ARTICULATED ROBOTS

| SINGLE-AXIS ROBOTS |
| :--- | :--- |

CLOSED LOOP STEPPING MOTOR SINGLE-AXIS ROBOTS

TRANSERVO Series
SS Type (Slider type)
Straight model/Space-saving model
$\begin{array}{ll}\text { SSO5H-S } & \text { SS05H-R(L) } \\ \text { SS05-S } & \text { SS05-R(L) }\end{array}$

SR Type (Rod type) Straight model/Space-saving model

SR05-S	SR05-R(L)
SR04-S	SR04-R(L)
SR03-S	SR03-R(L)

STH Type
 (Slide table type)

Straight model/
Space-saving mode

STHO4-S STHO4-R(L)

 STH06-S STH06-R(L)P. 276

P. 280

SG Type (Slider type)

P. 262

SR Type (Rod type with support guide) Straight model/Space-saving model

Features P. 48 Specifications P. 253

SRD05-S SRD05-U SRD04-S SRD04-U SRD03-S SRD03-U

SINGLE-AXIS ROBOTS

N type Nut rotation type model N15/N15D N18/N18D

Features P. 54 Specifications P. 295

F type / GF type High rigidity frame model
F8/F8L/F8LH/F10/F10H/F14/F14H/ F17/F17L/F20/F20N GF14XL/GF17XL

R type Rotation axis type model R5
R10 R10
R20
R5

P. 338

B type Timing belt drive model
B10
B14/B14H
B10

LINEAR CONVEYOR MODULES

MOTOR-LESS SINGLE AXIS ACTUATOR

LINEAR MOTOR SINGLE-AXIS ROBOTS

PHASER Series
Features P. 64
Specifications P. 341
MF Type Long stroke \& high-power using flat motor with core
\square Double Carriges Standard on all Modules
MF7/7D
MF15/15D
MF20/20D
MF30/30D
MF75/75D

P. 344

SCARA ROBOTS

Extra small type [YK-XG]
Arm length: 120 mm to 220 mm Maximum payload: 1 kg

Medium type [YK-XG]
Arm length: 500 mm to 600 mm
Maximum payload: 5 kg to 20 kg
YK500XGL/XG
YK600XGL/XG/XGH

Wall mount / inverse type [YK-XGS]
Arm length: 300 mm to 1000 mm
Maximum payload: 20 kg

Low cost high performance model
Arm length: 400 mm to 710 mm [YK-XE]
Maximum payload: 4 kg to 10 kg
YK400XE-4 YK510XE-10 YK610XE-10 YK710XE-10

Small type [YK-XG]
Arm length: 250 mm to 400 mm Maximum payload: 5 kg

Large type [YK-XG/YK-X]
Arm length: 700 mm to 1200 mm
Maximum payload: 20 kg to 50 kg
YK700XG/XGL
YK800XG
YK900XG
YK1000XG
YK1200X

P. 519

Dust-proof \& drip-proof type [YK-XGP]
Arm length: 250 mm to 1000 mm
Maximum payload: 20 kg

YK250XGP
P536

CLEAN ROBOTS

ROBOTS CONTROLLER

Controllers

Features P. 88 Specifications P. 605

Single axis Robot positioner

Single axis Robot controller
Single axis
Robot controller
<small servo $24 \mathrm{~V} \cdot 30 \mathrm{~W}$ >

P. 646

$$
\text { P. } 652
$$

1 to 2 axis

Robot controller

1 to 4 axes

Robot controller

P. 678

LCMR200, GX

YHX controller

ROBOT VISION Robot with image processing functions
RCXiVY2+ System
Features P. 108
A robot-integrated vision system

Features P. 108

$$
\text { P. } 712
$$

YAMAHA ROBOT History and approach

40 years of proven reliability.

YAMAHA's robot development started as it was introduced in our motorcycle production line more than 40 years ago.
Since then, YAMAHA's industrial robots have supported production
 equipment in a wide variety of industries, such as assembly of electronic products, transfer of in-vehicle components, and manufacture of large-scale LCD panels.
Over the years YAMAHA has striven to develop and improve the market and this is a testament to YAMAHA's reliability.

Technical development based on the originally developed technologies and focusing on the needs of the market

"Motor control technology" absolutely necessary for precise and high-speed operation "Controller development technology" is based on the highest evaluation standards and Signal processing technology allowing stable operation even under extreme environmental conditions.
Rigidity, durability, and operability are features of YAMAHA's products base on "Coretechnologies*"
*Control boards, linear motors, and linear scales (position detectors), etc.

Evaluation system provides high reliability

YAMAHA continues to evaluate technology to assure product reliability.
In the product development phase, the evaluation test at "anechoic chamber"* (YAMAHA's equipment) was developed to ensure the high
 reliability and quality.
*Anechoic chamber: This equipment is intended to synthetically develop the EMC (Electro-Magnetic Compatibility) technologies for YAMAHA Group products and to share the developed technologies. This equipment can evaluate the compliance with each country's regulation in conformity with the international standards.

YAMAHA quality ensuring safety

Manufacturing, sales, and technology integrated system is utilized at its maximum level to establish a system that consistently performs a series of processes: inspection \rightarrow manufacture \rightarrow assembly \rightarrow inspection \rightarrow shipping. This can provide
 the customers with high quality, low price, and short delivery time.
Key components are manufactured through in-house processing and machining. YAMAHA as a robot manufacturer builds the components to the highest quality level.
Furthermore, the quality control based on the severe standards achieves the craftsmanship with high quality.

Robot Best Solution

Robot System Supplier

lineup from miniature actuators to articulated robots. a wide range of automation.

Scara robots YK-XE Series
Sealing work
Both the high operation performance and low-price are provided.

Cycle time simulation calculation

Use this when selecting models or calculating cycle time.

Robot life calculation

Use this when selecting models or calculating payload shape. Input simple parameters
Enter the robot model, installation direction, operating stroke, speed setting, payload mass, eccentricity, etc.

2D/3D CAD data download

Use this for production line design and device design, and to check the layout and operating range.

You can download 2D/3D CAD data for Yamaha robots and controllers.

Download 2D CAD data

Download 3D CAD data

\Accepting registrations from website /

Useful contents from model selections to design, start-up, and maintenance work are provided.

To register as a new member
Go to New Registration screen from the top page https://global.yamaha-motor.com/business/robot/

untos.

Go to New
Registration
screen from here

Starting

Manual download

User's Manual Installation Manual Maintenance Manual

Since this describes not only operating methods and setting methods but also robot placement and examples of external wiring for the controller, it will be helpful for pre-setup work. Since component replacement methods are also described, this also is useful for maintenance in conjunction with the parts list.

Various software download

- TS-Manager

- RCX-Studio 2020
- RCXiVY2+ Studio
- YHX Controller related software
- YHX Studio for Standard Profile
- YHX Driver Firmware
- YHX Project Standard Profile
- YHX Device file

Parts List and Exploded View

You can view parts lists, and request quotations.

Part lists for Yamaha robots are available.
For some parts, this shows associated parts for which replacement is required or recommended; this is helpful for maintenance activity.

You can also request a price estimate for the selected part.

50 or more ROBOT videos are available.

Proposals to make productions lines efficient and improve them.

[Efficiency of production lines]
Advantages of introducing a linear conveyor LCMR200

LINEAR CONVEYOR MODULES

[LCMR200]
Solves workpiece misalignment and facilitates identification of the cause of problems

Examples of Transfer Applications Linear Conveyor Module LCM100

Linear conveyor robot LCM100 -Speaker assembly demo

[Robot conveyor changes the transfer process dramatically] High-speed, flexible, and compact new transfer style

Line tact 1.5 seconds High-speed circulation application

YAMAHA Linear Conveyor Modules LCM100

SCARA ROBOTS \times ROBOT VISION

[For more efficiency in the Food and Clothing Industry] Machine Vision"RCXiVY2+" \times SCARA Robot

RCX340 + iVY2 Robot Vision Sorting application

- Youitube

SCARA ROBOTS x ROBOT VISION

[Automate the process of using discrete parts] Robot \times Asycube \times Machine Vision

Minimum installation width 492 mm . Full 360° rotation SCARA Robot YK350TW.

CARTESIAN ROBOTS

\square

RCX340 Screw pump dispensing

RCX340 Dual lane dispensing

Series to learn with videos

LCMR200"Software Setup"\#1 Introduction

RCX340 "PBX" operation \#1

Double-carrier and dual-drive

Gantry robot

YA

Series

ARTICULATED ROBOTS

Ideal for compact cell construction, transport and assembly of small parts, and inspection work.

7-axis robots

S-axis: Rotate the body horizontally L-axis: Move the body forward/backward E-axis: Twist the arm

T-axis: Rotate the tip of the arm

Reduce personnel, increase productivity

6-axis

7-axis

Type	Model	Application	Number of axes	Payload (kg)	Vertical reach (mm)	Horizontal reach (mm)	Page
6-axis	YA-RJ	Handling (general)	6 -axis	1 kg (max. $2 \mathrm{~kg}{ }^{\text {Note }}$)	909	545	P. 149
	YA-R3F			3	804	532	P. 150
	YA-R5F			5	1193	706	P. 151
	YA-R5LF			5	1560	895	P. 152
	YA-R6F			6	2486	1422	P. 153
7-axis	YA-U5F	Assembly / Placement	7-axis	5	1007	559	P. 154
	YA-U10F			10	1203	720	P. 155
	YA-U20F			20	1498	910	P. 156

Note. When a load is more than 1 kg , the motion range will be smaller. Use the robot within the recommended motion range.

POINT

High-speed operation reduces cycle time

Thanks to high-speed, low-inertia AC servo motors, an arm designed for light weight, and the latest control technology, these robots achieve an operating speed that is best in their class.From supply, assembly, inspection, and packing to palletization, all applications can enjoy shorter cycle time and improved productivity.

Workpieces with a high wrist load are also supported

With a wrist section that has the highest allowable moment of inertia in its class, these robots can support jobs involving a high wrist load, or simultaneous handling of multiple workpieces.

Robot simulator dramatically reduces startup time

We provide software that lets you use 3D CAD data to construct a production facility in virtual space in a personal computer, and easily perform engineering tasks such creating programs and checking for robot interference. Teaching can be performed even before the actual production line is completed, dramatically reducing line startup time.
Note. Optional support

Free arm movement further boosts productivity.

7-axis Reduced space allows sophisticated system layouts

Since these robots can be installed close to workpieces or other equipment, you can reduce the space required for your production facility. By locating multiple robots close to each other, processing can be integrated and shortened.

7-axis Access the workpiece from the opposite side or from below

Rotation of the seventh axis enables flexible movement with the same freedom of motion as a human arm, allowing the workpiece to be accessed from the opposite side or from below. This allows the robot to enter narrow locations that a person could not fit in, or to approach the workpiece in a way that avoids obstructions, giving you more freedom to design the layout for shorter cycle time and reduced space.

7 -axis
 "Elbow movement" unique to 7 -axis models allows optimal posture to be maintained

The 7-axis U-type robots allow "elbow movement," changing only the elbow angle without affecting the position or posture of the tool. This permits operation to avoid nearby obstructions.

LINEAR CONVEYOR MODULES

Efficiency of time and space in production
Yamaha's answer to Next Generation of Production Line design

Linear conveyor module LCMR200

Adding productivity to transportation process

Convert transfer process into "value-added" assembly process

Advanced linear conveyor module with high speed transport.

Improved Productivity

Reduces line design time

Space saving design

Durability

From ordinary "passive flow" to "active position transport". By converting conveyor flow into active production process improves profitability.

Mechanical tolerance between robot sliders
$+/-30 \mu \mathrm{~m}\left|\begin{array}{l}\text { Repeatabiliy (Single) } \\ +/-5 \mu \mathrm{~m}\end{array} \quad\right| \begin{aligned} & \text { Maximum payload } \\ & 15 \mathrm{~kg}\end{aligned}$

Maximum speed
2500 mm/sec
*Speed will be reduced to $2,000 \mathrm{~mm} / \mathrm{sec}$
if dynamic load is over 10 kg .

Maximum acceleration
1.3 (At dynamic load of 1 kg)

Superior performance that improves the transfer environment.

POINT 1

Transfer time is shortened to increase the production volume.

POINT 2

Easy modular connection with Connecting Plate and Connecting Unit

Mechanical connection by Connecting Plate and signal communicating by Connecting Unit. Simple yet, secured connecting method of modular system.

POINT 3

Saves space through proximity installation of forward and returning modules <Cable extraction direction can be selected Front Rear >

Since the cable extraction direction of a module can be selected, the degree of freedom in electrical wiring is improved when installed on the equipment. In particular, when the cable extraction direction is reversed on the forward and returning modules in the horizontal circulation layout, the module pitch can be made close to the shortest level of 200 mm . This can shorten the cycle time and reduce the installation space during circulation. In addition, the LED indicators that show the module state can be visually checked from both the front and rear sides of the module.

POINT 4

All the sliders can be operated / programmed independently.

Speed and acceleration can be programmed by each move. All carriages can be controller individually.

POINT 5

Top enclosure design for protection.

Top enclosure was designed to protect internal mechanism from any fallen object during line setup process.

POINT 6

Mechanical tolerance between sliders +/-30 $\mu \mathrm{m}$ (Dowel hole standard)

Due to tis machined accuracy, each carriage has own tolerance at one stopping point, however, LCMR200 can limit the slide machine difference to $+/-30 \mu \mathrm{~m}$, and is suitable for high precision process. As RFID, etc. is not necessary, cost reduction is possible.

POINT 7

No origin process needed

Newly developed high-precision full-range absolute server eliminates the need for return-to-origin. The operation can be started and stopped easily, so there is no time loss even when starting or restarting.

High acceleration rate

High speed motion between an extremely short distance is possible even in a high density process or pitch feed.

Recognize slider's individual IDs

All sliders can be identified when the power is applied.

POINT 8

Low profile structure

By adopting a newly developed linear motor, the module height is approx. 30% down compared to LCM100. The space under the frame can be effectively utilized.

POINT 9

Built-in driver saves electrical wiring

Motor driver is incorporated inside module and entire LCMR200 is controlled by YHX controller through YQLink cable. It also contributes to space saving inside the control panel.

POINT 10

Concentrated control by the YHX controller

Including the operation environment, all sliders and single-axis robots on the transfer process can be controlled.

POINT 11

Simple control with the standard profile

According to the commands from the host PLC, it adopts a simple control method that operates the sliders and single-axis robots as positioners

- Eliminates writing ladder logic codes.
- Adding operation through a pendant.
- Perform simple direct value operation and specific point-to-point move.
- Servo ON of any slider individually.
- Obtain alarm information through the host PLC.

Versatile and value added transport between work process.

Improve cycle time and reduce line floor space. Increase productivity and cost performance.

POINT 12

Process sharing

- Carriage is bi-directional and one work station can perform more than one task. Saving total line cost and floor space.
- High speed bi-directional move and simultaneous independent operation of multiple carriages.

POINT 13

Variable speed control between work stations.

- Servo controlled direct drive eliminates mechanical stoppers and position sensors.
- Simple position setting by entering point data in a program.
- Flexibility in setup for production lot change
- Saving flow time by narrow pitch incremental move and high speed move.

Assembly can be done while parts are on conveyor.

- The highly rigid guide enables assembly and processing on the transport line.
- No need to reposition parts to/from conveyor. Floor line space is reduced substantially.

POINT 15

Easily serviceability = Easy troubleshooting

Covered structure of module keeps internal mechanism free from foreign objects.

- The environment-resistant magnetic sensor is resilient to contamination.

Easy positioning with no precision setting.

- Non-contact motor and linear scale design eliminates mechanical wearing.
- Low particle generation (only mechanical contact is guide rail)

Standardized components reduce spare parts SKU
Parts can be replaced easily
Operation can be restored just by replacing the slider or linear module, and the manufacturing line down time can be kept to a minimum.

Sleek and simple configuration.
 Simplified line design process with flexibility and efficiency by modular concept.

All carriages and peripheral linear robots can be controlled by PLC through one YHX controller.

POINT 16

- Layout example with a combination of the module and circulation unit.

Horizontal circulation example

Vertical circulation example

Circulation unit

Horizontal circulation unit / Vertical circulation unit
Circulation units are available as standard.
Because the circulation units are manufacturer's standard products, the stable operation of the production line is achieved without worrying about module "deviation". Furthermore, you can also save time and effort in design.

YAMAHA genuine circulation units achieve the stable operation of the production line.

Measures against "deviation" necessary to maintain the accuracy are taken thoroughly.

Maintaining the accuracy is very important for transfer sections, but is not easy since "deviation" may occur.
Use of YAMAHA genuine circulation units makes it possible to eliminate such "deviation" and maintain the accuracy.

POINT 2

Easy adjustment

The adjustment has been performed before shipment from the factory. After the product has been arrived, the adjustment is completed in a short time by simply attaching the module to the equipment based on the end plate and performing the teaching.

LINEAR CONVEYOR MODULES

From "flow" to "move"

Efficient transfer processes for increased profitability

Linear Conveyor Module LCM100 Constructing high-speed throughput lines.

POINT

Increase productivity by shortening transport time

- Comparison between LCM100 and a conventional conveyor

The length of the transfer line can be adjusted freely by adding modules.

POINT

Save equipment space.

- Since the movement direction can be changed, the same processes are made common. This makes the equipment compact and results in cost reduction.
- Forward and backward movement at a high speed can be set freely.
- Flexible actions such as moving only some sliders backward is possible.

POINT

Can be moved efficiently between processes with different tacts

- Narrow pitch movement is possible.
- Movement time can be reduced by combining the use of different movements, such as using pitch-feed for the same processes in shorttime processes while transferring three workpieces at the same time at a high speed in long-time processes.

POINT

Workpieces do not need to be retracted

- As the work moves down, you can assemble and process them on the transfer line.
- Eliminates having to retract the work from the pallet to the work table.
- Reduces costs.

POINT

Significant reduction of start-up time

- Just connect modules for easy construction of a transfer line.

Lifting cylinders, sensors, stoppers, and other complex parts are not necessary.

Operations can be performed by using only the LCC140 Controller.

- Economical as excess modules can be used for other lines or stored for maintenance.

POINT

Construct branching lines, joint lines, and other lines in flexible configurations.

- Layout examples by combining modules with circulation mechanisms

Example of horizontal branching

Example of vertical circulation

Note. The customer needs to prepare the return unit and the circulation mechanism. Note. Modules convenient for the circulation are configured.

POINT

Optimal for small batch production of various product types

- No need for mechanical stoppers or sensors. Change layout easily.
- Reconstruction can be finished quickly by just changing the program to set a stop position.
- Frequent unit changes for different models can be handled flexibly.

Flexible set-up of the slider's acceleration/deceleration, forward/backward movement, positioning, and other actions. The variety of possible line structures has been greatly expanded to supersede conventional models.

- Easy control without controllers and no need to create robot programs

POINT

Quick recovery by replacing the slider when machine trouble occurs

- Parts can be replaced easily.
- Parts can be kept for maintenance as they are standardized. - Possible to minimize the downtime of a production line.

POINT

Easy maintenance

- Motors and scales do not make contact and are free from abrasion.
- As only the rails are sliding parts, dust generation is low.
- There are only a few consumable parts, which mean a long service life.

System configuration diagram (when 3 sliders are connected)

Standardized slider

The slider is standardized and can be used for any line. It is also possible to share the slider on multiple lines. Production can be restored immediately by replacing a failed slider if trouble occurs.

The connected controller and module combinations can be changed as needed. Note that initial setting is required when a combination is changed. Replacing just the controller or the module is also possible.

Belt module

This interface allows the customer to supply 24 V power and select just the necessary signals to use. Note Note. The customer will need to prepare the wiring on the user side.

Linear module controller LCC140

Note 1. Please note that some Yamaha single-axis controller SR1 functions are not available with the linear conveyor controller.
Note 2. All sliders stop within the width of $100 \mu \mathrm{~m}$ that includes a teaching point.

