}{12}$

6 Cylinder (including thin disc)

Position of rotation axis: Central axis

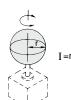

7 Solid ball

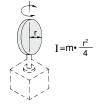
 $I=m^{\frac{a^2}{12}}$

Position of rotation axis: Diameter

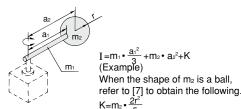
13 Thin disc

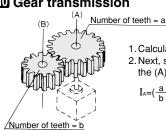
Position of rotation axis: Diameter




the plate.

$$I = m \cdot \frac{a^2 + b^2}{12}$$





Second Lever Le

ID Gear transmission

1. Calculate the moment of inertia I_B around the (B) axis. 2. Next, substitute $I_{\mbox{\scriptsize B}}$ for the moment of inertia around

the (A) axis to calculate IA as follows.

$$I_A = (\frac{a}{b})^2 \cdot I_B$$

Kinds of loads

	Kind	ls of loads				
Static load: Ts	Static load: Ts Resistance load: Tf					
Only push force is needed (clamp, etc.).	Gravity or friction force appl	lies in the rotation direction.	Load with inertia ne	eds to be rotated.		
L F	<gravity applies.=""></gravity>	<friction applies.="" force=""></friction>	<rotation center="" gravity="" load.="" matches="" of="" the="" to=""></rotation>			
Ts = F•L Ts : Static load (N•m) F : Clamp force (N) L : Distance from oscillating center to clamp position (m)	, ,,	9.8 (m/s²) ating center to gravity	Ta = $I \cdot \dot{\omega} \cdot 2 \pi / 360$ (Ta = $I \cdot \dot{\omega} \cdot 0.0175$) Ta: Inertial load (N·m) I: Moment of inertia (ki $\dot{\omega}$: Acceleration/deceler $\dot{\omega}$: Speed (°/sec)	• ,		
Required torque T = Ts	Required torque	$T = Tf \times 1.5 \text{ Note 1})$	Required torque	$T = Ta \times 1.5$ Note 1)		

· Load becomes the resistance load.

Gravity or friction force applies in the rotation direction.

Example 1) The rotation center of the rotation axis does not match to the center of gravity of the load in the horizontal direction.

Example 2) The load slips on the floor to move it. The required torque is the total of the resistance load and inertial load.

 $T = (Tf + Ta) \times 1.5$

· Load does not become the resistance load.

Gravity or friction force does not apply in the rotation direction.

Example 1) The rotation axis is vertical.

Example 2) The rotation center of the rotation axis does not match to the center of gravity of the load in the horizontal direction.

The required torque is only the inertial load.

 $T = Ta \times 1.5$

Note 1) An allowance is required for Tf and Ta to make the speed adjustment.

R-axis tolerable moment of inertia and acceleration coefficient

How to find the inertia moment

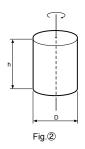
The tool and work are not usually a simple shape so calculating the inertia moment is not easy.

As a method, the load is replaced with several factors that resemble a simple form for which the moment of inertia can be calculated. The total of the moment of inertia for these factors is then obtained. The objects and equations often used for the calculation of the moment of inertia are shown below. Incidentally, there is the following relation: J (kgfcmsec²) = I (kgm²) x 10.2

[1] Moment of inertia for material particle

The equation for the moment of inertia for a material particle that has a rotation center such as shown in Fig.

1) is as follows: This is used as an approximate equation when x is larger than the object size.


[2] Moment of inertia for cylinder (part 1)

The equation for the moment of inertia for a cylinder that has a rotation center such as shown in Fig. 2 is given below.

$$I = \frac{\rho \pi D^{4}h}{32} = \frac{mD^{2}}{8} \quad (kgm^{2})$$

$$J = \frac{\rho \pi D^{4}h}{32g} = \frac{WD^{2}}{8g} \quad (kgfcmsec^{2})$$
... (3.2)

- ρ: Density (kg/m³, kg/cm³)
- g: Gravitational acceleration (cm/sec2)
- m: Mass of cylinder (kg)
- W: Weight of cylinder (kgf)

[3] Moment of inertia for cylinder (part 2)

The equation for the moment of inertia for a cylinder that has a rotation center such as shown in Fig. 3 is given below.

$$I = \frac{\rho \; \pi \, D^2 h}{16} \; \left(\frac{D^2}{4} + \frac{h^2}{3} \right) = \frac{m}{4} \; \left(\frac{D^2}{4} + \frac{h^2}{3} \right) \; (kgm^2)$$

$$J = \frac{\rho \; \pi \, D^2 h}{16g} \; \left(\frac{D^2}{4} + \frac{h^2}{3} \right) = \frac{W}{4g} \; \left(\frac{D^2}{4} + \frac{h^2}{3} \right) \; (kgfcmsec^2)$$
... (3.3)
$$\rho : \text{Density (kg/m^3, kg/cm^3)}$$

$$g : \text{Gravitational acceleration (cm/sec2)}$$

$$m : \text{Mass of cylinder (kg)}$$

$$W : \text{Weight of cylinder (kgf)}$$

[4] Moment of inertia for prism

The equation for the moment of inertia for a prism that has a rotation center as shown in Fig. 4 is given as follows.

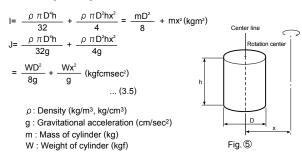
$$I = \frac{\rho \operatorname{abc} \left(\operatorname{a}^2 + \operatorname{b}^2 \right)}{12} = \frac{\operatorname{m} \left(\operatorname{a}^2 + \operatorname{b}^2 \right)}{12} \left(\operatorname{kgm}^2 \right)$$

$$J = \frac{\rho \operatorname{abc} \left(\operatorname{a}^2 + \operatorname{b}^2 \right)}{12g} = \frac{\operatorname{W} \left(\operatorname{a}^2 + \operatorname{b}^2 \right)}{12g} \left(\operatorname{kgfcmsec}^2 \right)$$

$$\dots (3.4)$$

$$\rho : \operatorname{Density} \left(\operatorname{kg/m}^3, \operatorname{kg/cm}^3 \right)$$

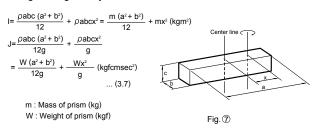
$$g : \operatorname{Gravitational acceleration} \left(\operatorname{cm/sec}^2 \right)$$


$$m : \operatorname{Mass of prism} \left(\operatorname{kg} \right)$$

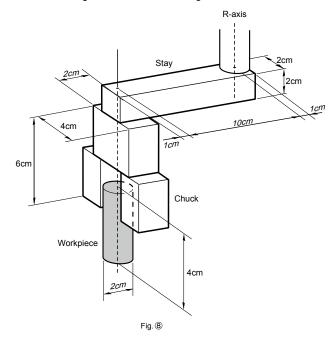
$$W : \operatorname{Weight of prism} \left(\operatorname{kgf} \right)$$

$$Fig. \text{ } \text{\textcircled{4}}$$

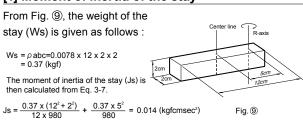
[5] When the object's center line is offset from the rotation center


The equation for the moment of inertia, when the center of the cylinder is offset by the distance "x" from the rotation center as shown in Fig. 5, is given as follows.

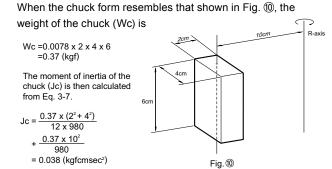
In the same manner, the moment of inertia of a cylinder as shown in Fig. 6 is given by

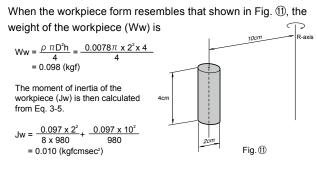

$$\begin{split} I &= \frac{\rho \; \pi \, D^2 h}{16} \; \left(\frac{D^2}{4} \; + \; \frac{h^2}{3} \right) + \frac{\rho \; \pi \, D^2 h x^2}{4} \; = \frac{m}{4} \; \left(\frac{D^2}{4} \; + \; \frac{h^2}{3} \right) + m x^2 \, (kgm^2) \\ J &= \frac{\rho \; \pi \, D^2 h}{16g} \; \left(\frac{D^2}{4} \; + \; \frac{h^2}{3} \right) + \frac{\rho \; \pi \, D^2 h x^2}{4g} \\ &= \frac{W}{4g} \; \left(\frac{D^2}{4} \; + \; \frac{h^2}{3} \right) + \frac{W x^2}{g} \; (kgfcmsec^2) \\ & \dots (3.6) \quad D \end{split}$$

In the same manner, the moment of inertia of a prism as shown in Fig. 7 is given by



Example of moment of inertia calculation


Let's discuss an example in which the chuck and workpiece are at a position offset by 10cm from the R-axis by a stay, as shown in Fig. 8. The moment of inertia is calculated with the following three factors, assuming that the load material is steel and its density ρ is 0.0078kg/cm³.