GX

Series

SINGLE-AXIS ROBOTS

Highly efficient, highly accurate ground ball screws are now standard feature for all types and models.
The high precision models with reliability and durability.

+/-5 $\mu \mathrm{m}$ positioning repeatability ensured for all models Made to the clean specification as a standard feature

POINT 1

Reliability
High precision, high rigidity, high durability
All product models employ highly efficient, highly accurate ground ball screws as the standard features. The lead accuracy complies with JIS accuracy class C5 that brings about the positioning accuracy repeatability of $+/-5 \mu \mathrm{~m}$. The accuracy is about two times higher than the previous models. These new features contributes improving yield. In addition, noise level is reduced and structural life is extended serv.

POINT 2

Shortest overall length in the industry

The industry's shortest class is achieved for the total length in relation to the operation stroke.

This significantly contributes to saving production facility footprints.

POINT 3

Usability
Save space

All models can be mounted (fixed) from the top surface or bottom surface
The main unit can be fixed from ether the bottom face or top face to respond to the system's densification and space saving.

POINT 4
Clean specification as a standard feature
Dust-proof structure...Upper surface of main frame of all models is protected with durable stainless steel dust shield.
This structure helps reducing foreign particle contamination from outside. By applying negative air pressure from suction port it can be used in a clean environment.

POINT 5

Battery-less absolute system / No origin process needed

The complete absolute method is adopted so there is no need to perform return-to-origin when restart and initial start up process. The batteryless absolute is also supported.

Easy to alter specifications

Options available for retrofit

Simply remove the motor from the robot body, set it onto the conversion adapter, and then mount onto the body again.

Unscrew motor fixing bolts

Reposition the motor

Note 1. The size shows approximate maximum cross sectional size.
Note 2. The maximum speed will vary according to the stroke length. Refer to the descriptions of each model for details.

YHX
Series
Product Lineup

YHX Controller

LCMR200/GX

Controller for the linear conveyor module LCMR200 and single-axis robot GX series. Advanced production line can be constructed in a short period.

Reduces production line configuration time

Stacking modular structure

No wiring between modules needed.

Incorporation a control power supply, motor drive power supply, high speed network communication, safety circuit into a stacking modular structure.
Eliminates wiring between units, reducing conventional wiring cost and wiring man-hour to 30% to 50%.
The stacking structure including host, power and driver is the very first in the industry.

Configuration example

Icon	Name	Description
	Linear module	Size of modules selected here is for reference only. The cable extraction direction can be selected in units of cluster (multiple linear modules are connected to configure one line). A linear module used in the circulation part is also common.
ХВОт	Robot slider	A slider that operates on the linear module.
E	End plate	Position a linear module on both ends of a cluster.
CP	Connection plate	The adjacent modules are positioned and connected.
AP	Adjuster plate	This adjuster plate is used to adjust the return line length to match the reference line.
E	End unit	Connect with the YQLink cable or YQLink terminal end unit on both ends of a cluster.
Cu	Connection unit	Between module communication of adjacent modules is connected.
\square	Control power source connector	A connector to supply control power source from 48 VDC power source to the linear module.
	Control power source jumper	A jumper cable to supply control power source to adjacent modules.
\square	Motor power source connector	A connector to supply motor power source from 48 VDC power source to the linear module.
	Motor power source jumper	A jumper cable to supply motor power source to adjacent modules.
	Motor power source jumper (for 1000 mm module relay)	A jumper cable to relay motor power source in 1000 mm module. When 3 to 4 robot sliders stop in 1000 mm module, remove this motor power source jumper, and connect the power source device for additional motor with the motor power source connector.
∇	YQLink cable	A communication cable between each linear module cluster and the controller. As shown in the above figure, connect from left to right with one line. Connect the YQLink end connector to the terminal of the end cluster.
$\begin{gathered} 48 \text { VDC } \\ \text { power supply } \end{gathered}$	48 VDC power supply	General-purpose 48 VDC power source device that can be applied to both control and motor operations. With one power source device, 10 m module control power source can be supplied. Also, one power source device can supply motor power source of two robot sliders. Prepare power source devices for each control power source and motor power source.
	Flexible power cable for movable module	Flexible cable to supply power source to the module that performs reciprocal operation mainly in the circulation part.

Implementing a task is simple and easy

Project file YHX Standard Profile

This standard profile is a project file for the LCMR200 that operates the single-axis robot or LCMR200 as a positioner from the host PLC via the field network.

- Features of YHX standard profile

- Eliminates writing ladder logic codes.
- Adding operation through a pendant.
- Perform simple direct value operation and specific point-to-point move.
- Servo ON of any slider individually.
- Obtain alarm information through the host PLC.

Significant reduction of launching man-hour.

Significant reduction of startup time and process.

Controlled by program creation of the host PLC.

Numbers of improvements in line design and operation.

POINT 1

LCMR200 can be operated using your familiar PLC.

Use of YHX standard profile makes it possible to operate the LCMR200 from the host unit such as PLC via the I/O interface of each field work.

POINT 2

Creation of YHX ladder by the customer is not needed.

Dedicated input and output signals are already assigned to the word and bit area of the field network.
Operations necessary for the robot motion such as servo ON or JOG movement can be performed without creating programs.

POINT 3

Control using "movement file"

Control is performed using the point data "movement file" necessary to register the target position.
"Movement file" plays a role similar to point data.

POINT 4

JOG or inching operation can be performed from the pendant even when no PLC is connected.
Even in a status where no PLC is connected, the axis can be operated using the JOG or inching operation from the programming pad.
When the LCMR200 is used for the circulation layout, the necessary adjustment work can be performed immediately.

POINT 5

Prevention of operation leading to damage to the circulation section is supported.

Registering the pallet size to the parameter determines the slider operable area.
Even when a pallet or workpiece is larger than the overall length of the slider, a circulation operation failure can be detected.
This avoids any slider transfer accident of the circulation unit and allows for safer software design.

Circulation unit is moved with the slider protruded.

Simple direct value operation and point designation movement can be performed.

About point designation

Overview of remote command

- The operation pattern for up to 65,535 points in total can be designated.
- The position, speed, acceleration, deceleration, and tolerance are designated for each point.
Designation image

Point	Position (mm)	Speed	Acceleration	Deceleration	Tolerance (mm)
1	100.000	1	0.5	1	0.01
2	800.000	0.5	1	1	0.05
3	432.562	1	1	1	0.02
4	1234.410	0.5	1	1	0.01
5	2451.400	1	1	1	0.01

Input
1. Command 2. Point designation 3. Direct value position designation Output 1. Axis status 2. Point output 3. Current position output

1. Servo ON, return-to-origin, movement, JOG, inching, etc.
2. Point number to be used.
3. When the direct value is designated, the speed and acceleration use the values stated in 2 and only the position is changed.
4. Servo status, during movement or movement completion, etc.
5. Point number during movement
6. Current position is always output.

Direct value operation Point is assigned to each slider and the coordinates are designated by the direct values.

Point designation operation Next movement point number for each slider is designated.

Point	Position	Speed	Step	Slider		
P10)	50 n n	1		\#01	\#02	\#03
P11	1250.0	1	1	P10	-	-
P12	2000.0	1	2	P11	P10	-
P13	2750.0	1	3	P12	P11	P10
			4	P13	P12	P11

Point number is assigned to the slider.

Preparation such as hardware connection.

Registration of robots and sliders, and parameter settings.

Registration of circulation part configuration.

Setting of each stop position.

Program creation of the host PLC

Standard profile specification

Applicable controller		YHX-HCU
Operation method		Point trace point No. specified positioning and direct value coordinate specified positioning.
Comparative robot		LCMR200, LCM-X and GX series (LCMR200 and LCM-X cannot be controlled together).
Interface		YHX Studio, YHX-PP, and field network communication
Operation type		Absolute position moving
Maximum number of points that can be registered.		65535
No. of control axes (Total of sliders and singleaxis robots, however, up to 16 axes for single-axis robot)	EtherCAT	64
	EtherNet/IP ${ }^{\text {TM }}$	64
	PROFINET	64
	CC-Link	22
Main input and output See the manual for other functions.	All axes target input	Servo ON/OFF switch/Interlock/Alarm reset
	All axes target output	Servo State/Interlock State/Alarm State/Heart beat/Emergency stop State
	Individual axis target input	Servo ON/OFF switch/Return to Origin/Positioning moving inside the control range (including LCM relay operation)/Slider insertion preparation from outside the control range/Slider discharge to outside the control range/Jog movement, inching movement/Movement Stop
	Individual axis target output	Servo State/Return to origin State/Output specified point No. for various execution state display/Current position/Axis alarm State
Main remote command See the manual for other remote commands.		Writing/reading of setting data
		Alarm check
		Writing and reading of integrated running distance and No of transits.

Robonity

Series

MOTOR-LESS SINGLE AXIS ACTUATOR

LBAS LGXS

Familiar motors or drivers can be installed. There are abundant lead variations and specifications suitable for the customer's needs can be selected.

■Easy selection

The tact time and service life can be calculated easily at YAMAHA's website.

For a wide range of usage from positioning to conveyance.

Basic model LBAS
P. 204

High Rigidity

Compact

Low Cost

Maximum payload 2 kg to 100 kg

- Maximum speed 300 to $1,333 \mathrm{~mm} / \mathrm{sec}$

Stroke
50 to $1,100 \mathrm{~mm}$

Advanced model LGXS
P. 210

Model		Adaptable		Maximum speed	Ball screw	Maximum paylo	(or equivalent)	Page
		(W)	(mm)	(or equivalent)	(mm)	Horizontal	Vertical	
Basic model	LBAS04	50	50 to 800 (50 pitch)	800	12	12	2	P. 204
				400	6	20	5	
	LBAS05	100	50 to 800 (50 pitch)	1333	20	12	3	P. 206
				666	10	24	6	
				333	5	40	12	
	LBAS08	200	50 to 1100 (50 pitch)	1200	20	40	8	P. 208
				600	10	80	20	
				300	5	100	30	
Advanced model	LGXS05	50	50 to 800 (50 pitch)	1333	20	5	2	P. 210
				666	10	8	4	
				333	5	13	8	
	LGXS05L	100	50 to 800 (50 pitch)	1333	20	12	3	P. 212
				666	10	24	6	
				333	5	32	12	
	LGXS07	100	50 to 1100 (50 pitch)	1800	30	10	2	P. 214
				1200	20	25	4	
				600	10	45	8	
				300	5	85	16	
	LGXS10	200	100 to 1250 (50 pitch)	1800	30	25	4	P. 216
				1200	20	40	8	
				600	10	80	20	
				300	5	100	30	
	LGXS12	400	100 to 1250 (50 pitch)	1800	30	35	8	P. 218
				1200	20	50	15	
				600	10	95	25	
				300	5	115	45	
	LGXS16	750	100 to 1450 (50 pitch)	2400	40	45	12	P. 220
				1200	20	95	28	
				600	10	130	55	
	LGXS20	750	100 to 1450 (50 pitch)	2400	40	65	15	P. 222
				1200	20	130	35	
				600	10	160	65	

Common features of Robonity Series

Wide range of selection for transfer and positioning application
Wide variety of ball screw lead and stroke length to choose from

POINT 1

Supports major brands and standards > Build a system with motor/driver of your choice

In addition to the conventional servomotors, stepping motors are also newly supported and actuators can be used in accordance with customers' needs.

* For the supported models and capacities, refer to the specification page P.201.

LBAS Supported motor manufacturers

[Servo motor]

Yasukawa Electric
OMRON
DELTA ELECTRONICS
Siemens AG
Schneider Electric SA
Mitsubishi Electric SANYO DENKI
Panasonic
Rockwell Automation, Inc KINGSERVO Hoof automation CO., LTD.

Beckhoff Automation GmbH \& Co. KG

KEYENCE TAMAGAWA SEIKI FANUC

LGXS Supported motor manufacturers

[Servo motor]
Yasukawa Electric
Mitsubishi Electric
KEYENCE
OMRON
Panasonic
[Stepping motor]
Oriental Motor
[NEMA standards]
NEMA17 NEMA23

POINT 2

Easy selection Easy simulation of cycle time and service life of motorless single axis actuator.

Simulator on web site will provide cycle time and service life of ball screw or guide.
Selection of most suitable model with confidence.

* These contents are not available on smartphones

POINT 3

Most suitable specification from wide range of selection.
Many selection of leads, stroke length, and size to choose from.

POINT 4

Long stroke
Strong length from 50 mm to 1450 mm to choose from.

POINT 5

Compact

Space efficient compact design (20\% less than current model).

Basic model LBAS

Newly designed integrated guide rail/frame structure. Improved moment load capacity in compact frame size. Designed to accommodate motors from most leading manufacturers.

POINT 2

High Precision

Straightness (running parallelism):
+/-0.02/800 mm

POINT 3
Motor mounting orientation - Easily adjustable with Adapter Kit.

POINT 4

Installation process is simple and easy

1. Mounting holes are accessible from top or bottom without disassembling actuator unit.
2. Standard surface on the side and dowel pin holes on the bottom.

POINT 5

Easy Maintenance

Moving parts can be lubricated from outside without opening actuator

Grease nipple on the slider side surface

Advanced model LGXS

Higher efficiency, accuracy, and reliability from ground ball screw. Ideal for base axis of multi-axis configuration.

POINT 1

Shortest Overall Length

Shortest overall length per effective stroke in industry.

POINT 2

High Precision

- Adopted ground ball screws

Ball screw Remove Accuracy: Accuracy class C5

- Positioning Remove Accuracy repeatability: +/-5 $\mu \mathrm{m}$

POINT 3

Cleanroom Ready Design

- Protective stainless dust shield
- Ports are ready for vacuum fittings

POINT 4
Motor orientation is changeable with optional conversion unit
Choice of motor orientation (standard, right, or left).

LGXS

Maximum acceleration 2G!
KAIZEN process of productivity starts from single axis robots.

LGXS series were added to Robonity line to meet the increasing demand of productivity improvement.

Benefit of higher acceleration/deceleration:

Reduction of operation time in the same lot = increased production volume in the same time

Impact of higher G acceleration/deceleration

Comparison of tact time with the payload of $1 \mathbf{k g}$.
For LGXS10-20-100 Comparison of 2G and 0.5G acceleration/deceleration

Improvement effect

<Example> Movement stroke is 100 mm . Payload is 1 kg . Robot operates 8 times per cycle.
Daily operation hours are 8 hours. Robot operates for 20 days every month. Operating ratio is 100%.
The estimation is made under the above conditions.

| | Work time | Robot operation time | Total time | Production volume
 per hour | Production volume
 per day | Production volume
 per month |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 . 5 G}$ | $8 \mathbf{s e c}$. | 0.3 sec. | 10.4 sec. | 346 pcs. | $2,768 \mathrm{pcs}$. | 55,360 pcs. |
| $\mathbf{2 . 0 G}$ | 8 sec. | 0.17 sec. | 9.36 sec. | 384 pcs. | 3,072 pcs. | 61,440 pcs. |

As a result, there is a difference of about 6,000 pcs. (about 10%) in one month under exactly the same operating conditions.

What's new with advanced LGXS series?

It is a ground ball screw for higher precision, longer life, and better dynamic characteristics.

Service life when the payload is $\mathbf{1} \mathbf{k g}$.

For LGXS10-20-100

<Example> Overhang amount
A: 100 mm
B: 100 mm
C: 100 mm

A robot is a robot....
regardless of brand...isn't it?

From Yamaha R\&D

Yamaha's single-axis robots have excellent durability and long product service life.
The "Robonity" series has been evolved further. By utilizing our accumulated know-how and the features of each component to the maximum extent, the products confidently meet various needs of our customers, such as low cost, productivity, space saving, and quality improvement
Please contact Yamaha representative for all features Robonity series privide.

Series

Product Lineup

CLOSED LOOP STEPPING MOTOR SINGLE-AXIS ROBOTS

Excellent characteristics of both stepping motor and servomotor were combined.

Stepping motor single-axis robots "TRANSERVO"
series breaking through existing conventions.

Robot positioner TS-S2/TS-SH

This robot positioner is specialized for the I/O point trace input. The positioning or pushing operation can be performed using simple operation, only by specifying a point number from the host control unit and inputting the START signal.

Applicable models:	SS	SG $^{\text {Note }}$	SR	STH
	RF	BD		

Note. SGO7 is only applicable to TS-SH.

Robot driver TS-SD

P. 636

This robot driver omits the operation with robot languages and is dedicated to the pulse train input. This driver can be made applicable to the open collector method or line driver method using the parameter setting and signal wiring. So, you can match the robot driver to the host unit to be used.

Applicable
models:
Note. Except for STH vertical specifications and RF sensor specifications.

Newly developed vector control method provides functions and performance similar to servomotors.

SS type (Slider type)

Straight model P. 256

SG type (Slider type)

Space-saving model
(Side mounted motor model)
P. 262

SR type (Rod type standard)

Straight mode

SR type (Rod type with support guide)

Straight model

P. 266

SRD03-U

Type	Model	Size (mm) Note 1	Lead (mm)	Maximum payload (kg) ${ }^{\text {Note } 2}$		Maximum speed ($\mathrm{mm} / \mathrm{sec}$.) ${ }^{\text {Note } 3}$	Stroke (mm)	Page	
				Horizontal	Vertical				
SS type (Slider type) Straight model/ Space-saving model	$\begin{aligned} & \text { SS04-S } \\ & \text { SS04-R (L) } \end{aligned}$	W49 × H59	12	2	1	600	50 to 400	SS04-S:	P. 256
			6	4	2	300			
			2	6	4	100		SS04-R (L):	P. 257
	$\begin{aligned} & \text { SS05-S } \\ & \text { SS05-R (L) } \end{aligned}$	W55 × H56	20	4	-	1000	50 to 800	SS05-S:	P. 258
			12	6	1	600			
			6	10	2	300		SS05-R (L):	P. 259
	$\begin{aligned} & \text { SS05H-S } \\ & \text { SS05H-R (L) } \end{aligned}$	W55 x H56	20	6	-	1000	50 to 800	SS05H-S:	P. 260
			12	8	2	600 (Horizontal) 500 (Vertical)		SS05H-R (L): P. 261	
			6	12	4	300 (Horizontal) 250 (Vertical)			
SG type (Slider type)	SG07	W65 x H64	20	36	4	1200	50 to 800	SG07:	P. 262
			12	43	12	800			
			6	46	20	350			
SR type (Rod type standard) Straight model/ Space-saving model	$\begin{aligned} & \text { SR03-S } \\ & \text { SR03-R (L) } \\ & \text { SR03-U } \end{aligned}$	W48 \times H56.5	12	10	4	500	50 to 200	SR03-S:	P. 263
								SR03-R (L):	P. 264
			6	20	8	250		SR03-U:	P. 265
	SR04-S SR04-R (L)	W48 \times H58	12	25	5	500	50 to 300	SR04-S:	P. 268
			6	40	12	250			
			2	45	25	80		SR04-R (L):	P. 269
	SR05-S SR05-R (L)	W56.4 × H71	12	50	10		50 to 300	SR05-S:	P. 272
			6	55	20	150			
			2	60	30	50		SR05-R (L):	P. 273
SR type (Rod type with support guide) Straight model/ Space-saving model	$\begin{aligned} & \hline \text { SRD03-S } \\ & \text { SRD03-U } \end{aligned}$	W105 \times H56.5	12	10	3.5	500	50 to 200	SRD03-S:	P. 266
			6	20	7.5	250		SRD03-U:	P. 267
	SRD04-S SRD04-U	W135 \times H58	12	25	4	500	50 to 300	SRD04-S:	P. 270
			6	40	11	250		SRD04-U.	P271
			2	45	24	80		SRD04-U.	
	SRD05-S SRD05-U	W157 \times H71	12	50	8.5	300	50 to 300	SRD05-S:	P. 274
			6	55	18.5	150		SRD05-U:	P. 275

As the slide table type, rotary type, and belt type were added to the product lineup, the design flexibility was extended.

RF type (Rotary type)

Standard model	P. 280	High rigidity model	

Type	Model	Height (mm)	Torque type	Rotation torque ($\mathrm{N} \cdot \mathrm{m}$)	Maximum pushing torque ($\mathrm{N} \cdot \mathrm{m}$)	Maximum speed $\left(\mathrm{mm} / \mathrm{sec}\right.$.) ${ }^{\text {Note } 3}$	Rotation range (${ }^{\circ}$)	Page
RF type (Rotary type) Standard/High rigidity	$\begin{aligned} & \text { RFO2-N } \\ & \text { RF02-S } \end{aligned}$	42 (Standard) 49 (High rigidity)	$\mathrm{N}:$ Standard	0.22	0.11	420	$\begin{aligned} & 310 \text { (RFO2-N) } \\ & 360 \text { (RFO2-S) } \end{aligned}$	$\begin{aligned} & \text { RF02-N: P. } 280 \\ & \text { RF02-S: P. } 283 \end{aligned}$
			H: High torque	0.32	0.16	280		
	$\begin{aligned} & \text { RF03-N } \\ & \text { RF03-S } \end{aligned}$	53 (Standard) 62 (High rigidity)	N : Standard	0.8	0.4	420	$\begin{aligned} & 320 \text { (RF03-N) } \\ & 360 \text { (RF03-S) } \end{aligned}$	RF03-N: P. 284 RF03-S: P. 287
			H: High torque	1.2	0.6	280		
	RF04-N	68 (Standard) 78 (High rigidity)	$\mathrm{N}:$ Standard	6.6	3.3	420	$320 \text { (RF04-N) }$	RF04-N: P. 288 RF04-S: P. 291
	RF04-S		H: High torque	10	5	280		

BD type (Belt type)

Straight model P. 292

Type	Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload (kg) ${ }^{\text {Nole } 2}$		Maximum speed ($\mathrm{mm} / \mathrm{sec}$.) ${ }^{\text {Note } 3}$	Stroke (mm)	Page
				Horizontal	Vertical			
BD type (Belt type)	BD04	$\mathrm{W} 40 \times \mathrm{H} 40$	48	1	-	1100	300 to 1000	BD04: P. 292
	BD05	W58 \times H48	48	5	-	1400	300 to 2000	BD05: P. 293
	BD07	W70 \times H60	48	14	-	1500	300 to 2000	BD07: P. 294

Note 1. The size shows approximate maximum cross sectional size.
Note 2. The payload may vary depending on the operation speed. For details, refer to the detailed page of relevant model.

- Allowable ambient temperature for robot installation

Note 2. The payload may vary depending on the operation speed. For details, refer to the detailed page of relevant model.
Note 3. The maximum spe
Note 4.STH04-R (L) with 50 -stroke and brake is not supported.

Common features of TRANSRVO Series

POINT 1

New control method combining the advantages of both the servomotor and stepping motor

The stepping motor provides features that its price is less expensive and hunting (minute vibration) does not occur during stopping. However, this motor has disadvantages that the positional deviation due to step-out occurs (in the open loop mode), the torque decreases greatly in the high speed area, and the power consumption is large during stopping. As YAMAHA's TRANSERVO uses the closed loop control, this ensures complete "no step-out". Furthermore, use of a newly developed vector control method ensures less torque decrease in the high speed area, energy saving, and low noise. The function and performance equivalent to the servomotor are achieved at a low cost even using the stepping motor.

Energy saving

As the basic control is the same as the servomotor, waste power consumption is suppressed. This greatly contributes to the energy saving and CO_{2} reduction.

TRANSERVO combines both merits.

No hunting during stopping

Stop mode without hunting can be set in the same manner as the general stepping motor. So, select this mode as required.

POINT 2

Closed loop control using excellent environment resistant resolver

A resolver with excellent reliability is used to detect the motor position in the same manner as YAMAHA's upper model. The stable position detection can be made even in a poor environment where fine particle dusts or oil mists exist. Additionally, a high resolution of 20480 pulses per revolution is provided.

This resolver is a magnetic position detector. The resolver features a simple structure without using electronic components and optical elements, and less potential failure factors when compared to general optical encoders.
The resolver has high environment resistance and low failure ratio, and is used in a wide variety of fields aiming at reliability such as automobile or aircraft industry.

POINT 3

Excellent controllability

Use of a high resolution (4096, 20480 pulse/rev) makes it possible to maintain excellent controllability. Variations in speed are small and settling time during deceleration stop can be shortened.

POINT 4

Return-to-origin is not needed to shorten the start-up time.

New type robot positioner TS-SH applicable to the high power was newly developed.
This robot positioner is applicable to the absolute position system and does not need any return-to-origin.
The work can be started quickly to shorten the start-up time.
(SG type is only applicable to TS-SH.)

SS type (Slider type) Straight model/Space-saving model

POINT

4-row circular arc groove type 2-point contact guide applicable to even large moment load

A newly developed module guide is employed with a 4-row circular arc groove type 2-point contact guide built into a very compact body similar to the conventional model. This guide maintains a satisfactory rolling movement with less ball differential slip due to its structure even if a large moment load is applied or the installation surface precision is poor, and has characteristics that are difficult to malfunction, such as unusual wear.

POINT

Tact is shortened by high-speed movement.

As advantages of the vector control method are utilized at maximum level, the TRANSERVO maintains a constant payload even in a high-speed range. This greatly contributes to shortening of the tact time. Additionally, by combining this feature with high-lead ball screws, the TRANSRERVO has achieved a maximum speed of $1 \mathrm{~m} / \mathrm{sec} .^{\text {Note }}$ which is faster than any single-axis servo motor.
Note. SS05-S/SS05H-S with 20 mm-lead specifications

SG type (Slider type)

POINT

Maximum payload is 46 kg . A maximum payload of 20 kg is supported even with the vertical specifications.

As rigid table slide and $56 \square$ motor are adopted, the payload is increased greatly. A maximum payload of 46 kg is achieved. Up to 20 kg can be transferred even with the vertical specifications.

POINT

Maximum speed is $\mathbf{1 2 0 0} \mathbf{~ m m} / \mathrm{sec}$.

The maximum speed is made 1.2 times faster than that of the current model SS05H.

The tact-up of the equipment can be achieved.

SR type (Rod type) Standard model/Model with support guide

POINT

Long-term maintenance free is achieved.

A lubricator used in the ball screw and a contact scraper installed at the rod inlet and outlet provide maintenance-free operation.

Maintenance interval is greatly extended.

Normal grease lubrication on the ball screw loses a very small amount of oil as the ball screw moves.
The SR type has a lubricator that supplies grease lost over long periods to greatly extend the maintenance interval and ensure near maintenance-free operation ${ }^{\text {Note }}$.
Note. The maintenance-free period is within the running life of the robot.

Highly reliable resolver is used A resolver with excellent environment resistance is used for the position detector. All models can select brake specifications.

Ball screw lubricator

A lubricator with high density fiber net impregnated with grease supplies an adequate amount of oil to appropriate locations.

Laminated type

 contact scraperA dual-layer scraper removes fine foreign objects sticking to the rod to prevent them from entering the inside and troubles caused by foreign objects. Rod rattle is suppressed effectively.

Environment-friendly lubrication system

The lubrication system is environment-friendly as it uses a high density fiber net and supplies an adequate amount of oil to appropriate locations to eliminate waste lubrication.

Prevention of foreign object entry

The dual-layer scraper is in contact with the front of the rod to ensure excellent fine contaminant particle removal performance. The scraper removes fine contaminant particles sticking to the rod through multi steps to prevent them from entering the inside and troubles caused by foreign objects. Additionally, oleo-synthetic foam rubber with a self-lubricating function ensures low-friction resistance.

Tip nozzle for grease application
When applying the grease to the ball screw of the SR type space-saving model SR03-UB or SRD03-UB, use a grease gun with the tip bent.

STH type (Slide table type) Straight model/Space-saving model

POINT

Use of a circulation type linear guide achieves the high rigidity and high accuracy.

- Guide rail is integrated with the table.
- Table deflection amount is small.
- Use of a circulation type linear guide achieves the high rigidity and high accuracy.
- STH06 provides an allowable overhang exceeding that of FLIP-X series T9.
- Space-saving model with the motor built-into the body is also added to the product lineup.
- Suitable for precision assembly.

RF type (Rotary type) Standard model/High rigidity model

POINT

Rotation axis model, first in TRANSERVO series

- Rotation axis model, first in TRANSERVO series
- Thin and compact
- Can be secured from the top or bottom surface.

Hollow hole, through which the tool wiring is passed, is prepared.
Workpiece can be attached easily.

- Motor is built-into the body to achieve the space-saving.
- Standard model or high rigidity model can be selected.

Standard model

Use of highly rigid bearing makes it possible to reduce displacement amount in the radial thrust direction of the table.

High rigidity model

BD type (Belt type) Straight model

POINT

Belt type applicable to long stroke

- Applicable to up to 2000 mm-stroke.
- High speed movement at a speed of up to $1500 \mathrm{~mm} / \mathrm{sec}$. can be made.
- Maximum payload 14 kg
- Main body can be installed without disassembling the robot.
- Shutter is provided as standard equipment. This prevents grease scattering or entry of foreign object.

Shutter is provided as standard equipment.
This shutter covers the guide, ball screw, and belt. The shutter prevents grease scattering or entry of external foreign object.

FLIP-X

Series

SINGLE-AXIS ROBOTS

General-purpose single-axis robots can be used for various applications, such as assembly and inspection work.
6 types and 28 models ranging from compact size to long-stroke robots are available.

Various custom specifications are also supported.
Various custom specifications, such as double-slider and wide slider are also supported.
For details, please consult YAMAHA.

Six types with high reliability and durability

T type Frame-less structure model P. 300

T4L/T4LH

T5L/T5LH
T6L
T9/T9H

Double appeal of compact body and low price.
■ Ideal in applications as an actuator directly installed on an installation base.

R type Rotation axis model

P. 338

F type Model with high rigidity frame
P. 307

■ Tolerable load moment is large and highly resistant to the offset load.

- Suitable for Cartesian robots needing rigid arm or moving arms that move the entire axis.

GF type Long stroke model with high rigidity frame
P. 316

Repeated positioning accuracy $+/-30 \mathrm{sec} .\left(0.0083^{\circ}\right)$

- The robot can be used as the rotation axis when combined with other robots or utilized for a wide variety of applications, such as index tables.
High rigidity and high accuracy by harmonic drive.

GF17XL

\qquad
Movable at $1200 \mathrm{~mm} / \mathrm{sec}$. in the whole area without critical speed.
Suitable for long distance transfer.

N type Nut rotation type model

■ Repeated positioning accuracy +/- 0.01 mm

- Maximum payload 80 kg

Critical speed is not restricted and highspeed transfer is possible.
Stroke: $\quad 2500 \mathrm{~mm}$
Maximum speed: $1200 \mathrm{~mm} / \mathrm{sec}$.

In this structure, the hollow motor is connected to the nut of the ball screw and the nut is rotated with the screw shaft secured to perform the movement.

POINT 1

4-row circular arc groove type 2-point contact guide that is resistant to large moment load is adopted. ${ }^{\text {Note } 1}$

4-row circular arc groove type 2-point contact guide with less differential slip is used for the linear guide. This guide has less ball differential slip due to its structure when compared to the 2-row Gothic arch type 4-point contact guide and maintains a satisfactory rolling movement even if a large moment load is applied or the installation surface precision is poor. The guide has characteristics that are difficult to malfunction, such as unusual wear and provides excellent reliability.
Note 1. Except for T4L/T4LH and T5L/T5LH

F/N/B type Note 2

For the F type, N type, and B type, two guide frames are laid out on the high rigidity aluminum extruded material frame. Two bearing units per rail, four bearing units in total, support a large load firmly. As a large moment load is mainly converted into vertical
 force, the moment applied to one bearing unit becomes small to ensure excellent durability.
Note 2. Except for F8 series/F10/B10.
 4 -point contact guide

4-row circular arc groove type
2-point contact guide

small and self-centering function is high.
Resistant to alignment changes and moment loads.

- Difficult to break.

F8 series

The F8 series uses a newly developed module guide to greatly reduce the crosssectional area (70% when compared to F10). The rail is laid out in the full width of the frame to ensure the high rigidity even with compact design. Of course, this series also uses the 4-row circular arc groove type
 2-point contact guide.

POINT 2

Resolver with excellent environment resistance is used for the position detector.

A resolver is used for the position detector. The resolver has a simple and rigid structure without using electronic components and optical elements. Detection problems due to electronic component breakdown, dew condensation on or oil sticking to the disk that may occur in optical encoders do not occur in the resolver. The resolver provides excellent durability. Additionally, as the absolute specifications and incremental specifications use the same mechanical specifications and common controller, desired specifications can be selected only by setting parameters. Furthermore, even when the absolute battery is consumed completely, the robot can still operate as the incremental specifications. So, even if a trouble occurs, the line stop is not needed to ensure the safe production line. Furthermore, the backup circuit has been completely renovated and now has a backup period of one year in the non-energizing state.

POINT 3

Long service life greatly reduces the maintenance cost.

As the acceleration is determined by the weight parameter, the service life can be assured when the weight and position of center of gravity are known.

Allowable overhang Note													
Horizontal installation (Unit: mm)					Wall installation (Unit: mm)					Vertical installation (Unit: mm)			
		A	B	C			A	B	C			A	C
	5kg	864	501	383		5kg	348	384	776	$\begin{aligned} & \text { N } \\ & \text { T. } \\ & 0 \end{aligned}$	1 kg	600	600
	15 kg	491	156	140		15kg	87	40	306		2kg	1098	1098
$\begin{aligned} & 0 \\ & \mathbf{N} \\ & \mathbf{0} \\ & 0 \end{aligned}$	5 kg	1292	505	462	$\begin{aligned} & \hline \mathbf{O} \\ & \mathbf{N} \\ & \mathbf{0} \\ & \hline \end{aligned}$	5 kg	416	388	1186	\pm	4 kg	545	545
	15kg	572	158	151		15kg	92	42	386	앋	4kg	594	594
	30kg	455	73	75		30kg	0	0	61		8kg	280	280
안	20kg	617	119	127	욷	10kg	193	132	910	$\xrightarrow{-}$	10kg	217	217
밈	40kg	422	53	59		20kg	53	0	400	$\stackrel{\square}{\square}$	10kg	221	221
	55kg	420	36	40		30kg	0	0	109		15kg	135	135
	50kg	722	42	47	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	10kg	197	133	2360		20kg	92	92
	60kg	657	33	37		20kg	54	0	985				
	80kg	577	23	25		30kg	0	0	427				

As YAMAHA's robot uses high rigidity ball screw or guide, it provides excellent durability. This greatly contributes to reduction of the customer's maintenance cost.

Cost reduction by high durability

POINT 4

Controllers suitable for applications are prepared.

In addition to the robot program operation and pulse train control, a positioner that is operated by specifying a point number was added to the product lineup. Additionally, multi specifications that control multiple robots using one controller are also supported. You can select an optimal controller
 suitable for your application.

POINT 5

Various custom specifications are supported.

YAMAHA supports custom orders flexibility to meet the customers' various needs.

Addition of free slider	Free slider is added. Various applications, such as rigidity increase or use of two heads are supported.
Wide slider	To increase the slider rigidity, the standard slider is processed to the wide slider.
Specified stroke	A stroke smaller than the minimum stroke may be supported. For details, please consult YAMAHA.
Lead beyond catalog	The lead may be changed to that not stated in the catalog. For details, please consult YAMAHA.
Origin non-motor specifications	Even when not stated in the catalog, the origin may be changed to the non-motor side. For details, please consult YAMAHA.

YAMAHA has a wide variety of custom order results other than those shown above. If you have any requirement or request, please feel free to contact YAMAHA.

Type	Size (mm) ${ }^{\text {Note } 1}$	Model	$\begin{aligned} & \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	Maximum payload (kg)		Maximum speed (mm/sec.)	Stroke (mm)	Page
				Horizontal	Vertical			
T type Frame-less structure model	W $45 \times \mathrm{H} 53$	T4L/T4LH	12	4.5	1.2	720	50 to 400	T4L: P. 300
			6	6	2.4	360		
			2	6	7.2	120		T4LH: P. 301
	W55 \times H52	T5L/T5LH	20	3	-	1200	50 to 800	T5L: P. 302
			12	5	1.2	800		
			6	9	2.4	400		T5LH: P. 303
	W65 \times H56	T6L	20	10	-	1333	50 to 800	P. 304
			12	12	4	800		
			6	30	8	400		
	W94 \times H98	T9 (Standard)	30	15	-	1800	150 to 1050	P. 305
			20	30	4	1200		
			10	55	10	600		
			5	80	20	300		
		T9H (High thrust)	30	25	-	1800	150 to 1050	P. 306
			20	40	8	1200		
			10	80	20	600		
			5	100	30	300		
F type Model with high rigidity frame	W80 \times H65	F8	20	12	-	1200	150 to 800	P. 307
			12	20	4	720		
			6	40	8	360		
	W80 \times H65	F8L	30	7	-	1800	150 to 1050	P. 308
			20	20	4	1200		
			10	40	8	600		
			5	50	16	300		
	W80 \times H65	F8LH	20	30	-	1200	150 to 1050	P. 310
			10	60	-	600		
			5	80	-	300		
	W110 \times H71	F10 (Standard)	30	15	-	1800	150 to 1050	P. 311
			20	20	4	1200		
			10	40	10	600		
			5	60	20	300		
		F 10 H (High thrust)	30	25	-	1800	150 to 1000	P. 312
			20	40	8	1200		
			10	80	20	600		
			5	100	30	300		
	W136 \times H83	F14 (Standard)	30	15	-	1800	150 to 1050	P. 314
			20	30	4	1200		
			10	55	10	600		
			5	80	20	300		
		F14H (High thrust)	30	25	-	1800		P. 315
			20	40	8	1200		
			10	80	20	600		
			5	100	30	300		
	W168 \times H100	F17L	50	50	10	2200	1100 to 2050	P. 319
		F17	40	40	-	2400	200 to 1450	P. 317
			20	80	15	1200	125	
			10	120	35	600	200 to 1250	
	W202 \times H115	F20	40	60	-	2400	200 to 1450	P. 321
			20	120	25	1200	200 to 1250	
			10	-	45	600		
	W202 \times H120	F20N	20	80	-	1200	1150 to 2050	P. 323
GF type	$\mathrm{W} 140 \times \mathrm{H} 91.5$	GF14XL	20	45	-	1200	750 to 2000	P. 316
	$\mathrm{W} 168 \times \mathrm{H} 105.5$	GF17XL	20	90	-	1200	850 to 2500	P. 320
N type Nut rotation type model	W145 \times H120	N15 (Single-carrier) N15D (Double-carrier)	20	50	-	1200	500 to 2000	P. 324
							250 to 1750	P. 326
	W180 \times H115	N18 (Single-carrier)		80	-		500 to 2500	P. 328
		N18D (Double-carrier)					250 to 2250	P. 330
B type Timing belt drive model	W100 \times H81	B10	Belt drive	10	-	1875	150 to 2550	P. 332
	W146 \times H94	B14 (Standard)	Belt drive	20	-	1875	150 to 3050	B14: P. 334
		B14H (High thrust)	Belt drive	30	-	1875		B14H: P. 336
R type Rotation axis model	-	R5	-	$0.12 \mathrm{kgm}^{2}$	-	360% sec	360°	P. 338
		R10		$0.36 \mathrm{kgm}^{2}$	-			P. 339
		R20		$1.83 \mathrm{kgm}^{2}$	-			P. 340

[^0]
Multi-robot

MULTI-FLIP/MULTI-PHASER
This robot has multi specifications that control multiple robots using one controller.