[1] Moment of inertia of the stay

[2] Moment of inertia of the chuck

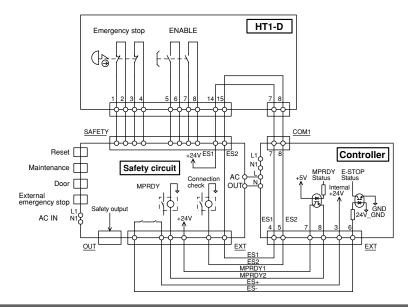
[3] Moment of inertia of workpiece

[4] Total weight

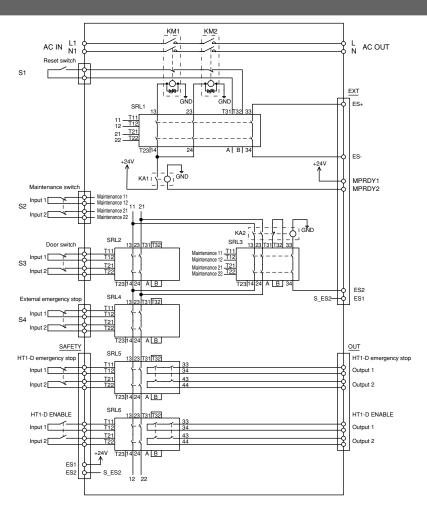
W = Ws + Wc + Ww = 0.84 (kgf)

[5] Total moment of inertia

J = Js + Jc + Jw = 0.062 (kgfcmsec²)

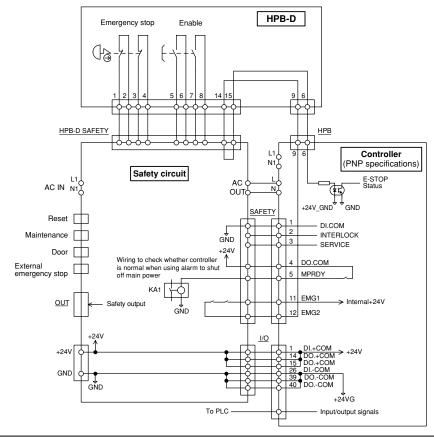

External safety circuit examples

To ensure safe use of the robot, we request the customers make a risk assessment of their end equipment to decide what performance level is needed from safety circuits at the point. Customer should then install a safety circuit at the required performance level. Here we show examples of category 4 circuits for the TS-X/TS-P, SR1 and RCX240 controllers using a programming box with an enable switch.

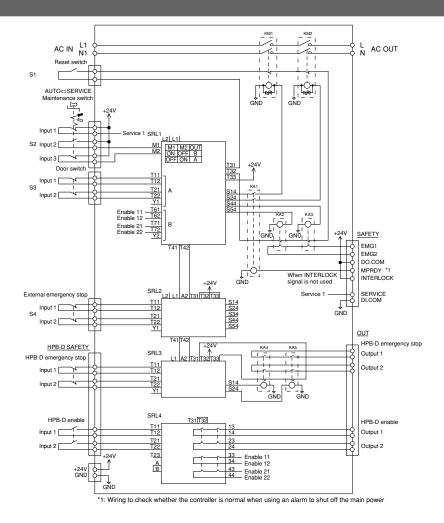

Safety circuits for other categories are described in the user's manuals, so download them from our website if needed.

■ Circuit configuration examples (TS-X/TS-P)

General connection diagram

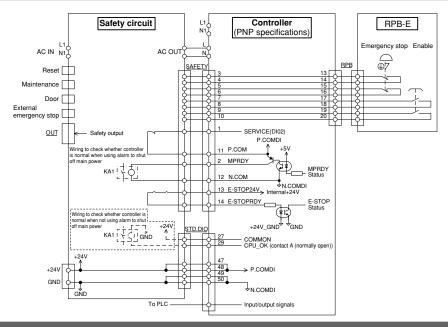


Category 4

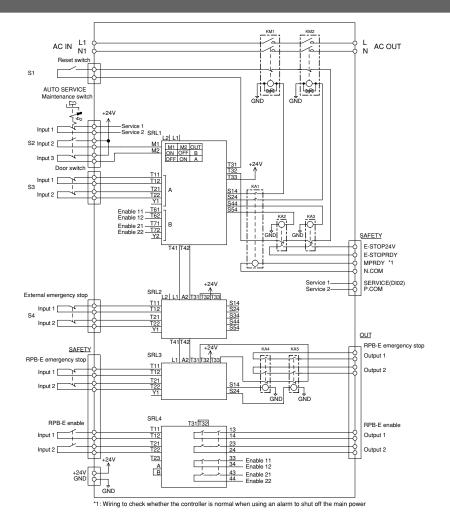


■ Circuit configuration examples (SR1)

General connection diagram



Category 4



■ Circuit configuration examples (RCX240)

General connection diagram

Category 4

Parts Table

raits lable			
Circuit No.	Part Name	Circuit No.	Part Name
S1	Reset switch	KM1, 2	Contactor (mirror contact)
S2	Key-selector switch	KA1 to 5 *1	Safety relay
S3	Safety door switch	SRL1 to 4	Safety relay unit
S4	Emergency stop switch	SRL5, 6 *2	Safety relay unit

*1. TS-X and TS-P are KA1 to 2. *2. Only TS-X and TS-P.

ATION DISCONTINUED

■ CE marking

* Check the latest information at the website shown below. https://global.yamaha-motor.com/business/robot/support/ce/

The YAMAHA robot (robot and controller) is one component that is incorporated into the customer's system (built-in equipment), and we declare that the YAMAHA robots conform to the EC Directives only within the scope of built-in equipment (semi-finished product). So, no CE marks are affixed to the YAMAHA robot products.

Cautions regarding CE specifications

Cautions regarding compliance with EC Directives

The YAMAHA robot (robot and controller) is not, in itself, a robot system. The YAMAHA robot-series product is one component that is incorporated into the customer's system (built-in equipment), and we declare that the YAMAHA robots conform to the EC Directives only within the scope of built-in equipment. Just incorporating the YAMAHA robot does not guarantee that the customer's system conforms to the EC Directives. However, combining the YAMAHA robot that is a semi-finished product with other device or circuit that is designed and manufactured appropriately makes it possible to conform the finished system to the EC Directives. The customer who incorporates YAMAHA robot products into the customer's final system, which will be shipped to or used in European region, should verify that the overall system conforms to the EC Directives.

Installation of external safety circuits

To comply with EC directives, customers using YAMAHA robots must always build and install their own external safety circuits after selecting product components (safety relays, etc.) according to performance levels and safety categories required by the customer equipment.

For details about examples of external safety circuits, the user's manual should be referred to.

■ Compliance with EMC Directives

In order to conform to the EMC Directives, the customer should evaluate the final system (overall system) and take necessary countermeasures. As examples of EMC countermeasures for single YAMAHA robot product are described in the user's manual, these descriptions should be referred to.

■ Cautions regarding official language of EU countries

Only English which is the official language of the EU is utilized in the manuals, warning labels, operating screens, and the Declaration of Incorporation for this product.

If warning text appears on the warning label, then Japanese may also sometimes be listed along with the English.

Cautions on KCs (Korean Certificate Safety) specifications

About KCs

* Check the latest information at the website shown below. https://global.yamaha-motor.com/business/robot/support/korea/

KCs is a system that conforms to Korean Industrial Safety and Health Act and self-regulatory safety confirmation declaration of hazardous machines and devices. For machines specified in this system, the KCs mark needs to be indicated after conducting the forced certification or self-regulatory safety confirmation declaration. Industrial robots that have manipulators with 3 or more axes are specified as machines needing the self-regulatory safety confirmation declaration in South Korea's Ministry of Employment and Labor Notification No. 1201-46. Its safety standards are defined in separate table 2 of this notification.

About measures for KCs

For some YAMAHA robot models, this self-regulatory safety confirmation declaration is conducted to register these models. Additionally, the KCs mark is indicated on the robots that have been declared. When you investigate to purchase a robot to be used in South Korea, check whether or not this robot conforms to KCs and order it with the KCs specifications specified.

The YAMAHA robot is a unit that is incorporated into the customer's system. Therefore, when the customer incorporates the robot into the customer's system, additional safety measures need to be taken. For details, see "Safety standards application guide reference manual".

■ List of robots subject to KCs

Robot products may not be applicable to KCs depending on the customer's applications, operating conditions, or environments. Consult YAMAHA before purchasing a product.

Since a self-regulatory safety declaration has not been made for inapplicable models, these models cannot be used in Korea. Special-order robots are also unavailable. For details, please contact YAMAHA.

As of July, 2020

O: subject to KCs

-: not subject to KCs

Product	T	Model name	KCs regi	KCs registration	
Product	Туре	wodel name	RCX240 (S)	RCX340	
	FXYx	3 axes	0	0	
	SXYx	3 axes	0	0	
	SATX	4 axes	O		
	SXYBx	3 axes	0	0	
		4 axes	Ŭ		
	MXYx	3 axes		0	
Cartesian robot		4 axes			
	HXYx	3 axes	0	0	
-		4 axes			
	NXY	3 axes 4 axes			
	INA 1	6 axes	_	_	
-		3 axes		_	
	SXYxC	4 axes	<u> </u>		
		3 axes			
Pick & place robot	YP Series	4 axes	_	_	
	YK	400XE-4			
	YK510XE-10				
		S10XE-10	_	0	
	YK710XE-10		-		
		K180X			
	Υ	K220X			
	YK120XG		_	_	
	YK150XG		1		
	Ył	<180XG			
	YŁ	YK250XG		0	
	YK350XG		0		
SCARA robot		K400XG			
00/11//10001		K400XR	-	0	
		500XGL		0	
		600XGL			
		700XGL	-	0	
	YK500XG				
<u> </u>	YK600XG				
		600XGH		6	
		(700XG	0	0	
		(800XG			
		(900XG			
		(1000XG			
	YI	K1200X		tinues to the next page	

Continues to the next page.

Product	Tuna	Model name	KCs regis	stration	
Product	Туре	Model name	RCX240 (S)	RCX340	
)	YK180XC			
	Υ	/K220XC	_	_	
	Y	K250XGC			
	Υ	K350XGC			
	Y	K400XGC	0	_	
	Yk	K500XGLC			
	Yk	K600XGLC			
	Υ	′K500XC			
	Υ	′K600XC			
		′K700XC	_	_	
		′K800XC			
		K1000XC			
	YK300XGS		_	0	
	YK400XGS			0	
	YK500XGS				
	YK600XGS				
SCARA robot	YK700XGS		0		
_	YK800XGS				
		K900XGS			
		K1000XGS			
		K250XGP		-	
_		K350XGP			
		K400XGP			
_		K500XGLP			
_		(600XGLP	0		
_		K500XGP			
_		K600XGP			
_	YK600XGHP		-		
_	YK700XGP				
<u> </u>	YK800XGP				
-		K900XGP			
_		K1000XGP			
-		′K350TW	-	0	
	Y	′K500TW	0	0	

Cautions on Korean EMC specifications

About Korean KC

* Check the latest information at the website shown below. https://global.yamaha-motor.com/business/robot/support/korea emc/

KC is a system based on the radio regulations of Korea. Devices specified by this system must certify compliance or register compliance, and indicate compliance. Applicable devices are defined by public announcement from the Korean National Radio Research Agency (NRRA).

About Korean KC compliance

Some models of YAMAHA robot (robots and controllers) are registered with the Korean National Radio Research Agency (NRRA) by selftest compliance registration. YAMAHA robots that have already been registered display the KC mark.

If you are considering the purchase of robots to be used in Korea, please check the table below for compliance before ordering the applicable product.

YAMAHA robots are devices for inclusion in a system; therefore, if you, the customer, build a complete system that includes robots, and ship that system as a final product to Korea or use it within Korea, you yourself must verify EMC compliance.

For TS series and TS-SD units, check "Examples of EMC countermeasures" within the user's manual; for other controllers, check this section within the "Safety standards application guide reference manual".

List of KC compliant robots

- Please consult with YAMAHA before purchase, since compliance might not be possible depending on your application, conditions of use, and environment.
- In the case of 3-axis or greater Cartesian robots and SCARA robots, the robot must be compliant with both KC and KCs. In conjunction with this table, refer also to the list of KCs compliant robots.

As of December, 2020

Product	Model name	Registration No.
	ERCD	MSIP-REM-Y3M-ERCD
	TS-S2	MSIP-REM-Y3M-TSS
	TS-SD	MSIP-REM-Y3M-TSSD
	TS-SH	MSIP-REM-Y3M-TSSH
	TS-X	MSIP-REM-Y3M-TSX
	TS-P	MSIP-REM-Y3M-TSP
	RDV-X	MSIP-REM-Y3M-RDVX
	RDV-P	MSIP-REM-Y3M-RDVP
	SR1-X	MSIP-REM-Y3M-SR1X
Controller	SR1-P	MSIP-REM-Y3M-SR1P
Controller	RCX221	MSIP-REM-Y3M-X221
	RCX222	MSIP-REM-Y3M-X222
	RCX240/RCX240S	MSIP-REM-Y3M-X240
	RCX320	R-R-GYM-RCX320
	RCX340	MSIP-REM-Y3M-X340
	LCC140	MSIP-REM-Y3M-C140
	YHX-HCU	R-R-GYM-YHXHCU
	YHX-DPU	R-R-GYM-YHXDPU
	YHX-A30/YHX-A10	R-R-GYM-YHXA30A10
	EP-01-A30 / EP-01-A10	R-R-GYM-EP-01
	LCM100	MSIP-REM-Y3M-M100
Linear conveyor	LCMR200	R-R-GYM-LCMR200
	JGX series	R-R-GYM-JGX
	TRANSERVO series	MSIP-REM-Y3M-TR
	FLIP-X series	MSIP-REM-Y3M-FX
Cinala avia rahat	FLIP-X (24V) series	MSIP-REM-Y3M-FXL
Single-axis robot	PHASER series	MSIP-REM-Y3M-PH
	GX series	R-R-GYM-GX
	Robonity series *	R-R-GYM-ROBONITY
Cartesian robot	XY-X series	MSIP-REM-Y3M-XY
CCADA rakat	YK series	MSIP-REM-Y3M-YK
SCARA robot	YK-XE series	R-R-GYM-YK710XE-10

Robonity_Motorless is not included as it is not subject to KC.

About non-compliant models

The following robots are subject to the KC system; however, since self-test compliance registration has not been done at the present time, they cannot be used in Korea. Additionally, special-order robots are also not compliant with the KC system.

Even for the various series listed in the table, some new models might not have been registered. (Contact YAMAHA for details.)

Pick and place robots: YP-X series

Approach to complying with EU RoHS Directive

Our approach to complying with EU RoHS Directive is explained below.

* Check the latest information at the website shown below. https://global.yamaha-motor.com/business/robot/support/rohs/

In June, 2015, Commission Delegated Directive (EU) 2015/863 was published, and four kinds of phthalates were newly added to the specified hazardous substances (lead, hexavalent chromium, mercury, cadmium, PBB and PBDE) of EU RoHS Directive 2011/65/EU.

Our products are industrial instruments listed in Category 9 "Monitoring and control instruments including industrial monitoring and control instruments" and must comply with this directive if they are launched in Europe after the directive is put into operation.

We will take measures to comply with this directive by the appointed time.

■ EU RoHS Directive 2011/65/EU

1. Product categories concerned (from Annex I)

* Our products are industrial instruments listed in Category 9 "Monitoring and control instruments." Categories

1	Large household appliances.
2	Small household appliances.
3	IT and telecommunications equipment.
4	Consumer equipment.
5	Lighting equipment.
6	Electrical and electronic tools.
7	Toys, leisure and sports equipment.
8	Medical devices.
9	Monitoring and control instruments including industrial monitoring and control instruments.
10	Automatic dispensers.
11	Other EEE not covered by any of the categories above.

2. Regulated substances and state of compliance with regulations

* All our products comply with EU RoHS Directive 2011/65/EU.

	Substance name	Max. allowable concentration
1	Lead	1000 ppm
2	Mercury	1000 ppm
3	Cadmium	100 ppm
4	Hexavalent chromium	1000 ppm
5	PBB (polybrominated biphenyls)	1000 ppm
6	PBDE (polybrominated diphenyl ethers)	1000 ppm

■ Addition of restricted substances to regulated substances

Commission Delegated Directive (EU) 2015/863 (notice through official gazettes in June, 2015) added the following four kinds of restricted substances to the substances regulated by EU RoHS Directive.

Substance name		Max. allowable	Effective date		
		concentration	Categories 1 to 7, 10 and 11	Categories 8 and 9	
1	Bis (2-Ethylhexyl) phthalate (DEHP)	1000 ppm			
2	Benzyl butyl phthalate (BBP)	1000 ppm	hulu 22, 2040	lulu 22, 2024	
3	Dibutyl phthalate (DBP)	1000 ppm	July 22, 2019	July 22, 2021	
4	Diisobutyl phthalate (DIBP)	1000 ppm			

Warranty

For information on the warranty period and terms, please contact our distributor where you purchased the product.

■ This warranty does not cover any failure caused by:

- 1. Installation, wiring, connection to other control devices, operating methods, inspection or maintenance that does not comply with industry standards or instructions specified in the YAMAHA manual;
- 2. Usage that exceeded the specifications or standard performance shown in the YAMAHA manual;
- 3. Product usage other than intended by YAMAHA;
- 4. Storage, operating conditions and utilities that are outside the range specified in the manual;
- 5. Damage due to improper shipping or shipping methods;
- 6. Accident or collision damage;
- 7. Installation of other than genuine YAMAHA parts and/or accessories;
- 8. Modification to original parts or modifications not conforming to standard specifications designated by YAMAHA, including customizing performed by YAMAHA in compliance with distributor or customer requests;
- 9. Pollution, salt damage, condensation;
- 10. Fires or natural disasters such as earthquakes, tsunamis, lightning strikes, wind and flood damage, etc;
- 11. Breakdown due to causes other than the above that are not the fault or responsibility of YAMAHA;

■ The following cases are not covered under the warranty:

- 1. Products whose serial number or production date (month & year) cannot be verified.
- 2. Changes in software or internal data such as programs or points that were created or changed by the customer.
- 3. Products whose trouble cannot be reproduced or identified by YAMAHA.
- 4. Products utilized, for example, in radiological equipment, biological test equipment applications or for other purposes whose warranty repairs are judged as hazardous by YAMAHA.

THE WARRANTY STATED HEREIN PROVIDED BY YAMAHA ONLY COVERS DEFECTS IN PRODUCTS AND PARTS SOLD BY YAMAHA TO DISTRIBUTORS UNDER THIS AGREEMENT. ANY AND ALL OTHER WARRANTIES OR LIABILITIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY EXPRESSLY DISCLAIMED BY YAMAHA. MOREOVER, YAMAHA SHALL NOT BE HELD RESPONSIBLE FOR CONSEQUENT OR INDIRECT DAMAGES IN ANY MANNER RELATING TO THE PRODUCT.

This manual does not serve as a guarantee of any industrial property rights or any other rights and does not grant a license in any form. Please acknowledge that we bear no liability whatsoever for any problems involving industrial property rights which may arise from the contents of this manual.

Repeatability positioning accuracy

The "repeatability positioning accuracy" cannot be guaranteed for the accuracy conditions listed below.