Advantages of control with multi-axis controller

- Sequence control is easy. System upgrades are easy at less expensive price.
- Compact and space saving when compared to the operation with multiple single-axis controllers.
- More advanced control is possible.
- RCX221, RCX320 and RCX340 provide mixed control of the FLIP-X series and PHASER series (linear single-axis).

Multi-robot ordering method

Note 2. Select either MULTI-FLIP or MULTI-PHASER shown below
Note 3. For details about the controller and controller option models, please refer to relevant page of each controller.

MULTI-FLIP

Type	Model	Lead (mm)	Stroke (mm)
T type Frame-less structure model	T4L/T4LH	12	50 to 400
		6	
		2	
	T5L/T5LH	20	50 to 800
		12	
		6	
	T6L	20	50 to 800
		12	
		6	
	$\begin{gathered} \mathrm{T9} \\ \text { (Standard) } \end{gathered}$	30	150 to 1050
		20	
		10 5	
	T9H (High thrust)	30	150 to 1050
		20	
		10	
		5	
F type Model with high rigidity frame	F8	20	150 to 800
		12	
		6	
	F8L	30	150 to 1050
		20	
		10	
		5	
	F8LH	20	150 to 1050
		10	
		5	
	$\begin{gathered} \text { F10 } \\ \text { (Standard) } \end{gathered}$	30	150 to 1050
		20	
		10	
		5	
	F10H (High thrust)	30	150 to 1000
		10	
		5	
	F14 (Standard)	30	150 to 1050
		20	
		10	
		5	
	F14H (High thrust)	30	
		20	
		10	
		5	
	F17L	50	1100 to 2050
	F17	40	200 to 1450
		20	200 to 1250
		10	200 to 1250
	F20	40	200 to 1450
		20	200 to 1250
	F20N	10	1150 to 2050
	GF14XL	20	750 to 2000
GF type	GF17XL	20	850 to 2500
N typeNut rotationtypemodel	N15 (Single-carrier)	20	500 to 2000
	N15D (Double-carrier)		250 to 1750
	N18 (Single-carrier)		500 to 2500
	N18D (Double-carrier)		250 to 2250
B type Timing belt drive model	B10	Belt drive	150 to 2550
	B14 (Standard)	Belt drive	150 to 3050
	B14H (High thrust)	Belt drive	
$\begin{gathered} \text { R type } \\ \text { Rotation axis } \\ \text { model } \end{gathered}$	R5	-	$360{ }^{\circ}$
	R10 R20		

MULTI-PHASER

Type	Model	Carrier	Stroke (mm)
	MF7	Single	100 to 4000
	MF7D	Double	100 to 3800
	MF15	Single	300 to 4000
MF type Flat type with core Linear motor specifications	MF15D	Double	100 to 3800
	MF20D	Single	150 to 4050
	MF30	Single	100 to 4000
	MF30D	Double	150 to 3750
	MF75	Single	1000 to 4000
	MF75D	Double	680 to 3680

Robot settings

2-robot settings

Use of 2-robot settings and multi-task program makes it possible to perform asynchronous independent operation. As the auxiliary axis setting is used together, more free axis assignment can be made.

Double-carrier

In robot types that the motor runs separately, such as linear motor single-axis PHASER series or N type (nut rotation type) of FLIP-X series, two motors can be added to one axis.

Main auxiliary axis setting

This auxiliary axis setting is used when it is inconvenient that two axes move simultaneously by the MOVE command. The axis set for the main auxiliary axis does not operate by the MOVE command and it operates only by the DRIVE command (movement command in axis units). This setting is recommended for the axis that needs to be operated asynchronously from the main robot.

Dual setting

This setting is used when performing the dual drive (2-axis synchronous control). This setting is used when the gantry type Cartesian robot with a long Y-axis stroke stabilizes the high acceleration/deceleration or when a high load or high thrust is needed.

Applicable controllers

Name		1 to 2 axes controller		1 to 2 axes controller	1 to 4 axes controller
		RCX221	RCX222	RCX320	RCX340
Appearance				P. 660	
Position detection		Incremental	Absolute	Incremental/Absolute	
Control model		FLIP-X and PHASER can be mixed.	FLIP-X	FLIP-X and PHASER can be mixed.	
Maximum number of programs		100 programs			
Maximum number of points		10,000 points		30,000 points	
Number of input/ output points	Standard	Dedicated input 10 points/ dedicated output 12 points General-purpose input 16 points/ general-purpose output 8 points		Dedicated input 8 points/ dedicated output 9 points General-purpose input 16 points/ general-purpose output 8 points	
	Expansion	General-purpose input 24 points/ general-purpose output 16 points			
Network option		CC-Link, DeviceNet ${ }^{\text {TM }}$, PROFIBUS		CC-Link, DeviceNet ${ }^{\top \mathrm{M}}$, EtherNet $/ \mathrm{P}^{\text {TM }}$, Ethernet, PROFIBUS, PROFINET, EtherCAT	

Examples of multi-robot ordering methods

Separate single axes
<Example> F14H and F10 are installed separately.

MLTX-F14H-20-U-500	1st unit
	- $\mathbf{F 1 0}-\mathbf{2 0 - 3 0 0}$
	2nd unit

2 axes + 1 axis

<Example> T6 is installed on the base for the 1st axis, C6 is secured to the upper portion for the 2nd axis, and CH 4 is secured to the upper portion for the 3rd axis to assemble the C 6 and C 4 H to the XZ . (Either 2 axes +1 axis or 3 axes simultaneous control can be made by the setting.)

Note. When the customer combines each axis, it is recommended to use the cable terminal (relay cable) for the wiring among axes. For details about cable terminal, please contact YAMAHA.

Double-carrier/dual drive (2-axis simultaneous control)

Example of 8-axis contro

<Example> Two double-carriers of the MF30 are arranged in parallel and two MF20 installed on the top are moved by the dual-drive. T6 is attached to each tip of the MF20 and the robots are controlled using two controllers.

[^1]
3 axes combination

<Example> C17L, C14H, and C14H are used for the X-axis, Y-axis, and Z -axis, respectively to form a 3 -axis XYZ combination.

Double-carrier

Example of 4-axis control

<Example> Two T6 are assembled to the double-carrier of the MF20A, and they are used as XZ type and controlled using one controller.

Note. For the double-carrier, since one robot occupies two axes of the controller, the number of robots may differ from the number of controllable axes.

CAUTION

Conditions needing regenerative unit on multi-robot

The total motor capacity exceeds 450 W .

- The total motor capacity of the vertical axis exceeds 240 W .
- The B 14 H performs the operation at a maximum speed of more than $1250 \mathrm{~mm} / \mathrm{s}$.
- When the vertical axis is 240 W or less, the conditions shown below are satisfied.
- There is a 200 W -vertical axis.
- A 100 W-vertical axis has a stroke of 700 mm or more.
- There are two 100 W -vertical axes with a 5 mm -lead

FLIP-X terminology

High lead

This term indicates models supporting ball screw leads that exceed the standard lead (12 mm or 20 mm). (The standard lead of the F17L and C17L is 50 .)

Origin on non-motor side

This term indicates models that are applicable to the origin nonmotor specifications as standard. The origin on the non-motor side in the standard state is not supported with a lead not stated in the catalog. If special specifications are needed, please consult YAMAHA.

Maximum speed

This term indicates the maximum transfer speed. YAMAHA's single-axis robots can transfer a workpiece at this speed regardless of the transfer weight as long as it is within the maximum payload. However, as the workpiece is heavier, the acceleration/ deceleration curve becomes gentle. If the movement distance is short, the speed does not reach the maximum speed stated in the catalog.

CAUTION

When the stroke of the ball screw drive type is long, noise or vibration is produced due to resonance of the ball screw if moved at the maximum speed. If this happens, lower the speed to that stated in the note column. (It is also possible to lower the transfer speed of the entire program using the SPEED setting or make the adjustment for each movement command.)

Maximum payload

This term indicates the maximum weight that can be loaded on the slider and transferred. Select an appropriate model so that the total weight of the customer's tools (air cylinder or chuck) and workpiece is less than this data. When the center of gravity of the tool or workpiece is offset from the center of the slider, the allowable overhang needs to be taken into consideration. Additionally, when entering the total weight of the tool and workpiece for the payload parameter of the controller, optimal acceleration/ deceleration and servo parameter are automatically set.

Rated thrust

This term indicates the force to be applied in the slider advancing direction in the slider stationary (hold) state. When using vertically, the weight of the loaded workpiece is subtracted from this value (when the force is applied downward from the top). The slider can move only at a low speed (approximately 10% of the maximum speed), but this value becomes lower than the specification value. Additionally, the type B of the timing belt drive cannot be used for applications, in which thrust is applied.

Allowable overhang

This term indicates an allowable overhang of an object to be transferred. In the specification data, this indicates the distance from the center of the top face of the slider to the center of gravity of an object to be transferred by the weight. This value is determined according to the service life of the linear guide. Under normal operation conditions ${ }^{\text {Note }}$, the 90%-service life of the linear guide is $10,000 \mathrm{~km}$ or more if gravity centers of the workpiece and tool are kept within the allowable overhang. When using with an overhang amount exceeding the specification data, it is necessary to install a separate support guide or restrict operating conditions (speed, acceleration) so that a load is not applied to the linear guide of the single-axis robot. For detail, please consult YAMAHA.

Note. Speed, acceleration 100% (It is preconditioned that the weight parameters are set correctly.)
There shall be no impact load or excessive vibration during operation. Additionally, the alignment is correct.

Static tolerance moment

This term indicates the load moment applied to the slider in the robot stationary state.

Critical speed

When the stroke of the ball screw drive type is long, noise or vibration is produced due to resonance of the ball screw if moved at the maximum speed. If this happens, lower the speed to that stated in the note column. (It is also possible to lower the transfer speed of the entire program using the SPEED setting or make the adjustment for each movement command.)

LINEAR MOTOR SINGLE-AXIS ROBOTS

No limit on critical speed even when using a long stroke of 4 m . "PHASER" series delivers superb performance during long distance transfer.

Critical speed is not restricted and high-speed long-stroke transfer is possible.

MF type

■ Maximum stroke:	4050 mm
■ Maximum speed:	$2500 \mathrm{~mm} / \mathrm{s}$
■epeated positioning accuracy: $+/-5 \mu \mathrm{~m}$	
■ Maximum payload:	7 to 160 kg

Type	Size (mm) ${ }^{\text {Note } 1}$	Model	Carrier	Maximum payload (kg)	Maximum speed ($\mathrm{mm} / \mathrm{sec}$.)	Stroke (mm)	Page
MF type Flat type with core Linear motor specifications	W85 \times H80	MF7	Single	$10(7)^{\text {Note } 2}$	2500	100 to 4000	P. 344
		MF7D	Double			100 to 3800	
	W100 \times H80	MF15	Single	$30(15)^{\text {Note } 2}$		100 to 4000	P. 350
		MF15D	Double			100 to 3800	
	W150 \times H80	MF20	Single	$40(20)^{\text {Note } 2}$		150 to 4050	P. 354
		MF20D	Double			150 to 3850	
		MF30	Single	$60(30)^{\text {Note } 2}$		100 to 4000	P. 357
		MF30D	Double			150 to 3750	
	W210 \times H100	MF75	Single	$160(75)^{\text {Note } 2}$		1000 to 4000	P. 360
		MF75D	Double			680 to 3680	

[^2]Note 2. When using at the maximum speed, the maximum payload becomes the value in ().

POINT 1

Maximum speed $2.5 \mathrm{~m} / \mathrm{sec}$. and no critical speed limit

The linear motor single-axis robot has no restrictions on critical speed like ball screw. The maximum stroke is 4 m . The longdistance transfer reduces the cycle time greatly.

Movement time comparison between linear singleaxis robot PHASER and single-axis robot FLIP-X

POINT 2

Suitable for heavy object transfer. Maximum payload 160 kg

The maximum payload is 160 kg . The robot can transfer a heavy object, such as large LCD panel at a high speed with high accuracy. (In the payload range of some MF types, the maximum speed may be restricted. For details, refer to the specification page of each model.)

POINT 3

Effective use of stroke

As the linear motor single-axis robot incorporates a coil that is the drive part inside the table, dead spaces are eliminated to maximize the stroke. Additionally, as the main body is symmetrical, the flexibility of the layout is improved.

POINT 4

In-house manufacturing of major parts achieves low costs.

Magnetic scales are developed and manufactured at YAMAHA. In-house manufacturing of other major parts achieves large cost reduction. Nowadays, the linear motor is not a special mechanism. The customer can select the linear motor or ball screw in the similar way according to the customer's needs. In particular, when performing a high-speed and long-distance transfer of a light workpiece, selecting linear motor robots may reduce the cost.

- Comparison of single-axis robot models

Model name	Main body price ${ }^{\text {Note } 1}$	Maximum speed (mm/sec.)	Maximum payload (kg)	Repeated positioning accuracy ($\mu \mathrm{m}$)	Maximum stroke (mm)	Maximum cross-sectional dimension ${ }^{\text {Note } 2}$ (mm)
MF7-1500		2500	$10(7)^{\text {Note } 3}$	+/-5	4000	W85 \times H80
F17-40-1450		$720{ }^{\text {Note } 4}$	40	+/-10	1450	W168 \times H100
B10-1450		1850	10	+/-40	2550	W100 \times H81

Note 1: The prices are compared with the strokes shown above.
Note 2: Cable carriers are not included.
Note 3: The payload is 7 kg when the maximum speed is $2500 \mathrm{~mm} / \mathrm{s}$. (10 kg -payload: $2100 \mathrm{~mm} / \mathrm{s}$)
Note 4: This value is obtained by considering the critical speed with a stroke of 1450 mm .

POINT 5

Double-carrier available as standard

Double-carrier specifications that operate two carriers on one robot are available as standard. High effects, such as space saving, cost reduction, and tact improvement are obtained when compared to two single-axis robots. Furthermore, no axis alignment is needed and tools are commonly used to shorten the setup time. (When using the RCX series controller, an anti-collision function can be used.)

Layout using two ball screw single-axis robots

Space saving using double-carrier

POINT 6

Linear scale developed by YAMAHA

YAMAHA originally developed a new linear scale based on its excellent magnetic signal detection technology.

Magnetic scale provides high environment resistance.

YAMAHA's magnetic scale is resistant to dirt and can be used in an environment where grease or cutting fluid sometimes splashes.

Semi-absolute specifications

The current position is obtained by reading the signal recorded in the linear scale. So, it is not necessary to perform a large return-to-origin movement before starting the operation after turning on the power (the slider moves up to 76 mm when reading the signals).

Cost reduction

In-house linear scale development and manufacturing achieves large cost reduction.

POINT 7

Silence and long service life

Unlike ball screw type robots, there are few sliding and rotating parts. So, the operation is very quiet. Moreover, as the coil is not in contact with the magnet, they are not worn out and can be used for an extended period of time.

High resolution 1 um

Magnetic signals recorded in the magnetic scale are detected and interpolated to achieve a highly accurate resolution of $1 \mu \mathrm{~m}$.

Repeated positioning accuracy: $+/-5 \mathrm{um}$

A fully-closed control that always feeds back the table position provides high accuracy steadily.
Additionally, there are no mechanical backlashes, such as ball screws or timing belts.

POINT 8

Dust-proof structure

All YAMAHA's linear motor robots use a stainless steel shutter. This prevents entry of foreign objects. Additionally, these shutters are made of tough stainless steel with an extremely high fatigue strength to support high-speed and long-stroke operation.

POINT 9

Flat type without cable carrier protrusion

For the MF7, as the main body is made compact, a flat type that the cable carrier becomes flat on the top surface of the table is prepared as standard. Please select this type according to the tool or workpiece shape, or installation method.

Applicable to multi-carrier operation

The PHASER series also supports "multi-carrier" operation that allows using three or more carriers on one robot. This "multi-carrier" operation drastically extends applications due to its high effect in improving tact time and saving space.

Applicable to dual-drive

As a dual-drive that simultaneously drives two axes, high-speed transfer and heavy object transfer are possible in a wide area. YAMAHA can propose an optimal control method according to the robot linkage rigidity.

CARTESIAN ROBOTS

Offering a full lineup of Cartesian robots that come with exact performances and sizes supports a wide variety of applications.

Fulfilling product lineups are provided, such as compact and low price PXYx type, HXYLx allowing long-distance transfer with a maximum payload of 50 kg , and NXY with hollow servomotor used for the X -axis applicable to double-arm. Fulfilling arm and performance variations support the customers' various requests.
Additionally, various custom-order products other than models stated in the catalog are also supported. For detail, please feel free to consult YAMAHA.

Fulfilling product lineups support a wide variety of applications.

Various variations
Models with 3 or more axes can be selected from:
— Z-axis clamped base and moving table type Z-axis clamped table and moving base type

Model	Applicable arm variations					Number of axes	Maximum payload (kg)	Maximum stroke (mm)	
	Arm	Gantry	Moving arm	Pole	XZ			X -axis	Y-axis
PXYX	-	-	-	-	-	2 axes	4.5	150 to 650	50 to 300
FXYX	\bullet	-	-	-	-	2 axes/3 axes	12	150 to 1050	150 to 550
FXYBx	\bullet	-	-	-	-	2 axes	7	150 to 2450	150 to 550
SXYX	-	-	-	-	-	2 axes/3 axes/4 axes	20	150 to 1050	150 to 650
SXYBX	-	-	-	-	-	2 axes/3 axes/4 axes	14	150 to 3050	150 to 550
MXYX	-	-	-	-	\bullet	2 axes/3 axes/4 axes	30	250 to 1250	150 to 650
NXY	-	-	-	-	-	2 axes/3 axes	25	500 to 2000	150 to 650
NXY-W	\bullet	-	-	-	-	4 axes/6 axes	25	250 to 1750	150 to 650
HXYX	\bullet	-	\bullet	-	-	$2 \mathrm{axes} / 3$ axes/4 axes	40	250 to 1250	250 to 650
HXYLX	-	\bullet	-	-	-	2 axes	40	1150 to 2050	250 to 650

Note. The maximum payloads and maximum strokes shown above are values when using arm type/cable carrier specifications.

POINT 1

Use of 4-row circular arc groove type 2-point contact achieves high durability.

4-row circular arc groove type 2-point contact guide with less differential slip is adopted. When compared to the 2-row Gothic arch type 4-point contact guide, the robot provides features that it does not stop due to catching or overload and is difficult to malfunction even under poor conditions with low installation surface accuracy or large overhang amount. Guide rail type suitable for Cartesian robots, to which moment is always applied.

POINT 2

Highly reliable resolver is used.

A resolver is used for the position detector. As the resolver uses a simple and rigid structure without using electronic components and optical elements, it features high environment resistance and low failure ratio. Detection problems due to electronic component breakdown, dew condensation on or oil sticking to the disk that may occur in optical encoders do not occur in the resolver due to its structure. Additionally, as the absolute specifications and incremental specifications use the same mechanical specifications and common controller, desired specifications can be selected only by setting parameters. Furthermore, even when the absolute battery is consumed completely, the robot can still operate as the incremental specifications. So, even if a trouble occurs, the line stop is not needed to ensure the safe production line. Furthermore, the backup circuit has been completely renovated and now has a backup period of one year in the nonenergizing state.

POINT 3

Easy maintenance

Even when the built-in structure is used, the motor or ball screw can be replaced individually to ensure smooth maintenance work.

POINT 4

Low price

It was succeeded to reduce the number of parts while improving the basic performance. So, further cost reduction was achieved. Additionally, the resolver was used to eliminate the existing image "absolute specifications are expensive". Additionally, both the absolute specifications and incremental specifications use exactly same mechanical parts.

POINT 5

Lightweight and compact

The ball screw drive motor is renovated to a couplingless builtin structure to make dead spaces small and contribute to space saving.

POINT 6

Double Y-axis available as standard

The NXY with nut rotation type structure supports a double Y-axis with two carriers arranged on the same axis. Two Cartesian robots can be made compact to improve the work efficiency at a low cost and ensures the space saving.

- Layout using two conventional Cartesian robots

Space saving and process integration using NXY-W

Arm \& cable variations

Cable variations

Two kinds of cable specifications, cable carrier and whipover (separate cable), are available. (PXYx uses only the cable carrier.)

- Cable carrier (C)

[User cable is provided as standard equipment.]
When adding cables into a cable carrier, carefully check the space factor (30% or less), etc.
Note. User cable: 10 -core, 0.3 sq

- Whipover (S)
[User cable and air tubing are provided as standard equipment.]
Be aware that sagging or faulty wiring may occur if a load is applied to the whipover. Additionally, sagging may also occur when using a long-stroke.
Note. User cable: 7 -core, 0.2 sq
Note. User tubing: $\phi 4$-air tube, 2 pcs.

Arm variations

2 axes combination

- Arm type

Type with Y-axis slider movement

Gantry type
Type with support guide attached to the Y -axis tip of the arm type

Moving arm type Type with entire Y-axis arm movement

- Z-axis clamped base and moving table type ZR-axis model: ZT / ZF / ZFL / ZL

- Z-axis clamped table and moving base type ZR-axis model: ZFH / ZH

- Shaft up/down type ZR-axis model: ZS

4 axes combinations

- Z-axis clamped base and moving table type + rotation axis ZR-axis model: ZRF / ZRFL / ZRL

- Z-axis clamped table and moving base type + rotation axis ZR-axis model: ZRFH / ZRH

- ZR-axis integrated type ZR-axis model: ZRS

- X-Y Gantry + Z-axis
(Clamped base/moving table) + rotation axis
- X-Y Gantry + Z-axis
(Clamped table/moving base) + rotation axis

- Dual-robot (4 axes)

Note. The dual-robot is supported as a custom order.

Double Y-axis specifications Robot model: NXY-W

6 axes combination

- Double Y-axis specifications/ Z-axis clamped base and moving table type Robot model: NXY-W-ZFL

Double Y-axis specifications/ Z-axis clamped table and moving base type Robot model: NXY-W-ZFH

YAMAHA supports models with strokes and payloads other than the standards as special orders. For detail, please feel free to consult YAMAHA.

Contact Us E-mail: robotn@yamaha-motor.co.jp

YK-TW
YK-XG/YK-X
YK-XE
YK-XGS
YK-XGP

Orbit type
Completely beltless model Note
Low cost high performance model
Wall mount/inverse model
Dust-proof \& drip-proof model

SCARA ROBOTS

Arm length of 120 mm to 1200 mm , full-selection of lineup is top in the world. Completely beltless structure pursues the features of SCARA robots to their utmost limits.

History of 40 years

The first YAMAHA robots were SCARA robots. Since the first SCARA robot called "CAME" was produced in 1979, some 40 years of SCARA robot innovations have continually appeared. These SCARA robots have undergone countless modifications in an ever changing marketplace and amassed a hefty record of successful products making them an essential part of the YAMAHA robot lineup.

Comprehensive line of YAMAHA SCARA robots

Extra small type
 P. 498

- Arm length 120 mm to 220 mm

■ Maximum payload 1 kg

YK120XG/YK150XG/YK180XG

YK180X/YK220X

Small type

■ Arm length 250 mm to 400 mm
■ Maximum payload 5 kg

Medium type

- Arm length 500 mm to 600 mm

■ Maximum payload 5 kg to 20 kg

Low cost high performance model
P. 507

- Arm length 400 mm to 710 mm
- Maximum payload 4 kg to 10 kg

YK510XE-10 YK610XE-10

Large type

P. 519

■ Arm length 700 mm to 1200 mm
■ Maximum payload 10 kg to 50 kg

Wall mount/inverse model
YK300XGS to YK1000XGS

■ Wall mount type
Type where the robot body is installed in the wall.

- Inverse type

Type where the wall mount type is installed upside down.

Dust-proof \& drip-proof model

P. 536

YK250XGP/YK350XGP/YK400XGP YK500XGLP/YK600XGLP

Plays active part in the working environment with a large amount of water or dust (protection class equivalent to IP65).

- Please consult YAMAHA for anti-droplet protection for fluids other than water.

YK-TW POINT 1

Layout design freedom

User: We want a smaller equipment footprint.

YK-TW can move anywhere through the full $\phi 1000 \mathrm{~mm}{ }^{\text {Note } 2}$ work envelope.

Featuring a ceiling-mount configuration with a wide arm rotation angle, the YK-TW can access any point within the full $\phi 1000 \mathrm{~mm}$ downward range. This eliminates all motion-related restrictions with regard to pallet and conveyor placement operations, while dramatically reducing the equipment footprint.

Orbit type SCARA robot
Standard type SCARA robot

YK-TW POINT 2

Higher productivity

User: We need to reduce cycle time. Standard cycle time of 0.29 secs. ${ }^{\text {Note } 2}$

Y-axis (arm 2) passes beneath the X-axis (arm 1) and it has a horizontal articulated structure, allowing it to move along the optimal path between points. Moreover, the optimized weight balance of the internal components reduces the cycle time by 36% as compared to previous models.

The standard cycle time for moving a 1-kg load horizontally 300 mm and up/down 25 mm is shortened by approximately 36% compared to existing YAMAHA models.

YK-TW POINT 3

High quality
User: We want a high precision assembly system.
YK-TW offers a repeated positioning accuracy of +/-0.01 mm ${ }^{\text {Note } 1}$ (XY axes).

Higher repeated positioning accuracy than that offered by a parallel-link robot. This was accomplished by optimizing the robot's weight balance through an extensive re-design of its internal construction. The lightweight yet highly rigid arm has also been fitted with optimally tuned motors to enable high accuracy positioning.

Hollow construction

Y-motor and reduction gear feature a hollow construction which allows them to be housed inside the harness arm.

$$
360^{\circ} \text { Rotation. }
$$

> Optimized rotation center of gravity moment
> Weight balance was optimized by placing the R-motor and Z-motor at the left and right sides respectively.
> Reduced inertia enables high-speed motion.

YK-TW POINT 4

Suitable for a wide range of applications

User: We need to move heavy workpieces at high speeds.

YK-TW handles payloads up to 5 kg .
Handles loads up to 5 kg . Also accommodates arm-end tools which tend to be heavy, making it highly adaptable to various applications.

YK-TW POINT 5

Smaller equipment footprint

User: We want to reduce the height of our equipment.

YK-TW offers both a lower height and a smaller footprint.
YK-TW height is only 392 mm . This compact size enables more freedom in the equipment layout design.

YK-TW POINT 6

Easy installation

User: Parallel-link robots require large frames which complicates installation...

YK-TW has a total height of only 392 mm , and weighs only 27 kg .

Lower inertia $=$ Lighter frame

YK-TW POINT 7

Reduce the number of steps

User: Preparing the frame is extra work.

We can optionally provide a dedicated frame for the YK-TW.

With no need for complex calculations of strength, startup steps can be reduced.
Note. For details on dimensions and price, please contact Yamaha.

YK-TW POINT 8

Ideal for narrow space applications
User: We need to install in limited space, such as between equipment.

Minimum installation width 492 mm Note 1

YK-XG Completely beltless type

Integral structure designed for optimal operation

YK-XG POINT 1

Completely beltless structure

A completely beltless structure was achieved using a ZR-axis direct coupling structure. This completely beltless structure greatly reduces waste motion. This structure also maintains high accuracy for an extended period of time. Additionally, this structure ensures maintenance-free operation for an extended period of time without worrying about belt breakage, elongation, or secular deterioration (except for Orbit type and large type).

YK-XG POINT 2
High speed
The standard cycle time is fast. Additionally, YAMAHA also places special emphasis on the tact time in the practical working area. The speed reduction ratio or maximum motor RPM was reviewed to greatly improve the maximum speed. This contributes to improvement of the tact time.

YK-XG POINT 3

Resolver is used for position detector.

As the resolver uses a simple and rigid structure without using electronic components and optical elements, it features high environment resistance and low failure ratio. Detection problems due to electronic component breakdown, dew condensation on or oil sticking to the disk that may occur in optical encoders do not occur in the resolver due to its structure. Additionally, as the absolute specifications and incremental specifications use the same mechanical specifications and common controller, the specifications can be changed only by setting parameters. Furthermore, even when the absolute battery is consumed completely, the robot can still operate as the incremental specifications. So, even if a trouble occurs, the line stop is not needed to ensure the safe production line. The backup circuit has been completely renovated and now has a backup period of one year in the non-energizing state.
Note. The resolver has a simple structure without using electronic components. So, the resolver is highly resistant to low and high temperatures, impacts, electrical noise, dust particles, and oil, etc., and is used in automobiles, trains, and aircrafts that particularly require the reliability.

YK-XG POINT 4

Excellent maintenance ability

The covers of YAMAHA SCARA robot YK-XG series can be removed forward or upward. The cover is separated from the cable, so the maintenance work is easy. Additionally, the grease replacement of the speed reducer needs many steps to disassemble the gear and may cause positional deviation. However, since the speed reducer of the YAMAHA SCARA robot uses long-life grease, the grease replacement is not needed.

YK-XG POINT 5

Surprising R-axis tolerable moment of inertia

The SCARA robot performance cannot be expressed only by the standard cycle time. In actual operating environments, there are various workpieces, such as heavy workpiece or workpiece with large offset. At this time, since the robot with low R -axis tolerable moment of inertia needs to decrease the speed during operation, the cycle time decreases greatly. All YAMAHA SCARA robot YK-XG types have the tip rotation axis directly coupled to the speed reducer. Since the R-axis tolerable moment of inertia is very high when compared to a general structure in which the moment of inertia is transmitted by a belt after decelerating, the robot can operate at a high speed even with workpieces that have been offset

R-axis tolerable moment of inertia: Comparison between YK120XG and other company's model

When the offset from the Raxis to the center of gravity of the load is large, the inertia becomes large and the acceleration during operation is restricted. The R-axis tolerable moment of inertia of YAMAHA XG series is exceedingly large when compared to other company's SCARA robots in the similar class, so
 it can operate at a high speed even in the offset state.

When the load weight is 1 kg (refer to the right in the figure,)

Offset (mm)	Inertia (kgfcms ${ }^{\mathbf{2}}$)	Operation	
		Company A	
0	0.0039	\bigcirc	\bigcirc
45	0.025	\bigcirc	\times
97	0.1	\bigcirc	\times

O: Operable X : Out of catalog value tolerance range
R-axis tolerable moment of inertia: YK120XG......... $0.1 \mathrm{kgfcms}^{2}$ Company A...... $0.0039 \mathrm{kgfcms}^{2}$

YK-XG POINT 6

Compact

As the cable layout is changed, the cable height becomes lower than the main body cover. Additionally, use of extruded material base and motor with low overall height achieves the lowest overall height in the same class.

YK-XG POINT 7

Hollow shaft and tool flange options are selectable.

Hollow shaft that allows easy wiring to the tip tool and tool flange for tool mounting are provided as options.

YK-XG POINT 8

Zone control (= Optimal acceleration/deceleration automatic setting) function

In the SCARA robot, the load applied to the motor and speed reducer in the arm folded state greatly differs from that in the arm extended state. YAMAHA SCARA robot automatically selects optimal acceleration and deceleration from the arm postures at operation start and operation end. Therefore, the robot does not exceed the tolerance value of the motor peak torque or speed reducer allowable peak torque only by entering the initial payload. So, full power can be extracted from the motor whenever needed and high acceleration/ deceleration are maintained.

For X-axis of YK500XG

The torque in the arm folded state is 5 or more times different from that in the arm extended state.

This may greatly affect the service life, vibration during operation, and control-
 lability.

If the motor torque exceeds the peak value
\rightarrow This may adversely affect the controllability and mechanical vibration, etc. If the torque exceeds the tolerable peak torque value of the speed reducer
\rightarrow This may cause early breakage or shorten the service life extremely.
Robot stops at a desired position accurately to ensure long service life.

YK-XE Low cost high performance model

YK-XE POINT 1

Both the high operation performance and low-price are provided.

Both the high operation performance and low-price are provided.
Production equipment with high cost performance can be constructed.

YK-XE POINT 2

Improved User Interface

Enhanced size and numbers of air tubes and user I/O for end effectors.
Tubes and wires are positioned for easy layout and reduced risk of disconnection. (YK510XE-10, YK610XE-10, YK710XE-10)

Note. YK400XE-4 provides the user wiring $\times 10$ cores and the User tubing $\phi 4 \times 3$ pcs.

YK-XE POINT 3

Option specifications

Through-shaft and through-cap have been added.

"Through-shaft" or "through-cap" option for wiring and tubing that is convenient to run the air tubing and wiring can be selected. The wiring and tubing routes can be investigated easily without designing and manufacturing a stay for installing the wiring and tubing. In addition, by passing the wiring and tubing through the inside of the main body, worries about wire breakage or disconnection are reduced during operation. (Only through-shaft is available in YK400XE-4.)

YK-XE POINT 4
 Option specifications

Brake release switch is selectable.

In the emergency stop state, the Z-axis brake is released and the Z-axis can be moved up or down while the brake release switch is held down. Releasing the switch applies the brake to the Z-axis. This improves the convenience during installation adjustment.

YK-XE POINT 5

Drop-In upgrade by common platform design

The installation position of the YK400XE-4 is fully compatible with that of the conventional model YK400XR.
This ensures easy replacement work.

YK-XGS Wall mount/inverse model

Hanging type is renewed. Completely beltless structure and high rigidity

As the conventional hanging type is changed to the wall mount type, the flexibility of the system design is improved. The production equipment can be downsized. Additionally, as an inverse type that allows upward operation is also added to the product lineup, the flexibility of the working direction is widened. Furthermore, use of a completely beltless structure achieves a maximum payload of 20 kg and a R-axis tolerable moment of inertia of $1 \mathrm{kgm}^{2}$ Note that are the top in the class. A large hand can also be installed. So, this robot is suitable for heavy load work.
Note. YK700XGS to YK1000XGS

YK-XGP Dust-proof \& drip-proof model

Up/down bellows structure improves the dust-proof and drip-proof performance.

The dust-proof and drip-proof type that can be operated even in a work environment where water or particle dust scatters was renewed to a completely beltless structure. The belt does not deteriorate and poor environment resistance is improved. Additionally, an up/down bellows structure is used to improve the dust-proof and drip-proof performance.
Note. YK250XGP to YK600XGLP

Protection class equivalent to IP65 (IEC60529)

Seals are added to the joints to maintain the dust-proof and dripproof performance without air purging. The robot conforms to the protection class equivalent to IP65 (IEC60529).

IP 6 - Class of protection against invasion of water: 5 Water injected from any direction does not affect adversely. The standard pressure of the injected water is $30 \mathrm{KPa}\left(30 \mathrm{KN} / \mathrm{m}^{2}, 0.3 \mathrm{kgf} / \mathrm{cm}\right.$). The injection speed is 12.5 liters $/ \mathrm{min}$. and the injection time is 3 min . Note. The water injected under conditions exceeding those shown above may enter the unit. Class of protection against solid objects: 6 No invasion of particle dust.

Dust-proof and drip-proof connector for user wiring is provided as standard.

YK250XGP to 600XGLP (arm part)

YK250XGP to 600XGLP (base part)

Model/Type		Model	Arm length (mm)	Maximum payload (kg)	Standard cycle time (sec.) ${ }^{\text {Note }} 1$	Page
Orbit type		YK350TW	350	5.0	0.32	P. 494
		YK500TW	500	5.0 (4.0) ${ }^{\text {Note } 3}$	0.29	P. 496
Extra small type		YK120XG	120	1.0	0.33	P. 498
		YK150XG	150	1.0	0.33	P. 499
		YK180XG	180	1.0	0.33	P. 500
		YK180X	180	1.0	0.39	P. 501
		YK220X	220	1.0	0.42	P. 502
Standard	Small type	YK250XG	250	5.0 (4.0) ${ }^{\text {Note } 3}$	0.43	P. 503
		YK350XG	350	5.0 (4.0) ${ }^{\text {Note } 3}$	0.44	P. 505
		YK400XE-4	400	4.0 (3.0) ${ }^{\text {Note } 3}$	0.41	P. 507
		YK400XG	400	5.0 (4.0) ${ }^{\text {Note } 3}$	0.45	P. 508
	Medium type	YK500XGL	500	5.0 (4.0) ${ }^{\text {Note } 3}$	0.48	P. 510
		YK500XG	500	10.0	0.42	P. 512
		YK510XE-10	510	10.0 (9.0) ${ }^{\text {Note } 3}$	0.38	P. 513
		YK600XGL	600	5.0 (4.0) ${ }^{\text {Note } 3}$	0.54	P. 514
		YK600XG	600	10.0	0.43	P. 516
		YK610XE-10	610	10.0 (9.0) ${ }^{\text {Note } 3}$	0.39	P. 517
		YK600XGH	600	20.0 (19.0) ${ }^{\text {Note } 3}$	0.47	P. 518
	Large type	YK700XGL	700	10.0 (9.0) ${ }^{\text {Note } 3}$	0.50	P. 519
		YK710XE-10	710	10.0 (9.0) ${ }^{\text {Note } 3}$	0.42	P. 520
		YK700XG	700	20.0 (19.0) ${ }^{\text {Note } 3}$	0.42	P. 521
		YK800XG	800	20.0 (19.0) ${ }^{\text {Note } 3}$	0.48	P. 522
		YK900XG	900	20.0 (19.0) ${ }^{\text {Note } 3}$	0.49	P. 523
		YK1000XG	1000	20.0 (19.0) ${ }^{\text {Note } 3}$	0.49	P. 524
		YK1200X	1200	50.0	0.91	P. 525
Wall mount/inverse model		YK300XGS ${ }^{\text {Note } 2}$	300	5.0 (4.0) ${ }^{\text {Note } 3}$	0.49	P. 526
		YK400XGS ${ }^{\text {Note } 2}$	400	5.0 (4.0) ${ }^{\text {Note } 3}$	0.49	P. 528
		YK500XGS	500	10.0	0.45	P. 530
		YK600XGS	600	10.0	0.46	P531
		YK700XGS	700	20.0	0.42	P. 532
		YK800XGS	800	20.0	0.48	P. 533
		YK900XGS	900	20.0	0.49	P. 534
		YK1000XGS	1000	20.0	0.49	P. 535
Dust-proof \& drip-proof model		YK250XGP	250	4.0	0.50	P. 536
		YK350XGP	350	4.0	0.52	P. 538
		YK400XGP	400	4.0	0.50	P. 540
		YK500XGLP	500	4.0	0.66	P. 542
		YK500XGP	500	10.0	0.55	P. 544
		YK600XGLP	600	4.0	0.71	P. 545
		YK600XGP	600	10.0	0.56	P. 547
		YK600XGHP	600	18.0	0.57	P. 548
		YK700XGP	700	20.0	0.52	P. 549
		YK800XGP	800	20.0	0.58	P. 550
		YK900XGP	900	20.0	0.59	P. 551
		YK1000XGP	1000	20.0	0.59	P. 552

Note 1. The standard cycle time is measured under the following conditions

- During back and forth movement 25 mm vertically and 100 mm horizontally (extra small type)
- During back and forth movement 25 mm vertically and 300 mm horizontally (small type / medium type / large type)

Note 2 The YK300XGS and YK400XGS are custom-order products. For details about the delivery time, please contact YAMAHA.
Note 3. For the option specifications (tool flange mount type and user wiring/tubing through spline type), the maximum payload becomes the value in ().

PICK \& PLACE ROBOTS

Ideal for small components high-speed pick \& place work. Positioning is made by servo control, so no complex mechanical adjustments are needed.