(1) Factors involving absolute accuracy

• Under conditions requiring accuracy between the robot controller internal coordinate position (command position) and real space position (movement position).

(2) Operating pattern factors

- Under conditions including a motion approaching close to a teaching point (position) from different directions during repeating operation.
- Under conditions where power was turned off or operation was stopped, even when approaching a teaching position from same direction.
- Under conditions where movement to a teaching position uses a hand system (left-handed or right-handed system) different from that during teaching. (SCARA robots)

(3) Temperature factors

- Under conditions subject to drastic changes in ambient temperature.
- Under conditions where temperature of robot unit fluctuates.

(4) Fluctuating load factors

• Under conditions where load conditions fluctuate during operation (load fluctuates due to workpiece or no workpiece).

Discontinued sales models and repair coverage limits

MR12/MR12D

Can be used for wall-mount

End of December 2019 End of December 2026

Ordering method

Single carriage model

RW: Wall mounted, right

No entry: R side (Standard) Grease type

10L: 10m

GW: No I/O board

SR1-P

TSP

05 Usable for CE

I/O selection

RDV-P

Note 1. For the details of the semi-absolute model, please refer to P.67, RDV-P has an incremental model only.

Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P.732 for

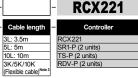
details on robot cable. Note 3. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select 3K/5K/10K. On the RCX221, the

standard cable is a flexible cable, so enter 3L/5L/10L when ordering. Note 4. These controllers can be mounted on DIN rails. See P.634 for details.

Note 5. Select this selection when using the gateway function. For details, see P.96.

Note. It is possible to provide the model without a cable carrier. To find information on wiring (cable terminals) within the cable carrier see P.742.

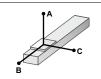
Double carriage model



I/O selection

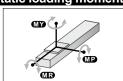
C: CC-Link	(NPN)					
N: DeviceNet™	P1: OP.DIO24/17					
B: PROFIBUS	(PNP)					
N: Ethernet	EN: Ethernet					
Static loading momo						

■ Specifications Note						
Model	MR12	MR12D				
Driving method / Shaft diameter	Shaft mo	otor / ф12				
Repeatability (µm)	+/-5 o	or less				
Scale (µm)	Magnetic type: resolution of 1					
Maximum speed Note 1 (mm/sec)	2500					
Rated thrust (N)	18					
Maximum payload Note 2 (kg)	5					
Stroke (mm)	50 to 1050 (50mm pitch)				
Linear guide	4 rows of o	circular arc s × 2 rail				
Maximum cross-section outside dimensions (mm)	W60 × H90 (except the cable carrier section)					
Total length (mm)	Stroke+288	Stroke+488				
Cable length (m)	Standard: 3.5 / Option: 5,10					


Note. A vertical model (with brake) is not available with the PHASER series Note. The basic specifications of semi-absolute model are the same as of the incremental model.

Note 1. Maximum speed may not be obtained depending on operating

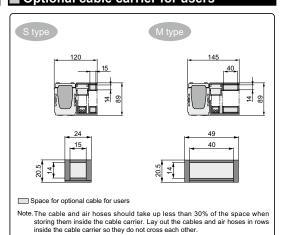
conditions.


Note 2. Maximum payload per carriage.

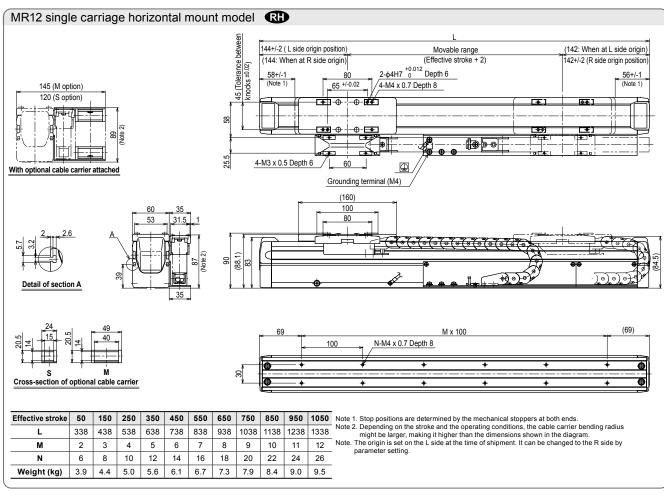
Allowable overhang

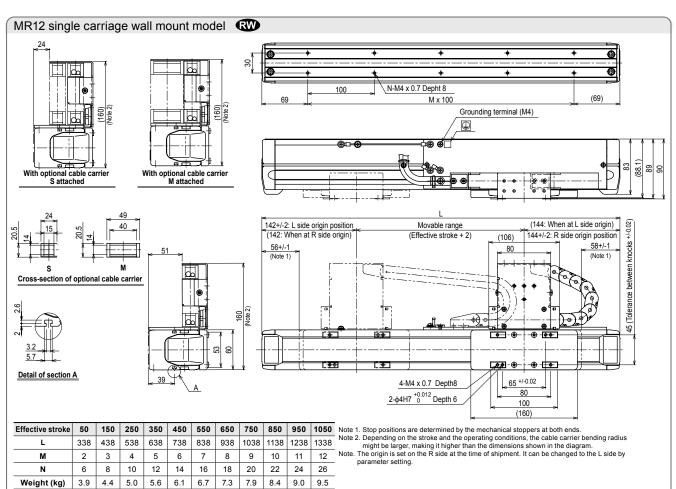
rizontal installation (Unit: mm)				Wall ins	tallatio	on (Unit:	mm)
A B C					Α	В	С
1kg	600	600	600	1kg	600	600	600
2kg	1200	1200	598	2kg	529	1200	1200
3kg	1800	1800	406	3kg	323	1450	1800
5kg	3000	1561	241	5kg	162	589	3000

Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of 10,000 km

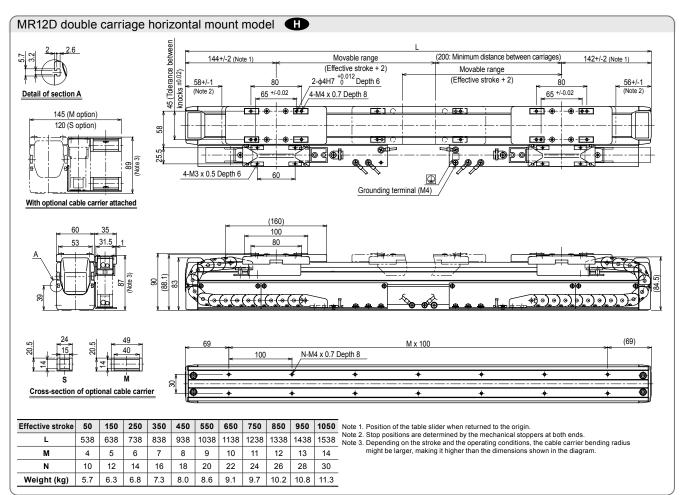

		(Unit: N·m)
MY	MP	MR
107	107	89

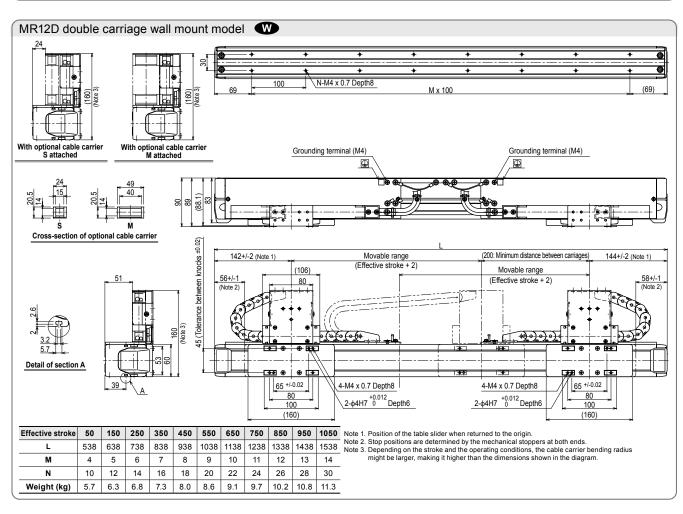
	Controlle	ontroller			
	Controller	Operating method			
	SR1-P05	Programming / I/O point trace / Remote command /			
	RCX221 RCX240/340	Operation using RS-232C communication			
	TS-P105	I/O point trace /			
	TS-P205	Remote command			
	RDV-P205	Pulse train control			


Cable carrier entry location


RH Horizontal, right LH Horizontal, left RW Wall mounted, right LW Wall mounted, left Be sure to install in the direction as specified (in cable carrier take-out Be sure to install in the direction as specified (in cable carrier take-ou direction drawing and various specification drawings) individually Installation in any other way will cause a failure. For requirement o installation in any way other than the above standard installation please consult YAMAHA as special arrangement will be available.

Optional cable carrier for users




DISCONTINUED

LOW COST HIGH PERFORMANCE MODEL

Arm length 400mm
Maximum payload 3kg

■ Ordering method

YK400XR

S: Sensor T: Stroke end

YK400XR

150

Hollow shaft Cable No entry: None S: With hollow shaft

RCX340-4

Standard type: Small type

■ Controller

Specify various controller setting items. RCX340 ▶ **P.678**

■ Specifi	cations					
			X-axis	Y-axis	Z-axis	R-axis
Axis	Arm length		225 mm	175 mm	150 mm	-
specifications	Rotation ang	le	+/-132 °	+/-150 °	-	+/-360 °
AC servo mot	or output		200 W	100 W	100 W	100 W
Deceleration	Transmission	Motor to speed reducer	Direct-coupled		Timing belt	
mechanism	method	Speed reducer to output	Direct-coupled			Timing belt
Repeatability	Note 1		+/-0.01 mm		+/-0.01 mm	+/-0.01 °
Maximum spe	ed		6 m/sec		1.1 m/sec	2600 °/sec
Maximum pay	load		3 kg (Standard specification), 2 kg (Option specifications Note 4)			
Standard cycl	e time: with 2k	g payload Note 2	0.45 sec			
R-axis tolerat	ole moment of	inertia Note 3	0.05 kgm² (0.5 kgfcms²)			
User wiring			0.2 sq × 10 wires			
User tubing (Outer diameter)			ф 4 × 3			
Travel limit			1.Soft limit 2.Mechanical stopper (X,Y,Z axis)			
Robot cable length			Standard: 3.5 m Option: 5 m, 10 m			

Controller | Power capacity (VA) | Operation method Programming / Remote command / RCX340 1000 Operation using RS-232C communication

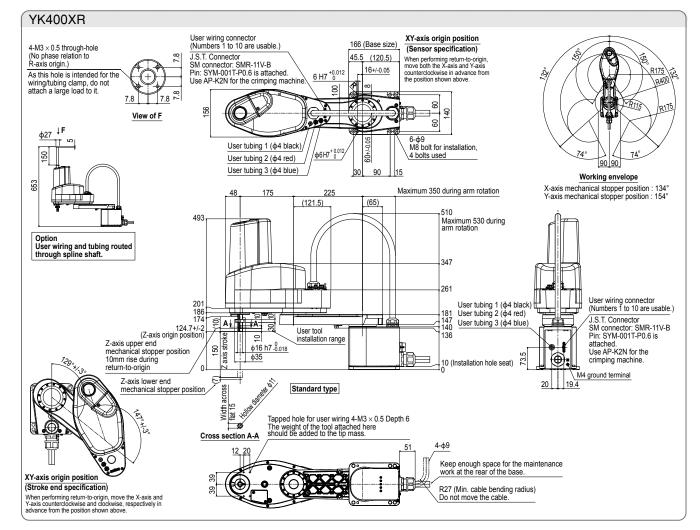
Note. The movement range can be restricted by adding the X- and Y-axis mechanical stoppers. (The maximum movement range was set at shinment) See our robot manuals (installation manuals) for detailed

information.

Note. To set the standard coordinates with high accuracy, use a

standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Our robot manuals (installation manuals) can be downloaded from our website at the address below https://global.yamaha-motor.com/business/robot/


Note 1. This is the value at a constant ambient temperature. (X,Y axes)

Weight

Note 2. When reciprocating 300mm in horizontal and 25mm in vertical directions and performing the coarse positioning arch operation.

Note 3. It is necessary to input the moment of inertia in the actual operating environment

Note 4. Maximum payload of option specifications (with user wiring/tubing through spline type) is 2kg

17 ka

Controller

RCX240/RCX240S

End of December 2019 End of December 2026

Robot controller with advanced functions

An advanced multi-axial controller newly developed based on long years of actual results! Along with a full range of functions, great engineering also makes it extremely easy to use.

RCX240

RCX240S

Programming box ▶ RPB/RPB-E P.700

▶ VIP+ P.692

Support software for PC

■ Basic specifications

Number of controllable axes Controllable robots Maximum power consumption Capacity of the connected motor Dimensions Weight Input power supply Drive method Position detection method	y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
Dimensions Weight Input power supply Drive method Dimensions Control power supply Motor power supple	Pick & place robot YP-X 2500VA (RCX240) / 1500VA (RCX240S) 1600W (RCX240) /800W (RCX240S) W180 × H250 × D235mm 6.5kg bly Single phase AC200 to 230V +/-10% maximum (50/60Hz) y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
Dimensions Weight Input power supply Drive method Dimensions Control power supply Motor power supple	1600W (RCX240) /800W (RCX240S) W180 × H250 × D235mm 6.5kg bly Single phase AC200 to 230V +/-10% maximum (50/60Hz) y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
Dimensions Weight Input power supply Drive method Dimensions Control power supply Motor power supple	W180 × H250 × D235mm 6.5kg bly Single phase AC200 to 230V +/-10% maximum (50/60Hz) y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
Dimensions Weight Input power supply Drive method Dimensions Control power supply Motor power supple	6.5kg bly Single phase AC200 to 230V +/-10% maximum (50/60Hz) y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
Input power supply Control power supply Motor power supply Drive method	Single phase AC200 to 230V +/-10% maximum (50/60Hz) y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
supply Motor power suppl Drive method	y Single phase AC200 to 230V +/-10% maximum (50/60Hz) AC full-digital software servo
Drive method	AC full-digital software servo
Position detection method	
	Multi-turn resolver with data backup function, Magnetic linear scale
Operating method	PTP (Point to Point), Linear interpolation, Circular interpolation, ARCH
Coordinate system Position indication units	Joint coordinates, Cartesian coordinates
Position indication units	Pulses, mm (millimeters), deg (degrees)
Speed setting	1% to 100% (In units of 1%. However speed is in units of 0.01% during single-axis operation by DRIVE statement.)
Acceleration setting	Automatic acceleration setting based on robot model type and end mass parameter Setting based on acceleration and deceleration parameter (Setting by 1% unit)
Origin search method	Incremental, Absolute, Semi-absolute
_ Program language	YAMAHA BASIC (Conforming to JIS B8439 SLIM Language)
Multitasks Sequence program	8 tasks maximum
Sequence program	1 program
Point-data input method	Manual data input (coordinate value input), Direct teaching, Teaching playback
Memory capacity	364KB (total capacity of program and points) (available program capacity during use of maximum number of points is 84KB)
Programs	100 program (Max.) 9,999: maximum lines per program 98KB: maximum capacity per program
Programs Points	10,000 points: maximum numbers of points
≥ Memory Backup battery	Lithium metallic battery (service life 4 years at 0°C to 40°C)
Internal flash memory	512KB (ALL data only)

FLIP-X (P.295) PHASER (P.341) XY-X P363 YK-X P491 Controllable robot CE marking Field networks CC-Link DeviceNet EtherNet/IP Ethernet

■ Model Overview	
Name	RCX240/RCX240S
Controllable robot Note	Cartesian robot XY-X / SCARA robot YK-X / Single-axis robot FLIP-X / Linear motor single-axis robot PHASER / Pick & place robot YP-X
Input power	Single phase : AC200V to 230V +/-10% maximum (50/60Hz)
Operating method	Programming / Remote command / Operation using RS-232C communication
Maximum number of controllable axes	4 axes maximum
Origin search method	Incremental/Absolute

Note. For details, please refer to the controller model selection table on the next page.

■ Ordering met	hod							
RCX240								
RCX240S		_		_	_ 			_
Controller Note1	Usable for CE	Regenerative unit Note2	Option I/O	Network Option	iVY System Option board	 Light/Tracking 	- Gripper	Battery
RCX240: Standard model	No entry: Standard	No entry: None	N, P: Standard I/O 16/8	No entry: None	No entry: None	No entry: None	No entry: None	No entry: None Notes
RCX240S: Low capacity model	E: CE marking	R: RGU-2	N1, P1: 40/24 points	CC: CC-Link	VY: iVY (VISION)	TR: Light+Tracking	GR: Gripper	B: 2pcs Note7
	K: KCs	R3: RGU-3 Note3	N2, P2: 64/40 points	DN: DeviceNet [™]		LC: Light		BB: 4pcs Note8
Note 1.The RCX240S co	ntroller is limited to	use with	N3, P3: 88/56 points	PB: PROFIBUS				
	es 200W or lower		N4, P4: 112/72 points	EN: Ethernet				
	ing controller selec			EP: EtherNet/IP™				
find the metabline		tion table to		YC: YC-Link Note5				

find the matching model.

Note 2.The regenerative unit (option) is required when operating a model designated by YAMAHA or a load with a large

inertia. Please refer to the following regenerative unit selection table.

Note 3.YK500XG to YK1000XG are for RGU-3.

Note 4.Use N to N4 when NPN is selected on the I/O board, and P to P4 when PNP is selected.

Note 5.Available only for the master. (The YC-Link system controls an SR1 series single-axis controller in accordance with communications received from an RCX series multi-axis controller. Using the YC-Link system allows control of up to 8 axes (or up to 6 axes with synchronous control)).

Note 6.Use battery-less model if connecting to all-axis linear motor, or to incremental models.

Note 7.If any or Single-axis among the XY axes are absolute specifications then 2 batteries are required.

Note 8.If any or Single-axis among the ZR axes are absolute specifications then 2 batteries are required

☆ Please note that:

The current sensor on the RCX240S cannot be set to 20A.

As a controller stocked for maintenance, please order an RCX240 that can be set to any of 05A, 10A and 20A.