Full lineup of 6 models in all from 2 axes to 4 axes

Model	Axis	Structure				Maximum payload (kg)	Cycle time (sec.)	Page
		X-axis	Y-axis	Z-axis	R-axis			
YP220BX	2 axes	Belt	-	Belt	-	3	0.45	P. 555
YP320X		Ball screw	-	Belt	-	3	0.57	P. 556
YP220BXR	3 axes	Belt	-	Belt	Rotation axis	1	0.62	P. 557
YP320XR		Ball screw	-	Belt	Rotation axis	1	0.67	P. 558
YP330X		Ball screw	Ball screw	Belt	-	3	0.57	P. 559
YP340X	4 axes	Ball screw	Ball screw	Belt	Rotation axis	1	0.67	P. 560

POINT 1

High speed

Super high-speed pick \& place operation with a standard cycle time of 0.45 sec . (YP220BX with up/down 50 mm , back/forth 150 mm , arch amount 50 , load 1 kg) greatly contributes to improvement of the productivity. Since it is possible to output a signal to turn on/off any external equipment from any position while the axis is moving, the actual production cycle time is further improved.

POINT 2

Compact

Use of a compact size with an overall with of 109 mm (YP220BX) makes it possible to make the production line compact and simple. The moving arm structure with less interference with surroundings contributes to space saving.
Reference examples
of robot layout
comparisons

The compactness can be checked by comparing the occupied spaces when the YP-X series and YAMAHA's Cartesian/ SCARA robots are laid out.

- Line using YAMAHA's compact Cartesian robot PXYx X-axis stroke: 250 mm
Y-axis stroke: 250 mm

Line using YAMAHA's compact SCARA robot YK250XG

Line using pick \& place utilizing space saving

POINT 3

High accuracy

Both extremely high-speed performance and high repeated positioning accuracy of +/- 0.02 mm (YP320X, YP320XR, YP330X, YP340X) are assured.

POINT 4

Complete absolute position system

As the complete absolute position system is used, no return-to-origin operation is needed.

POINT 5

Versatility

Use of YAMAHA's unique servo system makes it possible to freely program the stop point and operation pattern settings. This robot is applicable to production of many models in small quantities that cannot be supported by the cam type robot.

CLEAN ROBOTS

Suitable for electronics component, food, and medical unit related work in clean room.
High sealing structure, dust generation prevention, and improvement of suction efficiency are achieved.
Both the high cleanliness degree and high performance are established. Clean robots contribute to automation and labor saving of production systems in clean rooms.

Both high cleanliness degree and high performance were achieved. Clean single-axis, Cartesian, and SCARA robots were added to the product lineup.

Clean SCARA robots

POINT 1

Vertical bellows structure improves the reliability of the clean performance.

As a beltless structure is used, no dust generation caused by the belt occurs. Furthermore, as the YK-XGC type was renewed to a structure, in which the bellows are installed on the Z-axis vertically, the reliability of the clean performance was further improved.

Note. Except for YK500XC to YK1000XC

POINT 2

High durability

As a beltless structure is used, the robot can be operated without worry about belt elongation and secular change ${ }^{\text {Note }}$. Additionally, the bellows installed on the Z-axis use material with high durability to ensure the durability performance.
Note. Except for YK500XC to YK1000XC

POINT 3

Completely beltless structure improves the rigidity.

A completely beltless structure was achieved using a ZR-axis direct coupling structure. As a speed reducer is coupled to the tip rotation axis, the R -axis tolerable moment of inertia is very high and the high-speed movement is possible even with a heavy workpiece or largely offset workpiece.
Note. Except for YK500XC to YK1000XC

Type	Model	Arm length (mm)	Maximum payload (kg)	Standard cycle time (sec.)	Beltiess structure	Page
Extra small type	YK180XC	180	1.0	0.42	\bigcirc	P. 588
	YK220XC	220		0.45	\bigcirc	P. 589
Small type	YK250XGC	250	4.0	0.50	\bigcirc	P. 590
	YK350XGC	350		0.52	\bigcirc	P. 592
	YK400XGC	400		0.50	\bigcirc	P. 594
Medium type	YK500XC	500	10.0	0.53	-	P. 598
	YK500XGLC	500	4.0	0.66	\bigcirc	P. 596
	YK600XC	600	10.0	0.56	-	P. 601
	YK600XGLC	600	4.0	0.71	\bigcirc	P. 599
Large type	YK700XC	700	20.0	0.57	-	P. 602
	YK800XC	800			-	P. 603
	YK1000XC	1000		0.60	-	P. 604

Clean single-axis robots

FLIP-XC type

The FLIP-XC type robots are single-axis robots "FLIP-X series" with clean room specifications. According to the applications, an optimal robot can be selected from 14 models from a lightweight and compact model to a large model with a maximum payload of 120 kg . As an air joint for suction is provided as standard equipment, grease with low dust generative characteristics is used, and stainless sheets with an excellent durability are used for the slide table surface, high cleanliness degree is achieved.
\square Stroke:
Suction amount: 15 to $90 \mathrm{~N} \ell / \mathrm{min}$.
Cleanliness degree: CLASS10 Note
■ Maximum payload: 120 kg (When installed horizontally) Note. C4L/C4LH, C5L/C5LH, and C6L are CLASS ISO3 (ISO14644-1).

POINT

Excellent maintenance ability

For C4L to C6L models, removing the screws from the side panel of the slider will allow replacement of the inner roller without detaching the tool. For C8 to C20 models, even when the direct coupling structure is used, the motor or ball screw can be replaced individually.

Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload (kg)		Maximum speed ($\mathrm{mm} / \mathrm{sec}$.)	Stroke (mm)	Page
			Horizontal	Vertical			
$\begin{aligned} & \mathrm{C} 4 \mathrm{~L} \\ & \mathrm{C} 4 \mathrm{LH} \end{aligned}$	W $45 \times \mathrm{H} 55$	12	4.5	1.2	720	50 to 400	C4L : P. 568 C4LH : P. 569
		6	6	2.4	360		
		2	6	7.2	120		
$\begin{aligned} & \mathrm{C} 5 \mathrm{~L} \\ & \mathrm{C} 5 \mathrm{LH} \end{aligned}$	W55 \times H65	20	3	-	1000	50 to 800	$\begin{aligned} & \text { C5L : P. } 570 \\ & \text { C5LH : P. } 571 \end{aligned}$
		12	5	1.2	800		
		6	9	2.4	400		
C6L	W65 \times H65	20	10	-	1000	50 to 800	P. 572
		12	12	4	800		
		6	30	8	400		
C8	W80 \times H75	20	12	-	1000	150 to 800	P. 573
		12	20	4	720		
		6	40	8	360		
C8L	W80 \times H75	20	20	4	1000	150 to 1050	P. 574
		10	40	8	600		
		5	50	16	300		
C8LH	W80 \times H75	20	30	-	1000	150 to 1050	P. 575
		10	60	-	600		
		5	80	-	300		
C10	W104 \times H85	20	20	4	1000	150 to 1050	P. 576
		10	40	10	500		
		5	60	20	250		
C14	W136 \times H96	20	30	4	1000	150 to 1050	P. 577
		10	55	10	500		
		5	80	20	250		
C14H	W136 \times H96	20	40	8	1000	150 to 1050	P. 578
		10	80	20	500		
		5	100	30	250		
C17	W168 \times H114	20	80	15	1000	250 to 1250	P. 579
		10	120	35	600		
C17L	W168 \times H114	50	50	10	1000	1150 to 2050	P. 580
C20	$\mathrm{W} 202 \times \mathrm{H} 117$	20	120	25	1000	250 to 1250	P. 581
		10	-	45	500		

[^3]
Clean single-axis robots

SSC type (TRANSERVO)

The SSC type robots are stepping motor single-axis robots "TRANSERVO series" with clean room specifications. Use of a newly developed vector control method achieves the function and performance equivalent to the servomotor at a low cost even using the stepping motor. As an air joint for suction is provided as standard equipment, grease with low dust generative characteristics is used and stainless sheets with an excellent durability are used for the slide table surface, the high cleanliness degree is achieved.

```
\squareStroke:
50 to }800\textrm{mm
\squareSuction amount: }15\mathrm{ to }80\mathrm{ Ne/min.
\square Cleanliness degree: CLASS10
\square Maximum payload: }12\mathrm{ kg (When installed horizontally)
```


Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload (kg)		Maximum speed ($\mathrm{mm} / \mathrm{sec}$.)	Stroke (mm)	Page
			Horizontal	Vertical			
SSC04	W49 \times H59	12	2	1	600	50 to 400	P. 565
		6	4	2	300		
		2	6	4	100		
SSC05	W55 \times H56	20	4	-	1000	50 to 800	P. 566
		12	6	1	600		
		6	10	2	300		
SSC05H	W55 \times H56	20	6	-	1000	50 to 800	P. 567
		12	8	2	600 (horizontal) / 500 (vertical)		
		6	12	4	300 (horizontal) / 250 (vertical)		

Note 1. The size shows approximate maximum cross sectional size.

Clean Cartesian robots

XY-XC type

This Cartesian robot XY-XC type is applicable to clean rooms. As stainless sheets with excellent durability are used, the opening can be designed to be its minimum level and the robots area applicable to CLASS10 with less suction amount. Furthermore, as the ZR-axis of the SXYxC uses a super high speed unit of the SCARA robot, this achieves great reduction of the cycle time.
\square Suction amount:
60 to $90 \mathrm{~N} \ell / m i n$.

- Cleanliness degree: CLASS10 Note

■ Maximum payload:
20 kg

- Maximum speed:
$1000 \mathrm{~mm} / \mathrm{sec}$.
Note. User wiring: D-Sub 25-pin connector (Numbers 1 to 24 are already wired and number 25 is frame ground.)
Note. User tubing: $\phi 6$-air tube, 3 pcs.

Type	Model	Axis	Movement range	Maximum speed ($\mathrm{mm} / \mathrm{sec}$.)	Maximum payload (kg)	Page
2 axes	SXYxC	X	150 to 1050 mm	1000	20	P. 582
		Y	150 to 650 mm	1000		
3 axes	SXYxC (ZSC12)	X	150 to 1050 mm	1000	3	P. 584
		Y	150 to 650 mm	1000		
		Z	150 mm	1000		
	SXYxC (ZSC6)	X	150 to 1050 mm	1000	5	P. 585
		Y	150 to 650 mm	1000		
		Z	150 mm	500		
4 axes	SXYxC (ZRSC12)	X	150 to 1050 mm	1000	3	P. 586
		Y	150 to 650 mm	1000		
		Z	150 mm	1000		
		R	$360{ }^{\circ}$	1020 \% sec		
	SXYxC (ZRSC6)	X	150 to 1050 mm	1000	5	P. 587
		Y	150 to 650 mm	1000		
		Z	150 mm	500		
		R	360°	1020 \% sec		

CONTROLLERS

An optimal controller can be selected from various command input formats.
As servo parameters and deceleration patterns suitable for robots are pre-registered, robots can be operated quickly without complex settings.

High performance controllers supporting YAMAHA robots

Five or more axes can also be supported

POINT 1

Selectable from various control methods

Program input

A variety of operation settings, calculations, and conditional branching is possible

The single-axis robot controllers use the YAMAHA SRC language ${ }^{\text {Note }}$ which is simple yet contains all required functions, such as I/O outputs and conditional branching, etc. The multi-axis controller RCX series uses the YAMAHA BASIC language capable of more sophisticated programming and includes all types of arithmetic operations, flexible variable settings, and various conditional branching, etc. Both are easy to use robot language conforming to the BASIC. These languages support various needs from simple operations to expert user's sophisticated work.
Note. The 2-axis controller DRCX also uses YAMAHA SRC language

Single-axis robot controller	YAMAHA SRC language <Example>	MOVA 1, 100	Moves to point number 1 at 100%-speed.
		DO 1, 1	Turns on general-purpose output number 1.
		WAIT 2,1	Waits until general-purpose input number 2 turns on.
Multi-axis robot controller	YAMAHA BASIC language <Example>	IF DO(10)=1 THEN *END	Jumps to *END if general-purpose input number 10 turns on. Otherwise, moves to the next line.
		MOVE P, P2, STOPON DI(1) =1	Moves to point number 2. Stops when general-purpose input number 1 turns on during movement.
		WAIT ARM	Waits until the robot arm operation ends.
		P3=WHERE	Writes the current position into point number 3.
		*END:	Defines the label named "END".
		HOLD	Pauses the program.

//O point trace

Program-less means easy

The host unit specifies a point number in binary format and the robot moves to the specified point when the start signal is input. The controller can operate only by teaching the point data without programs.

Pulse train

Acceleration/deceleration curves can be created freely

The robot is controlled using pulse trains sent from the positioning unit. The controller does not need to have programs or point data. This pulse train is convenient when the control is centralized to the host unit.

Remote command

Ideal for unified data management

The word function of the CC-Link or DeviceNet ${ }^{\text {TM }}$ is used to issue various commands or data to the robot. The expandability of the word function from simple operation instructions to point data writing is fully utilized to freely use the robot controller functions from the host unit.
Note. This function is enabled when selecting an option network board.

Online command

Execute everything from a PC

The PC can issue various commands or data to the controller or receive the data or status through the RS-232C or Ethernet ${ }^{\text {Note }}$. All executable operations from the teaching pendant can be executed from the PC.

Note. Ethernet is enabled when selecting an option network board. (For the RCX340, Ethernet is provided as standard function.)

Easy optimal setup

Complicated parameter settings are unnecessary

Robot controllers are specially designed for YAMAHA robots. Optimal values for servo parameters required for robot operation, such as gain are already registered beforehand. Start operating immediately without any need for complicated settings or tuning, even if you don't have knowledge or experience about control.

Easy acceleration/deceleration settings

The acceleration/deceleration is an important factor that affects the service life of the machine. If too high acceleration is set, this may cause the service life of the machine to shorten. If the acceleration is too low, the motor power cannot be used effectively, causing the tact time to lower. The acceleration/deceleration setting of YAMAHA robot controller is determined finely by load weight. Setting only payload parameters will automatically set optimal acceleration/deceleration by taking the service life of the machine and motor capability into consideration. Detailed robot knowledge from YAMAHA is what makes this possible. (Note: For the pulse train input, the customer may need to set the acceleration/deceleration.)

Concept of speed and acceleration

Acceleration calculation algorithm

Zone control (= Optimal acceleration/deceleration automatic setting) function

The SCARA robot also incorporates a zone control function that always operates the robot at its maximum performance level by considering changes in inertia due to the arm posture. Therefore, the robot does not exceed the tolerance value of the motor peak torque or speed reducer allowable peak torque only by entering the initial payload to bring out the full power of the motor and keep the high acceleration/deceleration.

For X-axis of YK500XG

The torque in the arm folded state is 5 or more times different from that in the arm extended state.

This may greatly affect the service life, vibration during operation, and controllability.

If the motor torque exceeds the peak value
\rightarrow This may adversely affect the controllability and mechanical vibration, etc. If the torque exceeds the tolerable peak torque value of the speed reducer
\rightarrow This may cause early breakage or shorten the service life extremely.

POINT 3

Multi-function and expandability

■ Multi-axis controllers support up to 30,000 points (RCX2 series supports up to 10,000 points) while single-axis controllers support up to 1,000 points. Up to 100 programs can be created on each controller.
\square Various field networks, CC-Link, DeviceNet ${ }^{\text {TM }}$, PROFIBUS, and EtherNet/IP ${ }^{\text {TM }}$ are supported.
Note. Some models do not support all networks.

- The TS series, RD series, SR1 series, and RCX series use a dual-power supply system with separate control power supply and power supply.
\square As the controllers conform to the CE marking that is safety standards in EU (Europe), they can be used safely even overseas.
The TS series (except for TS-S), SR1 series, and RCX series conform to up to safety category 4.
For details about functions of each controller, refer to controller details pages from P.605.

Name	Type	Number of points	Number of programs	Applicable network							Compliance with CE
				CC-Link	DeviceNet ${ }^{\text {TM }}$	Ethernet	EtherNet//P ${ }^{\text {TM }}$	PROFIBUS	PROFINET	EtherCAT	
TS-S2/TS-SH	1 axis robot positioner	255	-	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc
TS-X/TS-P		255	-	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc
TS-SD	$\begin{gathered} 1 \text { axis robot } \\ \text { driver } \end{gathered}$	-	-	-	-	-	-	-	-	-	\bigcirc
RDV-X/RDV-P		-	-	-	-	-	-	-	-	-	\bigcirc
ERCD	1 axis robot controller	1,000	100	-	-	-	-	-	-	-	-
SR1-X/SR1-P		1,000	100	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	\bigcirc
RCX320	1 to 2 axes controller	30,000	100	\bigcirc							
RCX221/RCX222	1 to 2 axes controller	10,000	100	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	\bigcirc
RCX340	1 to 4 axes controller	30,000	100	\bigcirc							

RDV-X/RDV-P

FLIP-X PHASER

[Robot driver]

RDV-P

Dedicated pulse train control

The dedicated pulse train control has achieved a compact body and a low price.

Position setting time reduced by 40%

The response frequency is enhanced about two times in comparison with former models. The position setting time of uniaxial robots is reduced by about 40%. $^{\text {Note } 1}$

Large cost reduction possible

It is easy to assemble them in automated machinery. You can save much labor in designing, parts selection, setting and more. A large cost reduction is possible.

Contributing to saving space for the whole control board

The compact design has reduced the width up to a maximum of 38% in comparison with former models. In addition, the improvement of radiation efficiency makes it possible to arrange the devices with less space in between. Multiple units can be installed side by side in a neat arrangement.

Easy replacement
The parameter settings and fastening-hole pitches are the same as those of former models. It is easy to replace the software and the hardware as well.

Command input: Line driver (2 Mpps)
Command output: ABZ-phase output (with a divider function)

Real-time operation status monitoring

You can have analog outputs for speed, amperage, and more information to know the operation status in real time. RDV-Manager, the dedicated support software, is also available for a graphical view of the status.

Main power: Single and three phases supported (200V) The full-specification operation is available with a single-phase power supply.

[^4]
TS-S2/TS-SH/TS-SD POINT

Usable for all TRANSERVO series models

Note 1. The STH type vertical specifications and RF type sensor specifications do not support the TS-SD. Note 2. SG07 is only applicable to TS-SH.

TS-SD

TRANSERVO

[Robot driver]

Operation method	Pulse train	
Input power	Main power Control power	DC $24 \mathrm{~V}++-10 \%$ $\mathrm{DC} 24 \mathrm{~V}++-10 \%$
Origin search method	Incremental	

Pulse train input driver dedicated to "TRANSERVO" A robot driver dedicated to the pulse train input for "TRANSERVO".

Torque decrease in high-speed area is suppressed

As a vector control method is used, the torque decrease in highspeed area is small and high-speed operation even with high payload can be performed. This greatly contributes to shortening of the tact time.

Excellent silence

High-pitched operation sounds unique to the stepping motor are suppressed to achieve silent operation sounds similar to the AC servo.

Easy operation with support software TS-Manager In the same manner as the robot positioner TS series, the operation can be performed with the TS-Manager (Ver.1.3.0 or later) having various convenient functions, such as robot parameter setting, backup, and real-time trace (The handy terminal "HT1" cannot use this TS Manager).

Applicable to a wide variety of pulse train command inputs
This robot driver can be made applicable to the open collector method or line driver method using the parameter setting and signal wiring. In the open collector method, a wide voltage range from 5 V to 24 V is supported. So, the robot driver can be matched to the specifications of the host unit to be used.

TS-Manager: Real-time trace function

The current position, speed, load factor, current value, and voltage value, etc. can be traced at real-time. Additionally, as trigger conditions are set, the data when the conditions are satisfied can be automatically acquired. Furthermore, as a range is specified from the monitor results, the maximum value, minimum value, and average value can be calculated. So, this is useful for the analysis if a trouble occurs.