	Item	Model		RCX240 / RCX240S
	STD.DIO	I/O input	Dedicated input 10 points, Gene	eral input 16 points (NPN / PNP specifications selectable)
	310.010	I/O output	Dedicated output 11 points, Gen	neral output 8 points
	SAFETY			ntact), Service mode input (NPN/PNP specification is set according to STD. but (Enabled only when the RPB-E is used.)
	Brake output		Relay contact	
	Origin sensor	input	Connectable to DC 24V normally	y-closed contact sensor
	External comm	nunications	RS-232C: 1CH D-SUB9 (female	e) RS-422: 1CH (Dedicated RPB)
	Regenerative	unit connection	RGEN connector	
=		Slots	4	
함			Optional input/output (NPN/PNP	P) General input 24 points, General output 16 points
External input/output			CC-Link	Dedicated input 16 points, Dedicated Output 16 points, General input 96 points, General output 96 points (4 nodes occupied)
nalin			DeviceNet™	Dedicated input 16 points, Dedicated Output 16 points, General input 96 points, General output 96 points
Exter			PROFIBUS	Dedicated input 16 points, Dedicated Output 16 points, General input 96 points, General output 96 points
	Options	_	Ethernet	IEEE802.3 10Mbps (10BASE-T)
		Туре	EtherNet/IP™	Dedicated input 16 points, dedicated output 16 points, General-purpose input 96 points, general-purpose output 96 points Conforms to Ethernet (IEEE 802.3) 10Mbps/100Mbps.
			iVY	Camera input (2ch), camera trigger input, PC connection input
			Tracking	AB phase input, lighting trigger input, lighting power supply input/output
			Lighting control	Lighting trigger input, lighting power supply input/output
			Gripper control	No. of axes: 1 axis, Position detection method: Optical rotary encoder, Min. setting distance: 0.01mm
SC	Programming	box	RPB, RPB-E (with enable switch	n)
Options	Support softw	are for PC	VIP+	
ŏ	Regenerative	unit	RGU-2, RGU-3	
Su	Operating tem	perature	0°C to 40°C	
specifications	Storage tempe	erature	-10°C to 65°C	
<u></u>	Operating hun	nidity	35% to 85%RH (non-condensing	g)
bec	Absolute back	up battery	Lithium metallic battery 3.6V 54	400mAH (2700mAH × 2)
	Absolute data	backup period	1 year (in state with no power ap	oplied)
General	Noise immunit	у	IEC61000-4-4 Level 3	
Ge	Protective stru	cture	IP10	

■ Controller model selection table

The RCX240S controller is limited to use with robots that handles 200W or lower on each axis and is partly modified such as for optimizing the IPM, but it is fully compatible with RCX240 operation and functions, and peripheral equipment can be used by both models.

				X١	′-X																				,	ΥK	-X																				CLI	EAN	1			
	PXYX	SIS	FXYBX	SATA	SATBA	MXYX	XXX	XIXIX	YKSOOTW	YK120XG	YK150XG	YK180X/XG	YK220X	YK250XG	YK350XG	YK400XG	YK500XGL	YK500XG	YK600XGL	YK600XG	YK700XG	YK800XG	TRSUUNG	S∣∂	YK300XGS	YK400XGS	YK500XGS	YK600XGS	YK700XGS	S	YK900XGS	YK250XGP	YK350XGP	YK400XGP	YK500XGLP	YK500XGP	VKEOOXGE	YKGOOXGHP	YK700XGP	YK800XGP	YK900XGP	∂	YK180XGC	YK220XC	YKZ50XGC	YK400XGC	YK500XGLC	00XC	YK600XGLC	YK600XC	0 0	YK1000XC
RCX240				Т	•	•	•	•	•		Г	Т	Г					•		•	•	•		•		Т	•	•	•	•			Г		-	•	•		•	•	•	•	T	T		Т	Т	•		•		•
RCX240S		•	•							•	•	•	•	•	•	•	•		•						•	•	•					•	•		•	•						- 1	•	•	D G	•	•		•			

■ Multi-robot: Driver list for each model

For "multi-robots" that are used in combination with one or more single-axis robots, the RCX240S can be used unless the divers for the combined models include a 20A model.

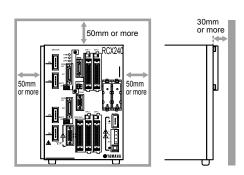
											FLI	P-X											Р	НА	SE	R	
		T4LH	T5LH	T6L	61	19Н	F8/F8L/F8LH	F10	F14	F14H	GF14XL	F17/F17L	GF17XL	F20/F20N	N15	N18	B10	B14/B14H	R5	R10	R20	MR12	MF7	MF15	MF20	MF30	MF75
	05A	•	•		•		•	•	•								•	•	•	•		•					Г
Driver	10A					•				•	•										•		•	•	•		Г
	20A											•	•	•	•	•										•	•

Regenerative unit selection table

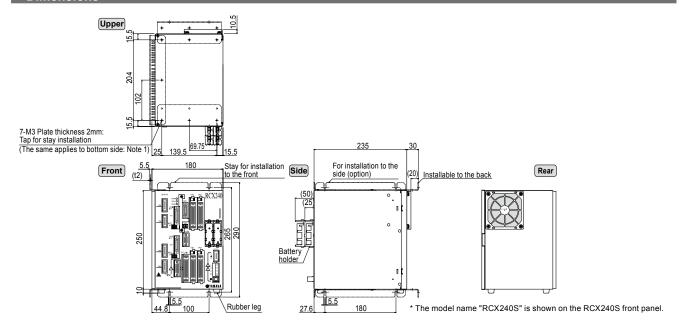
			ΧY	-X																		Υ	K-X	G																				CI	ean				
	3 axes FXYx	3,4 axes SXYx	3,4 axes NXY	6 axes NXY	3,4 axes MXYx	3,4 axes HXYx	YK120XG	YK150XG	YK180XG	YK180X	YK220X	YK250XG	YK350XG	×I:	YK500XGL	YKSOOXG	YK600XGH	YK700XG	YK800XG	×	YK1000XG	×I:	YK300XGS	2 5	YK600XGS	88	YK800XGS	XGS	YK1000XGS	YK250XGP	YK350XGP	YK500XGLP	YK500XGP	š	YK600XGP		YKSOOXGP	X	YK1000XGP	XX	_	YK180XC	YK220XC	YK350XCH	YK400XCH	YK500XC	YK600XC	YK700XC	YK800XC
No entry (None)	•	0				Г	•	•	•	•	•	•	•	•	Ð		1		Г			7	•	Ð		T		П	7	•		•		•	一	T	\top		T	•	•	•) (•		П	T	T	T
R (RGU-2)	П	0	•	•	•	•									T							•			T				T	T							\top					\top				•	•		•
R3	П													\neg		D		•	•	•	•	T				•	•			\top	T	T	•	П	•	9 (\top	T	\top	П	\Box	\top	\exists	\top

• : Required : If Z axis is 200W specifications then regenerative unit RGU-2 is required.

Conditions where regenerative unit is needed on multi robots


- Motor capacity exceeds a total of 450W.
- Motor capacity for perpendicular axis exceeds a total of 240W.
- B14H which maximum speed exceeds 1250mm per second.
- The following conditions apply when perpendicular axis capacity is 240W or less.
 - perpendicular axis is 200W.
 - perpendicular axis is 100W and stroke is 700mm or more.
 - there are 2 perpendicular axes at 100W, and includes leads of 5mm.

■ Installation conditions


- Install the RCX240/RCX240S inside the control panel.
- Install the RCX240/RCX240S on a flat, level surface.
- Install the RCX240/RCX240S in a well ventilated location, with space on all sides of the RCX240/RCX240S (See fig. at right.).
- · Do not block the heat-sink on the side panel.
- Do not block the fan on the bottom of the controller.

• Ambient temperature : 0 to 40°C

• Ambient humidity : 35 to 85% RH (no condensation)

■ Dimensions

■ Power supply capacity and heat emission

The required power supply capacity and heat emission will vary depending on the robot type and number of axes.

Using the following table as a general guide consider the required power supply preparation and control panel size, controller installation, and cooling method.

(1) When connected to SCARA robot

		Robot type			Power capacity	Generated heat
Standard type	Clean type	Dust-proof & drip-proof type	Wall-mount / Ceiling-mount / inverse type	Orbit type		amount (W)
YK180X, 220X	_	_	_	-	500	63
YK250XG, 350XG, 400XG, 500XGL, 600XGL	YK250XGC, 350XGC, 400XGC, 500XGLC, 600XGLC	YK250XGP, 350XGP, 400XGP, 500XGLP, 600XGLP	YK300XGS, 400XGS	-	1000	75
_	YK500XC, 600XC	_	_	-	1500	88
YK550X, 500XG, 600XG	-	YK500XGP, 600XGP	YK500XGS, 600XGS	-	1700	93
-	YK700XC, 800XC, 1000XC	_	_	-	2000	100
YK600XGH, 700XG, 800XG, 900XG, 1000XG, 1200X	-	YK600XGHP, 700XGP, 800XGP, 900XGP, 1000XGP	YK700XGS, 800XGS, 900XGS, 1000XGS	YK350TW, YK500TW	2500	113

(2) When connected to 2 axis (Cartesian robot and/or multi-axis robot)

Axial current se	ensor value ^{Note}	Power capacity	Generated heat
X axis	Y axis	(VA)	amount (W)
05	05	600	65
10	05	800	70
10	10	1000	75
20	05	1100	78
20	10	1300	83
20	20	1700	93

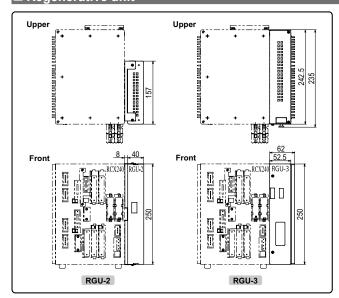
(4) When connected to 4 axis (Cartesian robot and/or multi-axis robot)

Axial	current s	ensor valu	ie ^{Note}	Power capacity	Generated heat
X axis	Y axis	Z axis	R axis	(VA)	amount (W)
05	05	05	05	800	70
10	05	05	05	1000	75
10	10	05	05	1100	78
10	10	10	05	1300	83
10	10	10	10	1400	85
20	05	05	05	1200	80
20	10	05	05	1400	85
20	10	10	05	1500	88
20	10	10	10	1700	93
20	20	05	05	1600	90
20	20	10	05	1800	95
20	20	10	10	2000	100
20	20	20	05	2100	103
20	20	20	10	2200	105
20	20	20	20	2500	113

Note. Even if axial current sensor values for each axis are interchanged no problem will

occur.

(3) When connected to 3 axis (Cartesian robot and/or multi-axis robot)


Axial cu	rrent sensor v	/alue Note	Power capacity	Generated heat
X axis	Y axis	Z axis	(VA)	amount (W)
05	05	05	700	68
10	05	05	900	73
10	10	05	1000	75
10	10	10	1200	80
20	05	05	1200	80
20	10	05	1300	83
20	10	10	1500	88
20	20	05	1600	90
20	20	10	1800	95
20	20	20	2000	95

Note. Motor capacity vs. current sensor table

Connected motor capacity	Current sensor
100W or less	05
200W	10
400W or more	20

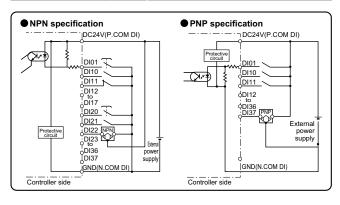
Note. Motor output of the B14H is 200W but the current sensor is 05.

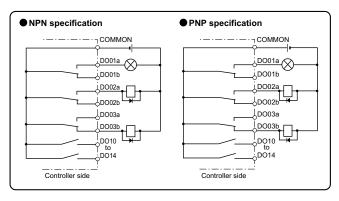
■ Regenerative unit

RGU-2 basic specifications

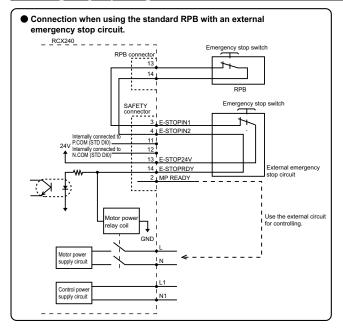
Item	RGU-2
Model	KX0-M4107-20 (including cable supplied with unit)
Dimensions	W40 × H250 × D157mm
Weight	0.9kg
Regenerative voltage	Approx. 380V or more
Regenerative stop voltage	Approx. 360V or less
Accessory	Cable for connection with controller (300mm)

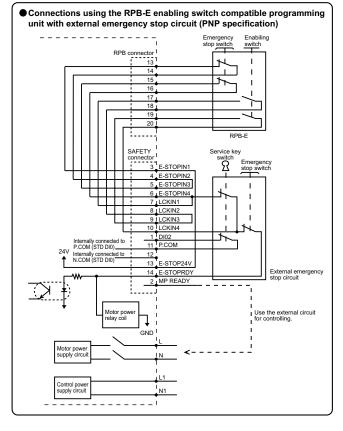
Note. Always leave an empty space (gap of about 20mm) between this unit and the adjacent controller. Also, always use the dedicated cable when connecting the controller.


RGU-3 basic specifications


Item	RGU-3
Model	KX0-M4107-30 (including cable supplied with unit)
Dimensions	W62 × H250 × D242.5mm
Weight	3.7kg
Regenerative voltage	Approx. 380V or more
Regenerative stop voltage	Approx. 360V or less
Accessory	Cable for connection with controller (300mm)

Note. Cannot be installed as a separate unit.


■ Example of input signal connection


■ Example of output signal connection

■ Emergency input signal connections

Installing an external safety circuit will satisfy safety category class 4 standards. See P.750 for more information.

■ Connector input / output signals

PIN	I/O No.	Name	Note	PIN	I/O No.	Name	Note
1	DI05	I/O command execution trigger input		27	COMMON	Relay common	
2	DI01	Servo ON input		28	DO01b	CPU_OK (B contact)	
3	DI10	Sequence control		29	DO01a	CPU_OK (A contact)	
4	DI11	Interlock		30	DO02b	Servo ON output (B contact)	(Relay output)
5	DI12	Program start		31	DO02a	Servo ON output (A contact)	Maximum capacity of each
6	DI13	AUTO mode input		32	DO03b	Alarm (B contact)	terminal (resistance load)
7	DI14	Return-to-origin		33	DO03a	Alarm (A contact)	: DC 24V 0.5A
8	DI15	Program reset		34	DO10	AUTO mode output	Common terminal
9	DI16	MANUAL mode input		35	DO11	Return-to-origin complete	: COMMON
10	DI17	Absolute reset / Return-to-origin	Common terminal	36	DO12	Sequence program in-progress	
11	DI20	General input 20	: P.COMDI	37	DO13	Robot program in-progress	
12	DI21	General input 21	N.COMDI	38	DO14	Program reset	
13	DI22	General input 22	(Photo-coupler input)	39	DO20	General output 20	
14	DI23	General input 23	NPN specification	40	DO21	General output 21	(Transistor output)
15	DI24	General input 24	: Source type	41	DO22	General output 22	NPN specification or PNP
16	DI25	General input 25	PNP specification	42	DO23	General output 23	specification Maximum capacity of each terminal
17	DI26	General input 26	: Sink type	43	DO24	General output 24	(resistance load): 0.1A
18	DI27	General input 27		44	DO25	General output 25	+Common terminal : DC+24V
19	DI30	General input 30		45	DO26	General output 26	- Common terminal : GND
20	DI31	General input 31		46	DO27	General output 27	
21	DI32	General input 32		47	DC24V	DC+24V (P.COMDI)	External power supply
22	DI33	General input 33		48	D024V	DO124V (F.COWDI)	input
23	DI34	General input 34		49	GND	GND (N.COMDI)	
24	DI35	General input 35		50	GIND	GND (N.CONDI)	
25	DI36	General input 36			·	·	
26	DI37	General input 37					

Note. When using the CC-Link, DeviceNetTM, EtherNet/IPTM, or PROFIBUS, the dedicated inputs other than the interlock signal (DI11) of the STD.DIO that are provided on the RCX240 controller are disabled.

Additionally, when the external 24V monitor control of the system parameters is set disabled, the interlock signal (D11) becomes disabled.

■ SAFETY connector signals

Terminal		RPB connected		RPB-E connected
number	I/O No.	Name	I/O No.	Name
1	DI02	SERVICE mode	DI02	SERVICE mode
2	MP READY	Motor power ready signal	MP READY	Motor power ready signal
3	E-STOPIN 1	Emergency stop input 1	E-STOPIN 1	Emergency stop input 1
4	E-STOPIN 2	Emergency stop input 2	E-STOPIN 2	Emergency stop input 2
5	NC	NC	E-STOPIN 3	Emergency stop input 3
6	NC	NC	E-STOPIN 4	Emergency stop input 4
7	NC	NC	LCKIN 1	Enabling switch input 1
8	NC	NC	LCKIN 2	Enabling switch input 2
9	NC	NC	LCKIN 3	Enabling switch input 3
10	NC	NC	LCKIN 4	Enabling switch input 4
11	P.COM	DC+24V (P.COM DI)	P.COM	DC+24V (P.COM DI)
12	N.COM	GND (N.COM DI)	N.COM	GND (N.COM DI)
13	E-STOP 24V	Emergency stop input supply	E-STOP 24V	Emergency stop input supply
14	E-STOPRDY	Emergency stop READY signal	E-STOPRDY	Emergency stop READY signal
15	NC	NC	NC	NC

■ Standard functions of the controller

Function	Description
Operation mode	Automatic mode (main task: execution of program, execution of step), Program mode (main task: creation of program), Manual mode (main task: jog movement, point teaching), System mode (main task: parameter editing, data initialization), Utility mode (main task: operation of motor power source)
Command	Array declarator command (DIM statement), Assignment command (numeric value assignment statement, character string assignment statement, point definition statement), Movement related command (MOVE statement, DRIVE statement, PMOVE statement), Condition branching command (IF statement, FOR statement, WHILE statement), External output command (DO statement, MO statement, LO statement, TO statement, SO statement), Parameter command (ACCEL statement, OUTPOS statement, TOLE statement), Task related command (START statement, SUSPEND statement, CUT statement), Condition wait command (WAIT statement), etc.
Function	Arithmetic function (SIN function, COS function, TAN function), Character string function (STR\$ function, LEFT\$ function, MID\$ function, RIGHT\$ function), Point function (WHERE function, JTOXY function, XYTOJ function), Parameter function (ACCEL statement, OUTPOS statement, TOLE statement), etc.
Variable	Simple variable (integer type variable, real number type variable, character string type variable), Array variable (integer type variable, real number type variable, character string type variable), Point variable, Shift variable, Element variable (point element variable, shift element variable), Input/output variable, etc.
Operator	Arithmetic operator (+, -, *, /, MOD), Logical operator (AND, OR, XOR), Comparison operator (=, <, >, <>, <=, >=)
Monitor	Monitor of input/output (200ms interval)
On-line command	Key operation command (AUTO, RUN, RESET, STEP), Data handling command (READ, WRITE, ?VER, ?CONFIG), Utility command (COPY, ERA, INIT), Robot language command (independently executable command)
Data file	Program, Point, Parameter, Shift, Hand, All, Error history, etc.
Internal timer	10ms interval
Program break point	4 points at maximum

DISCONTINUED

■ Robot Language Table

General commands

Language	Function
DECLARE	Declares that a label or sub-procedure is in an external program.
DEF FN	Defines a function that is available to the user.
DIM	Declares the name of an array variable and the number of elements.
EXIT FOR	Terminates a FOR statement to NEXT statement loop.
FOR to NEXT	Controls repetitive operations
GOSUB to RETURN	Jumps to a subroutine with the label specified by a GOSUB statement and executes the subroutine.
GOTO	Unconditionally jumps to the line specified by a label.
HALT	Stops a program and resets it.
HOLD	Pauses a program.
IF	Allows control flow to branch according to conditions.
LET	Executes a specified assignment statement.
ON to GOSU	Jumps to a subroutine with each label specified by a GOSUB statement according to conditions and executes the subroutine.
ON to GOTO	Jumps to each line specified by a label according to conditions.
REM	All characters that follow REM or an apostrophe (') are viewed as comments.
SELECT CASE to END SELECT	Allows control flow to branch according to conditions.
SWI	Switches the currently executed program to a specified program, and executes from the first line after compiling.
WHILE to WEND	Controls repetitive operations.
Label statement	Defines "labels" in program lines.