Real-time traceable items (up to four items)		
- Voltage type	- Command position	- Current position
- Command speed	- Current speed	- Internal temperature
- Command current value	- Current current value - Input pulse count Note 1	- Motor load factor - Movement pulse count
- Input/output I/O state		
- Word input/output state ${ }^{\text {Note } 2}$	Note. 1: TS-SD only	y Note. 2: TS controller only

Daisy chain function

As multiple TS series controllers and drivers are connected in a daisy chain, the data of a desired unit can be edited from the personal computer (up to 16 units).

[Robot positioner]

	Operation method	Point trace Remote command Online command
Number of points	255 points	
Input power	Main power DC $24 \mathrm{~V}+/-10 \%$ Control power DC $24 \mathrm{~V}+/-10 \%$	
TS-S2 TS-SH	Origin search method	TS-S2 Incremental TS-SH Absolute Incremental

Operation method	Point trace Remote command Online command
Number of points	255 points
Input power	AC $100 \mathrm{~V} /$ AC 200 V
Origin search method	TS-X
TS-PAbsolute Incremental Incemental Semi-absolute	

Design that allows a clean installation

Unified installation sizes

Height and installation pitch are unified throughout the series. Units can be installed neatly within the control board.

Selectable I/O interfaces

Two RS-232C ports provided

- Connect support tools

Intuitive operation supports controller design and maintenance.

- Daisy-chaining

Two ports can be used to daisy-chain up to 16 units.

- Communication commands

Easily understood ASCII text strings can be used to perform robot operations.

Selectable 100V/200V

- The TS-X/P let you select AC100/200V as the power input. (The 20 A model is 200 V only.)
- The TS-S2/SH is DC24V input.

A variety of I/O interfaces

In addition to NPN and PNP, you can choose CC-Link, DeviceNet ${ }^{\text {TM }}$, EtherNet/IP ${ }^{\text {TM }}$, and PROFINET field networks.

- Positioner interface

Functionality has been condensed into an I/O interface with 16 inputs and 16 outputs. In addition to easy positioning, this also includes functionality that enhances interoperability with the control device.

- Remote commands

Numerical data can be directly manipulated by using the four-word input and four-word output areas. You can add new direct positioning commands to further unify the data at the control device.

- Gateway function

New types of connection are provided to reduce network costs. (CCLink, EtherNet/IP ${ }^{\text {TM }}$, and PROFINET are supported.)

"Positioner function" for easy positioning

You can easily perform positioning operations by specifying the number of a point that is registered in the data, and entering a start command.

A variety of output functions

The TS controller provides a variety of status outputs that are linked with positioning operations. By selecting and using an output appropriate for the scene, this can contribute to cost-saving measures such as making the steps of the control device's program more efficient or by reducing the peripheral equipment.

Consecutive operation, linked operation

By specifying a branch destination, it is possible to execute positioning operations consecutively. Additionally, by specifying linked operation, operation with the branch destination can be executed while changing the speed without positioning stops; this allows control programming to be simplified and takt to be shortened.

Jog and point teaching functions are provided as standard

Jog movement and point teaching functions are provided as standard for input signals. By linking these with buttons of a touch panel etc., a simple teaching system can be constructed.

TS-S2/TS-SH/TS-X/TS-P

Remote commands

Ideal for unifying data management

Remote commands are functions by which the control device can directly handle data such as points and parameters using the word area of the field network.
Numerical data can be operated directly by using the word area. This promotes unification of data management.

"Gateway function" - a new way to connect

 New function
Decrease network cost

One controller equipped with a field network board can provide unified management of up to four I/O interfaces via a daisy-chain connection. This allows network cost to be decreased while enabling the same type of I/O control as when one board is installed for each unit. (CC-Link and EtherNet/IP ${ }^{\text {TM }}$ are supported)

Daisy chain connection

No need to connect or disconnect cables during operation (up to 16 units)

From a single PC, handy terminal, or touch-panel display, it is possible to specify point data and parameters, perform operations, and monitor the status for up to 16 axes on daisy-chained controllers. For everything from design to maintenance, a connection to only the first controller is sufficient; any desired controller can be accessed simply by switching the station number, without having to connect or disconnect cables.

Communication commands

An easily handled command protocol using ASCII text strings supports a wide range of needs from data editing to operation and status monitoring. By daisy-chaining multiple devices, simple multi-axis control can be performed.

"KEYENCE PROTOCOL STUDIO Lite" serial communication settings software

By loading a TS settings file into PROTOCOL STUDIO Lite, communication settings and main communication commands can be registered automatically. Ladder-less data editing and daisy-chaining can be easily accomplished.

Daisy-chain connections (up to 16 axes)

Communication with the KV-L21V uses a Yamaha-made communication cable (D-sub type). By using daisy-chain connections, up to 16 axes can be managed together.

Contact for questions regarding PROTOCOL STUDIO Lite Keyence Corporation, www.keyence.co.jp/red/kv01/

Automatic device assignment for each communication command

If the communication type is specified as cyclic, the desired information to be obtained is automatically stored in data memory.

Touch operator interface "Pro-Face" GP4000 Series

Connecting GP4000 Series made by Pro-face to Robot Positioner, TS-S2, TS-SH, TS-X, TS-P enables you to use a lot of functions as well as basic operations on Touch Operator Interface.

Free download of the program file from the Pro-face home page http://www.proface.com

Can easily check a state and change settings.

- Check the status (the current position, speed etc)
- Basic operations such as Jog operation, inching operation, return to origin, error reset etc.
- Set, edit, or back up point data and parameters
- Check triggered alarms and detailed descriptions of alarm history

Supports 3 languages

- Supports Japanese, English, and Chinese (simplified, traditional)

[Single-axis robot controller]

Various command methods

An optimal method can be selected from various command methods, such as program, point trace, remote command, and online command. The program uses the YAMAHA SRC language that is similar to the BASIC. Various operations, such as I/O output and conditional branching, etc. can be executed using simple operations.

Applicable to complete absolute position system The SR1-X is applicable to complete absolute position system. No return-to-origin is needed. (The backup period is one year in the non-energizing state.)

I/O assignment function

As the I/O assignment is changed, the point trace operation, point teaching, and trace operation by specifying coordinate values can be selected in addition to the normal program operation. Since the JOG movement through the I/O is possible in the point teaching mode, the point teaching can be performed from the host unit without the HPB.

Current position output function

The position data is output as feedback pulse or binary data. This allows the host unit to understand the current robot position at realtime. Furthermore, functions, zone output or point zone output to output near point number are incorporated.

Torque limiting

As this function limits the maximum torque command value at desired timing, it is effective in operations such as pushing and workpiece gripping operations. Furthermore, in addition to the torque limiting by the parameter data value, the torque limiting by the analog input voltage can be performed.

ERCD

T4L/T5L

[Single-axis robot controller]

	Operation method	Program Point trace Online command Pulse train
ERCD	Number of points	1000 points
Input power	DC $24 \mathrm{~V}+/-10 \%$ maximum	
Origin search method	Incremental	

Four command formats
A desired command format can be selected from four command formats, program operation using various commands, point trace operation only by instructing a point number, online command, and pulse train input.

Compact design

Compact box size of W $44 \times \mathrm{H} 142 \times \mathrm{D} 117 \mathrm{~mm}$ is achieved with the functions improved.
The installation space can be reduced greatly.

Various input/output functions

As a feedback pulse output function is provided, the host control unit can easily manage the current position. Additionally, as the movement point number can be output in binary format during point trace, the operation can be checked easily. As a teaching function using the I/O is added, the flexibility and usability of the system configuration are further improved.
This output is enabled in the program or point trace operation and the number of outputs can be changed to a desired level using the division setting.

Various monitor functions

The controller status can be checked using the input/output status monitor, duty monitor, and LED status display.

Error history and alarm history

The error or alarm history that occurred in the past can be displayed and checked on the HPB or personal computer screen.

Robot number management

As the controller is initialized by the robot number of the robot to be controlled, parameters suitable for each robot model are automatically registered and no complicated servo adjustment is needed.

Torque limiting control

The torque limiting control can be performed using the program command. The axis can be stopped with the torque applied. This torque limiting control can be used for continuous positioning of workpieces with different sizes, press-fitting work, and workpiece holding operation.

Zone output function

The general-purpose output on/ off setting between desired points can be performed using the parameter setting. The positive logic/negative logic setting can be made and the axis position can be easily judged by an external unit. Up to four patterns can be set.

SR1-X/SR1-P/ERCD Various functions

Position data output function

Binary output
Outputs the current robot position in 16-bit binary format. (This function is available only in the SR1.)

It is possible to perform the monitoring by host unit at real-time. A frequency division function is built-in.

Point teaching

The JOG movement of the robot and the point reaching can be performed from the host unit.

- Concept
- The robot is moved to the teaching position using the JOG+/JOG command.

The current position is registered into the point number specified by the PSET input.

Torque limiting function

As the torque limiting is performed during operation, the operation, such as pushing and workpiece gripping can be performed.

Movement data change function

The movement speed or target position can be changed during movement. (This function is available only in the SR1.)

■ Concept

Features

- Host unit manages the limiting time using
the movement command input
Movement command is ABS-PT (absolute movement command is ABS-PT (absmand) or ABS-BN (binary movement command) or ABS-BN (binary
- Change speed can be specified in a range of 1 to 100% (up to 4 patterns).
- Changing is disabled in the deceleration zone.

YAMAHA SRC language convenient functions

Multi-task function

This function can execute multi tasks, such as robot peripheral units in parallel at the same time. Up to four tasks can be executed. With the multi-task function combined with JMPP command, the I/O signals can be output when the robot passes through the specified point during movement

Conditional stop function during movement

The arm can be decelerated and stopped using I/O conditions of the MOVF command while it is moving. This function is useful when searching for the target position with the sensor.

RCX2 series

RCX221/222

[Multi-axis robot controller]

Applicable to all YAMAHA robot models

The RCX series is applicable to all YAMAHA robot models, such as PHASER, FLIP-X, and XY-X, etc. As the single-axis robot (FLIP-X/ PHASER) can be combined with the Cartesian robot freely, various applications can be supported (except for some compact single-axis robots).

Complete absolute position system

The RCX uses complete absolute specifications that need no return-to-origin when the power turns on. The completely same system can be applicable to the incremental specifications. (When the PHASER series uses the magnetic scale, it is applicable to the semi-absolute or incremental specifications.)

Extension of absolute data backup time

As the backup circuit is improved to the energy saving, the absolute position data retention period in the non-energizing state is greatly extended. The maximum one month of the conventional model is extended to approximately one year. The current position information is monitored during long vacations, equipment storage, or even during transportation, and no return-to-origin is needed when energized again. This allows quick production start.

Area check output function

This function can output the I/O signals when the robot enters a set area during operation. Up to eight check areas can be set.

Applicable to dual-drive

A dual-drive function is incorporated that controls two axes synchronously. This function is effective for heavy workpiece transfer or Y -axis long stroke of the Cartesian robot. The function can perform the operation using the high-speed and high acceleration/ deceleration of YAMAHA robots.
Note. The dual-drive is supported as a custom order. For detail, please consult YAMAHA.

- Example of dual-drive

Operation method		Program, Remote command Online command
Number of points		10000 points
Input power	Control power	Single phase 200 to 230 V AC + - -10% maximum
	Main power	Single phase 200 to 230 V AC +/-10\% maximum
Origin search method		Incremental, Semi-absolute

Double-carrier anti-collision function

When using the double-carrier, collisions between both carriers can be prevented by the control in the controller. Collision preventions by the zone judgments or external sensors are no longer needed to make the double-carrier easier to use.

3D linear/circular interpolation control

2D and 3D linear and circular interpolation controls are possible. This ensures the smooth and highly accurate operations suitable for the sealing work. (The 3D interpolation is not available in the RCX221/222.)

Palletizing function

This function can easily define up to 20 kinds of pallets only by entering four corner positions on the pallet as the teaching points. When entering the teaching point in the height direction, even threedimensional pallets are supported.
When specifying the defined pallet number and executing the movement command, the palletizing work is then performed. Various operations, one point \rightarrow pellet, pallet \rightarrow one point, and pallet \rightarrow pallet, can be performed using the programs.

Hand definition

This function operates the robot based on coordinates of the offset tool tip when the tool is attached to the tip of the robot axis in the offset state. Particularly, this function is effective during tool rotation of SCARA robots or robots including the rotation axis.

Shift coordinates

A deviation may occur in the coordinate system when re-installing or replacing the robot during maintenance work. In this case, the coordinate system can be corrected using the shift coordinate function. So, the point data can be used as it is. No re-teaching is needed.

Passing point output control

The general-purpose output on/off can be controlled by specified points without stopping the axis operation during interpolation operation. The dispense can be turned on or off with the axis operated during sealing to allow smooth and stable dispensing.

Torque limiting function

The motor torque can be limited during gripping or press-fitting.

Multi-task function

This function can execute multi tasks (up to eight tasks), such as robot peripheral units in parallel at the same time. When there are multiple tasks, the task can be changed by means of the time sharing method and a priority can be put on the task. Additionally, the priority can also be changed while the task is running. The multitask function simplifies the control configuration of the entire system to improve the operation efficiency.

■ Task scheduling

Sequence program

In addition to the normal task, a task to individually control the input/ output (parallel, serial, memory, timer) can be executed.
As the sequence program can be enabled even in the manual mode, this is effective to construct a safety system linked with peripheral units.

2-robot control

Two robots that are assigned to the main and sub robots can be simultaneously controlled using one controller. As this function is used together with the multi-task, advanced and smooth linking of two robots can be performed using one controller.

Powerful support software: VIP+ (plus)

This application software allows you to easily and visually operate the robot, create and edit programs, and teach points.

RCX3 series

[Multi-axis robot controller]

Advanced functionality allowing construction of high-level equipment

Multiple robots can be operated synchronously through the high-speed communication. Use of linking among controllers makes it possible to store programs into only one controller. Use of a newly developed algorithm achieves shortening of the positioning time and improvement of the tracking accuracy.

- The control of multiple robots can be managed using one master controller

The RCX340 controller allows high-speed communication among the controllers. As the operation command can be sent to the controller of each slave from the master controller, the programs or points can be managed only using the host master controller. Additionally, as this controller supports multi tasks flexibly, data exchanging with the PLC can be simplified. Simultaneous start and simultaneous arrival of each robot can be controlled freely. Complicated and precision robot system using many axes can be constructed at a low cost.

- Arch motion can be specified more intuitively

As the arch motion route designation method is changed and the designation method is simplified, the arch motion can be specified more intuitively.

Smooth movement is achieved by greatly improving motion functions

As a new servo motion engine is incorporated, various operations can be merged. Use of a newly developed algorithm achieves shortening of the positioning time and improvement of the tracking accuracy.

Expansion of CONT option function

Different type operations, such as PTP, interpolation operation, and conveyor tracking, etc. are merged to improve the speed.

RCX320 RCX340

[Example: PTP \Leftrightarrow Conveyor tracking]

Improvement of operation speed Note
All operations can be merged as much as possible using the merge PTP. As even operations with different acceleration or deceleration time are merged at maximum level with priority put on the operation time, the movement time is shortened greatly.

Proper use according to application Note

When performing the continuous operation, an optimal operation can be selected according the application, like traditional PATH is used for constant-speed operation, such as sealing and merge PTP is used for operation with priority put on the movement time.

PATH

- Interpolation operation to the final target position is performed at a specified speed.

Merge PTP operation

- PTP operation is performed so that the movement time until the final target position becomes the shortest

Note. It is necessary to upgrade the firmware to its latest version.

Improvement of tracking accuracy

Use of visualization with servo analyze function and high responsiveness with new servo function makes it possible to increase the follow-up ability and improve the tracking accuracy when compared to the conventional models.

Improved basic performance

Functions, such as robot language, multi-task, sequence function, communication, and field bus are improved and made easier to use.

Motion optimization

The optimization of the motion to meet the operation pattern is further strengthened to bring out the robot performance at its maximum level. Higher quality robot operations, such as shortening of the operation time and suppression of vibrations during stopping are achieved.

Optimal acceleration/deceleration motion

Acceleration/deceleration motion is generated that can perform the high-speed operation while suppressing vibrations.

Compact design

The outside dimensions are approximately $355 \mathrm{~mm}(\mathrm{~W}) \times 195 \mathrm{~mm}(\mathrm{H}) \times$ $130 \mathrm{~mm}(\mathrm{D})$. The volume ratio is reduced to approximately 85% and the body size is made compact when compared to the conventional 4 -axis controllers so as to make the installation inside the control panel easy.

Improvement of cycle time

The speed-up of the YK-XG series is achieved.

Example: YK400XG

- Standard cycle time operation

Built-in regenerative unit

RCX340

As the regenerative unit (equivalent to RGU3) is built-in, no additional regenerative unit is needed when connecting to the existing robot.

User memory capacity increase

- Number of points is greatly increased.
- Total capacity of program and point

Economical solution for 6 axes ${ }^{\text {Note }}$ robot setup.

Use of the inter-controller "YC-Link/E" system makes it possible to easily link the RCX340 controller with the RCX320 controller. The control of the 6 -axis ${ }^{\text {Note }}$ can be achieved at low cost. Note. The vertical articulated robot YA series are outside the target.

PBX with USB port for backup
Simple and easy operation for adding function or editing work

Storing backup data is a simple task.

Convenient LED Display for Error Status.

The operation status is displayed on the " 7 -segment LED display" located on the front panel of the controller.

If an error occurs, the relevant error message is displayed. The error status can visibly recognized without connecting the programming box.

4 7-segment LED display

PC Programming Software "RCX-Studio 2020"

New functions such as 3D simulator function and program template (program template automatic creation function) are added for ease of user operation.

Evaluation) Design	Installation	Maintenance
NEW 3D simulator			
Cycle time calculator	NEW Program template	NEW Custom window	Data transfer
	Program edit	Manual operation	Data comparison
	Data edit	Automatic operation	Alarm history
	iVY2 editor	Debugging	
		10 monitor	
		Real time trace	

NEw 3D simulator

Layout can be verified beforehand without connecting robot.

Robots and peripheral devices are displayed in 3D, and the robot operation is simulated on PC.

- Robot layout, teaching, and debugging can be performed.
- Physical interference between the robot and peripheral device can be checked before operation is started.

NEN Program template (Program template automatic creation function)

Program creation time can be shortened greatly.

Program templates for 10 types of applications are incorporated. Just following the steps to perform the operation creates a program template automatically.

NEW
 Custom window creation

Operation screens suitable for the

 customer's equipment can be created.GUls for operators that are displayed on the panel computer can be created.

Other existing functions

All useful features from RCX-Studio Pro are succeeded to help supporting from startup to maintenance.

Cycle time calculator	Real time trace	Data comparison

Enhanced expandability

RS-232C and Ethernet ports are provided as standard equipment. A wide variety of high-speed and large capacity field networks, such as CC-Link, DeviceNet ${ }^{\text {TM }}$, EtherNet/IP ${ }^{T M}$, and EtherCAT are supported as options. Connections with generalpurpose servo amplifier or other company's VISION are easy. So, the RCX320 and

Communication
 between controllers

YC-Link/E

Up to four RCX320 and RCX340 controllers (up to 16 controllable axes) can be connected.

More flexible robot configuration
Easy programming
Centralized control of multiple robots
Cost reduction

RCX340 is called "connectable controller".
Applicable to various field buses/centralized control of robots through connections of up to four controllers
RS-232C and Ethernet ports are provided as standard equipment. Additionally, fulfilling field buses, such as CC-Link, EtherNet/I ${ }^{\text {TM }}$, DeviceNet ${ }^{\text {TM }}$, PROFIBUS, PROFINET Note 1 , and EtherCAT can be supported to connect and control a wide variety of devices. For 5 or more axes, use of YC-Link/E makes it possible to connect up to four RCX340 controllers so as to perform the centralized control of multiple robots.
Additionally, when using YC-Link/E ${ }^{\text {Note 2 }}$, multiple robots can be handled as if they are operated using one controller. This ensures very easy robot programming and management.
Therefore, this robot controller contributes to reduction of unseen costs, such as labor cost necessary for the setup work.
Note 1. Supports PROFINET Ver. 2.2
Note 2. When ordering YC-Link/E, please specify what robot is connected to what number controller.