Robot operation

Language	Function
ABSRST	Performs return-to-origin along robot absolute motor axes.
DRIVE	Performs an absolute movement of each axis in the main group.
DRIVEI	Performs a relative movement of each axis in the main group.
MOVE	Performs an absolute movement of the main robot axes.
MOVEI	Performs a relative movement of the main robot axes.
ORIGIN	Performs return-to-origin on an incremental mode axis or absolute search on a semi-absolute mode axis.
PMOVE	Performs a pallet movement of the main robot axes.
SERVO	Controls the servo ON/OFF of the specified axes in the main group or all axes (in main group and sub group).

I/O control

Language	Function
DELAY	Waits for the specified length of time (ms).
DO	Outputs the specified value to the DO ports.
LO	Outputs the specified value to the LO port to prohibit axis
	movement or permit axis movement.
MO	Outputs the specified value to the MO ports.
OUT	Turns ON the bits of the specified output ports and the
001	command statement ends.
RESET	Turns OFF the bits of the specified output ports.
SET	Turns ON the bits of the specified output ports
SO	Outputs the specified value to the SO port.
TO	Outputs the specified value to the TO port.
	1. Waits until the condition in DI/DO conditional
WAIT	expression are met.
VVAII	2. Waits until positioning on the robot axes is complete
	(within the tolerance range).

Coordinate control

Language	Function
CHANGE	Switches the hand of the main robot.
HAND	Defines the hand of the main robot.
RIGHTY / LEFTY	Selects whether the main robot will be "right-handed" or "left-handed" when moving to a point specified on a Cartesian coordinate system.
SHIFT	Sets the shift coordinates for the main robot by using the shift data specified by a shift variable.

Condition change

Language	Function
ACCEL	Changes the acceleration coefficient parameter of the main group.
ARCH	Changes the arch position parameter of the main group.
ASPEED	Changes the automatic movement speed of the main group.
AXWGHT	Changes the axis tip weight parameter of the main group.
DECEL	Changes the deceleration rate parameter of the main group.
ORGORD	Sets the axis sequence parameter to perform return-to- origin and absolute search in the main group.
OUTPOS	Changes the OUT position parameter of the main group.
PDEF	Defines the pallet used to execute a pallet movement command.
SPEED	Changes the program speed for the main group.
TOLE	Changes the tolerance parameter of the main group.
WEIGHT	Changes the tip weight parameter of the main robot.

Communication control

Language	Function
	Changes communication mode and initialize the
OFFLINE	communication port.
SEND	Sends the read file data into a write file.

Screen control

Language	Function
PRINT	Displays the value of specified variable on the MPB/RPB screen.

Key control

Language	Function	
INPUT	Assigns a value to the variable specified from the MPB/RPB.	

Procedure

• i ioceduie		
Language	Function	
CALL	Calls up sub-procedures defined by the SUB and END SUB statements.	
EXIT SUB	Terminates the sub-procedure defined by the SUB and END SUB statements.	
SHARED	Does not permit variables declared with a program written outside a subprocedure (SUB to END SUB) to be passed on as dummy arguments, but allows them to be referred to with a sub-procedure.	
SUB to END SUB	Defines a sub-procedure.	

Task control

	·	
Language	Function	
CHGPRI	Changes the priority of the specified task.	
CUT	Terminates a task currently being executed or temporarily stopped.	
EXIT TASK	Terminates its own task currently being executed.	
RESTART	Restarts a task that is temporarily stopped.	
START	Sets the task number and priority of the specified task and starts that task.	
SUSPEND	Temporarily stops another task being executed.	

Error control

Language	Function
ON ERROR GOTO	If an error occurs during program execution, this command allows the program to jump to the error processing routine specified by the label without stopping the program, or stops the program and displays the error message.
RESUME	Resumes the program execution after recovery from an error. This command is used in the error processing routine.
ERL	Gives the line number where an error occurred.
ERR	Gives the error code number when an error occurred.

PATH control

Language	Function	
PATH	Sets the PATH motion on the main robot axis.	
PATH END	Terminates the path setting for PATH motion.	
PATH SET	Starts the path setting for PATH motion.	
PATH START	Starts the PATH motion.	

Torque control

Language	Function		
DRIVE	Executes an absolute movement command on each axis		
(with torque limit option)	in the main group.		
TORQUE	Changes the maximum torque instruction for the		
TONGOL	specified main group axis.		
	Sets the current limit time-out period on the specified		
TRQTIME	main group axis when using a torque limit setting option		
	in the DRIVE statement.		
	Sets the current limit time-out period on the specified		
TRQTIME	main group axis when using a torque limit setting option		
	in the DRIVE statement.		

Accessories and part options

Standard accessories

Power connector + wiring connection lever

Model KAS-M5382-00

SR1-X SR1-P RCX221 RCX222

LCC140 TS-X TS-P

RCX240/S RCX340

Safety connector

Model KX0-M5163-00

RCX240/S

RPB terminator (dummy connector)

Attach this to the RPB connector during operation with the programming box RPB removed.

RCX221 Model KAS-M5163-30 RCX222 RCX240/S

Standard I/O (STD.DIO) connector

Model KX0-M533G-00 RCX240/S

L type stay (for installing front side, rear side.)

KX0-M410H-00

RCX240/S

Note. Model No. is for a single bracket (L type stay). (Two are required to install one controller.)

Absolute battery

Use to install the controller.

Battery for absolute data back-up.

Basic specifications

- Zaoio opeoinioationo		
Item	Absolute battery	
Battery type	Lithium metallic battery	
	3.6V/2,750mAh	
Data holding time	About 1 year Note1 (in state with no power applied)	
Dimensions	ф17 × L53mm	
Weight Note2	22g	

Model KAS-M53G0-11

Note 1. When using two batteries for each two axes.

Note 2.Weight of battery itself.

Note. The absolute battery is subject to wear and requires replacement.

If trouble occurs with the memory then remaining battery life is low so replace the absolute battery. The battery replacement period depends on usage conditions. But generally you should replace the battery after about 1 year counting the total time after connecting to the controller and left without turning on the power.

SR1-X	
RCX222	
RCX240/S	

Important	Absolute battery
(Important	installation
	conditions

1 to 2 batteries are required for each 2 axes.

1 batteries....Data storage time of approximately 6 months (with no power applied)
 2 batteries...Data storage time of approximately 1 year (with no power applied)
 Note. Absolute battery is not required for either of the 2 axes if using incremental or semi-absolute specifications

Battery case

This is the absolute battery holder.

Model	KBG-M5395-00

SR1-X RCX222 RCX240/S

See next page for optional parts

■ Options

L type stay (for side surface installation)

Use to install the controller.

Model	KX0-M410H-10

RCX240/S

Note. Model No. is for a single bracket (L type stay).

Programming box RPB/RPB-E

P.700

This device can perform all operations such as manual robot operation, program entry and edit, teaching and parameter settings.

	RPB	RPB-E
Model	KBK-M5110-10	KBK-M5110-00
Enable switch	-	3-position
CE marking	Not supported	Applicable

RCX221 RCX222 RCX240/S

Support software for PC (P.692) VIP+

VIP+ is a simple to use application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

VIP+ software model	KX0-M4966-00
---------------------	--------------

RCX221 RCX222 RCX240/S

Environment

os	Windows 2000, XP (32bit), Vista, 7, 10 (Supported version: V.2.8.4 or later)	
CPU	Processor that meets or exceeds the suggested requirements for the OS being used.	
Memory	Suggested amount of memory or more for the OS being used.	
Hard disk	40MB of available space required on installation drive.	
Communication method	RS-232C, Ethernet Note. For Ethernet communication, Ethernet unit for RCX series controller is required.	
Applicable robot controllers	RCX14x / 22x / 240	

Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries. Note. ADOBE and ADOBE READER are registered trademarks of Adobe Systems Incorporated. Note. Ethernet is a registered trademark of Xerox Corporation.

Data cables

Communication cable for VIP+. Select from USB cable or D-sub cable.

.....

	USB type (5m)	KBG-M538F-00
	D-Sub type 9pin-9pin (5m)	KAS-M538F-10

Note. This USB cable supports Windows 2000/XP or later.

Note. Data cable jointly used for POPCOM+, VIP+,

RCX-Studio Pro.

Note. USB driver for communication cable can also be downloaded from our website.

SR1-P RCX221 RCX222 RCX240/S

RCX340

ERCD SR1-X

YC-Link board

RCX240/S