Applicable to electric gripper "YRG series"
The gripper can be controlled entirely by one RCX320 or RCX340 controller. Data exchanging with the host unit, such as PLC is not needed. The setup or startup is very easy.

Real-Time output function for Preventive Maintenance.

Industrial Ethernet option Real-Time output function

When the industrial Ethernet option (EtherNet/IP, EtherCAT, or Profinet) is selected, the information necessary for the predictive maintenance such as error status, current position, current value, motor load factor, operation hours, and others can be output in real-time to contribute to achievement of the "non-stop production line".

RCX340 are applicable to all single-axis, Cartesian, SCARA, and P\&P robots ${ }^{\text {Note }}$

The 4-axis robot controller RCX340 are applicable to all robot models including singleaxis, Cartesian, SCARA, and Pick \& Place robots.
As the mixed control of the ball screw type FLIP-X series and linear motor type PHASER series can be performed, the robots can be combined freely according to the applications. Additionally, when preparing the robot controllers for the maintenance work of multiple robots, it is enough to prepare only one robot controller. This robot controller can be used for any model only by changing the setting.
Note. Except for 24 V specification models.

ROBOT VISION RCXiVY2+

Robot integrated vision system realized only by YAMAHA.

Blob search function optimal for tracking of irregular workpieces is built-in.

Simplicity

Setup is completed as little as eight minutes after power-on.
Auto-calibration makes setup easy.

Sophistication

With up to five million pixels, a variety of workpieces can be supported. Improve throughput to 100 CPM with conveyor tracking.

Assurance

Comprehensive support covers everything from camera image acquisition to the operation of the gripper and robot. With support that only the robot manufacturer can provide, you can relax.

For customers who consider to replace "iVY2" with "RCXiVY2+"

Workpieces that have been able to be recognized by the iVY2 system can also be detected by the RCXiVY2+ system under the same conditions without changing the installation position.
Therefore, it is not necessary to evaluate the workpieces again.
However, the exposure time and aperture may need to be adjusted.
In addition, since the installation hole positions of the camera are changed, the plate of the installation section needs to be changed.

| Camera | |
| :---: | :---: | :---: |
| 4illion pixels | |
| 400,000 to | |
| marts registration | Search time reduced by |

Monitoring Monitor output is provided

Solutions RCXiVY2+ can provide:

Reducing teaching process time

Robot teaching work requires a lot of labor and time. The RCXiVY2+ system acts as "robot eye". The final fine positioning can be automated and greatly reduce the teaching time that was required for the conventional models.

- Simplified positioning process

Reducing positioning process time in frequent lot change in small lot production.
Cost in preparation, control, and switching positioning jigs can be reduced.

Conveyor tracking

With a feedback from encoder of a conveyor RCXiVY2+ can do pick \& place following conveyor move.

Yamaha's comprehensive support of Robot and Vision

Yamaha's integrated robot vision system. It means Yamaha supports both robot and vision system seamlessly.
Have any questions and don't know if it is robot or vision related? Simply contact Yamaha representative. We have answers.

- Random workpieces need to be handled.

With position detection function of RCXiVY2+, pick \& place operation of random shaped parts from parts feeder or pallet can be simplified.

RCXiVY2+ features:	
- Adjusting parts orientation on the fly	Top/bottom judgement
Conveyor follower	OK/NG judgement
Searching randomly placed parts	

POINT 1

High speed positioning of irregular shaped parts (foods or clothes)

Blob search function

Suitable for pick \& place or detection of parts with wide tolerance in shape and size, or high speed counting.
Detection speed is 2 to 10 times faster that edge detection.

POINT 2

Suitable for parts detection and high volume parts count

Application examples

- Detection of electronics components on PC board

Detection of accessories in package

- Counting of the number of bottles in pallet

Detection of food labels

- Detection of screws and washers that secure parts
\square Checking drilled holes
- Counting of electronics components
*Subject to application and conditions.

Overlap can be eliminated.

Overlapped workpieces are recognized and they can be excluded from the search target.

POINT 4

Detection time is shortened up to $\mathbf{4 5 \%}$.

By adopting a high-performance camera and improving the camera frame rate and CPU capability, detection time is reduced 8 to 45% while the resolution is improved.

Comparison of search time

POINT 5

Detection with Speed

Comparing with edge search, blob search speed is 2 to 10 times faster.

Comparison of edge search and blob search

* Only doughnut shape workpieces are detected.

[Comparison of search speed]

POINT 6

Code recognition function

Codes such as QR codes, data matrix codes, and barcodes can be recognized.
This code recognition function is optimal for applications that change the operation corresponding to the code contents such as traceability management, workpiece sorting, and tracking change of sealing. It is not necessary to separately purchase a handy terminal or code reader. Troublesome communication control is also not needed.

[Supported codes]	• QR code
	- Data matrix code
	- Barcode (JAN/EAN-13 JAN/EAN-8 ITF NW7 CODE39 CODE128)
	* Up to 255 characters can be read. Only alphanumeric characters and symbols are supported.
	(2-byte characters such as HIRAGANA and KANJI characters cannot be read.)

POINT 7

Automatic image save function/History image function

Images are saved automatically and can be checked easily on an external monitor.
These functions are very convenient when you want to check the captured images retrospectively during operation or debugging or save the images for traceability purposes.

Automatic image save function

Images can be saved to a USB memory automatically. An SSD or HDD that can be connected to a USB port can also be used.
[Parameter]

Image save mode	All images / NG images / Disabled
Image size	Full size / Reduced size (320 $\times 240$ pix.)
Overwrite save	Disabled / Enabled (The images are deleted from the oldest image when enabled.)

[Number of images that can be saved]
Number of images that can be saved when the memory size is 128 GB

Number of camera pixels	Image size	Number of images that can be saved
0.4 million pixels	0.4 MB	327680
1.6 million pixels	1.6 MB	81920
3.2 million pixels	3.2 MB	40960
5 million pixels	5.0 MB	26214
Reduced size	0.08 MB	1638400

Number of images that can be saved = Memory size / Image size 81920 images can be saved by 1.6 million pixel camera when 128 GB memory is used.
When the cycle time is 3 seconds, images for 68 hours can be saved.

History image function

Images can be displayed on an external monitor during searching. The images and search results can be checked retrospectively with a USB mouse connected.

Past search images and results are checked.

images in the memories (No. 0 to 15) are checked.

[Number of images that can be saved]

Number of camera pixels	Image size	Number of images that can be saved
0.4 million pixels	0.4 MB	1250
1.6 million pixels	1.6 MB	312
3.2 million pixels	3.2 MB	156
5 million pixels	5.0 MB	100

Area for history images 500 MB
Number of images that can be recorded to the history $=500 \mathrm{MB} /$ Image size

POINT 8

Connection of multiple cameras

Up to eight cameras can be connected via HUB and support various applications such as addition of code recognition camera.

[Application using three cameras]

(1) Workpiece supply position is corrected using the downward camera.
(2) Workpiece positioning or angle is corrected using the upward camera.
(3) Place position is corrected using the downward camera.

POINT 9

Robot controller integrated type

Typical Robot Vision setup

RCXiVY2+ system

Typical Robot Vision setup

MOVE P, P9
OFF LINE
SEND (**) TO CMU
SEND CMU TO P10
 Communication with ON LINE MOVE P, P10

Camera and robot have separate programs

RCXiVY2+ system

MOVE P, P9
VSEARCH 1,2,0
————Searches for workpiece.
MOVE P, P10 —— Moves to this point.

- No communication time lag
- Needs only few command lines.
- Simple and easy to understand

Centralized control using only the robot program

Examples of program commands

VSEARCH - . Detect parts with designated camera

Camera and component type to be used for detection and the calibration data to be used can be switched with one command.

VSEARCH 1, 2, 1

- Camera: 1
- Component type number: 2
- Calibration data: 1

Component type number: 2

\#01

VSEARCH 2, 3, 2

- Camera: 2
- Component type number: 3
- Calibration data: 2

VGETPOS •• Acquires the coordinates of the detected workpieces.

The search results can be substituted into the point coordinates directly.

VSEARCH 1, 2, 1 . . . Detects the workpieces.
N = VGETCNT
... Substitutes the number of detected workpieces.
FOR J = 0 TO N-1
Pr] = VGETPOS (J)
J) ... Acquires the workpiece

NEXT J coordinates.

VGETPOS (0) \rightarrow Coordinates of 1 VGETPOS (1) \rightarrow Coordinates of 2 VGETPOS (2) \rightarrow Coordinates of 3 VGETPOS (3) \rightarrow Coordinates of 4 VGETPOS (4) \rightarrow Coordinates of 5 VGETPOS (5) \rightarrow Coordinates of 6

* The order to substitute into VGETPOS can be selected from the following. 1) Score order, 2) X coordinate, and 3) Y coordinate

LVOLUME ••• Intensity of light is adjustable from 0 to 100% range

In detection mode intensity of light can be adjusted with one command. Detection can be repeated with adjusted intensity.

POINT 10

3 easy steps for parts registration

POINT 11

Simple parts judgement process

Contour setting pen

Paints the areas to be used from among the automatically detected edges.

Priority area pen

Paints the areas to be used as priority areas during search from among the edges.

Reduction area pen

Paints the areas where there should not be an edge during search.

[Usage example]

Workpiece top or bottom judgement

Simple OK or NG judgement

- Usage example of contour setting pen

When a workpiece with a partially different shape needs to be distinguished and recognized or when the top or bottom needs to be judged, the detection can be performed by painting the contours in different colors by combining the contour setting pen with the priority area pen and reduction area pen.

Blue: Normal contour setting
All contours are handled equivalently.

: Priority area setting

In addition to the blue area search, areas painted in green are used as priority areas to perform the judgement.

Yellow : Reduction area settin
When there is an edge in the unnecessary area painted in yellow, the score is reduced.

POINT 12

Simple calibration

Conventional equipment combining "image processing unit + robot" requires many steps in "calibration" that aligns the camera coordinates with the robot coordinates. With the RCXiVY2+ system, following the wizard to perform the operation will complete the calibration easily within a short time. In addition, even when the setting position deviates, the calibration is executed and restored immediately.

STEP. 2

Select the camera mounting method

STEP. 3

Align fiducial mark position

If camera is movable, move the robot
If camera is fixed, attach fiducia mark to robot, and move it

Execute auto-calibration

POINT 13

Calibration is automated with the dedicated jig.

By automating the calibration using the advanced calibration function, highly accurate calibration can be achieved easily without depending on the operator's skill.
The hand data can also be created automatically and the time necessary for the calibration is reduced greatly.
Since the dedicated jig is the standard part (option part), the jig does not need to be designed and manufactured and can be used immediately.

Calibration jig

* This jig can be used only with the downward camera.

POINT 14

Setup time reduced greatly

When using third-party vision, a coordinate conversion program needs to be created in the robot controller since the robot coordinate data differs from the vision format.
In RCXiVY2+, vision system is incorporated in robot controller the robot coordinate data can be stored into the robot point data using single process. This ensures very simple operation. Additionally, the unified control of the camera control and light control can be performed using the robot program. Start-up process will be greatly simplified.

Comparison of setup time

POINT 15

Easy link with peripheral equipment
One controller provides unified control of robot, gripper, and lighting.

POINT 16

System configuration illustration

Conveyor tracking

Ideal for high-speed packaging arrangement high-speed transport of multiple types of items such as pharmaceuticals, cosmetics, and food products.
The vision camera detects the position and orientation of parts moving on the conveyor, and the robot picks them up.

Operating conditions: YK500XG / payload 1 kg (total of workpiece and tool) / horizontal movement $250 \mathrm{~mm} /$ vertical movement $1 \mathrm{~mm} /$ conveyor speed $100 \mathrm{~mm} / \mathrm{sec}$

POINT 18

Improving productivity by controlling multiple robot systems

POINT 19

Up to 254 types of parts registration

Setup changes require only that part numbers be changed. Setup changes are easy.

254 types (0-253) can be registered

POINT 20

Monitor output

Monitor the operating status

Monitor the search status while making calibration settings or during automatic operation.

POINT 21

High-precision search even under low light

Edge search engine is built-in

Supports a variety of applications while being minimally affected by the external environment.

When lighting is sufficient

Accurate search even if lighting is insufficient

POINT 22

Lens distortion and camera inclination correction function

Mounting accuracy is improved Camera is installed in the inclined status*

The lens distortion and camera inclination when the angle of visibility is wide or when the camera is installed in the inclined status can be corrected.
When the distortion and inclination correction function is enabled during calibration, the calibration data for the distortion and inclination correction is created. When images are captured using this calibration data, captured images are corrected and output.

Also supports moving camera

Even if the camera is mounted on the robot, coordinates are automatically converted according to the robot's movement.

Camera position can be selected in accordance with the application.

Even when the camera is moved, the coordinates are corrected automatically.

POINT 24

Easy-to-use programming software RCXiVY2+ Studio

With programming software "RCXiVY2+ Studio", all vision related operations such as registration of fiducial marks and workpieces used for calibration (contour settings, various parameter settings, and read range settings), backup, restore operation, and operation monitor can be performed.

- Search trial-run, part type registration
- Reference mark registration (for calibration)
- Up to 254 workpiece types can be registered.
- Workpiece can also be added easily.
- Up to 100 workpieces can be detected at once.
- Data backup
- This software functions as a monitor during program operation.

POINT 25

Easy programming

Constructing the most suitable robot vision system for an application.

RCX-Studio 2020 program template function

- Program is created automatically simply following step-by-step operating process

RCX3 series programming software RCX-Studio 2020 also has
following five templates for vision system:

- Pallet picking using the vision
- Dispensing work using the vision
- Gripping deviation correction using the vision
- Gripping deviation and mounting position correction using the vision
- Gripping deviation and mounting position correction using the vision (without using any master)

Wide variety of robot system to choose from most suitable and economical solution for robot vision system

XY-X Cartesian robots

YK-XG/XE SCARA robots

YK-TW orbit type robots

FLIP-X single-axis robots

POINT 27

Verifying application prior to purchase

User's application is verified using actual sample parts before making a purchase decision.
Based on the evaluation result, recommendation will be made for most suitable and economical solution.

Lot application examples

Random flow of parts on conveyor

The workpiece positions are recognized by the camera and the labels are adhered to the determined positions on workpieces. The adhesion position can also be specified for each part type.

Even when the positions or orientations of workpieces that are flown are not aligned, the labels are adhered to the same positions.

Automatically adjusting sealing points

Position of workpiece is correctly recognized by its shape.
Changing setup or jig between production
lot can be eliminated.

The workpiece shape is recognized by the camera and the sealing is applied to the correct position.

Adjusting screw fastening position

Vision camera recognizes actual hole position with wide tolerance and adjust fastening position.

Continues on next page »>

"Pick-and-Assemble" in one motion

Pick up parts from a tray, adjust position on the fly and install directly.

Use of the upward camera makes it possible to correct the position during transfer.

Conveyor tracking

Pick-and-pace operation of randomly positioned parts on conveyor by SCARA robot. Position and orientation of parts are recognized by vision camera.

Handling process is reduced without teaching

Irregular shape workpieces such as foods and clothes

Pick-and-place with conveyor tracking for parts with wide tolerance like foods and clothes.

YRG

Series

```
Product Lineup
```


ELECTRIC GRIPPERS

Electric grippers dedicated to the RCX320 and RCX340 controller. Easy operation is achieved as YAMAHA robot language gives unified control.

Plenty of lightweight and compact model variations

S type Single cam type

W type Double cam type
High gripping force

Screw type Straight shape
P. 724

Screw type "T" shape
P. 725

High accuracy, long stroke

YRG-2020FT/YRG-2840FT

Ball screw structure
As the ground ball screw is driven by the belt, the long stroke with high efficiency and high accuracy is achieved.

Three fingers type

YRG-2004T

YRG-2013T

YRG-2820T

Compact ball guide structure

Use of a special cam provides lightweight and compact electric grippers. These electric grippers are suitable for transfer of round workpieces made of glass or similar materials.

Type	Model	Gripping force(N)	Open/close stroke (mm)	Maximum speed (mm/sec.)	Repeated positioning accuracy (mm)	Main body weight (g)	Page
Compact single cam	YRG-2005SS	5	3.2	100	+/-0.02	90	P. 721
Single cam	YRG-2010S	6	7.6	100	+/-0.02	160	P. 722
	YRG-2815S	22	14.3	100	+/-0.02	300	
	YRG-4225S	40	23.5	100	+/- 0.02	580	
Double cam	YRG-2005W	50	5	60	+/-0.03	200	P. 723
	YRG-2810W	150	10	60	+/-0.03	350	
	YRG-4220W	250	19.3	45	+/-0.03	800	
Screw type Straight shape	YRG-2020FS	50	19	50	+/-0.01	420	P. 724
	YRG-2840FS	150	38	50	+/-0.01	880	
Screw type "T" shape	YRG-2020FT	50	19	50	+/-0.01	420	P. 725
	YRG-2840FT	150	38	50	+/-0.01	890	
Three fingers type	YRG-2004T	2.5	3.5	100	+/-0.03	90	P. 726
	YRG-2013T	2	13	100	+/-0.03	190	P. 727
	YRG-2820T	10	20	100	+/-0.03	340	
	YRG-4230T	20	30	100	+/-0.03	640	
- Gripping force control: 30 to 100% (1 \% steps) - Speed control: 20 to 100% (1 \% steps) Acceleration control: 1 to 100% (1 \% steps)- Multi-point position control: Maximum 10,000 points Workpiece size judgment: 0.01 mm steps (by ZON signal)		- Speed control: 20 to 100 \% (1 \% steps) Acceleration control: 1 to 100% (1 \% steps) - Workpiece size judgment: 0.01 mm steps (by ZON signal)					

POINT 1

Electric grippers achieve highly accurate gripping force, and position, and speed controls.

The YRG series provides the gripping force control, speed and acceleration controls, multi-point control, and workpiece measurement that were difficult by conventional air-driven devices. The YRG series flexibly supports various applications.

Gripping force control

The gripping force can be set in 1% steps. Workpieces that are easy to break or deform, such as glass or spring can be gripped. The gripping force is constant even when the finger position changes.

| Workpiece presence check function
The electric gripper outputs the HOLD signal. Workpiece gripping mistake or workpiece drop during transfer can be checked. No external sensors are needed.

Speed control

The speed and acceleration can be set in a range of 20 to $100 \mathrm{~mm} / \mathrm{sec}$. in 1% steps (singe cam and three fingers type). The gripper can gently touch workpieces that are vulnerable to impact, such as lenses or electronic components.

POINT 2

Gripper can be controlled with controller commands.

The gripper controls can be performed with one multi-axis controller RCX320, RCX340. Data exchanging with the host unit, such as PLC is not needed. The setup or startup can be made easily.

Multi-point position control

The finger can be set to a desired position according to the workpiece size. This contributes to efficiency improvement of lines with different workpiece sizes and materials mixed and lines with many setup steps.

Electric type
Loss is not generated in the stroke as optimal positioning accuracy is maintained.

Contributes to tact improvement.

Measuring function

The gripped workpiece can be measured using the position detection. Use of this function makes it possible to correctly judge what portion of the workpiece is gripped.

Zone range function

Use of this zone range function makes it possible to judge the size OK/NG and check for slant insertion.
\square List of robot languages (example)

Language name	Function
GDRIVE	Absolute position movement
GDRIVEI	Relative position movement
GHOLD	Absolute position gripping movement
GHOLDI	Relative position gripping movement
GOPEN	Constant speed gripping movement (open)
GCLOSE	Constant speed gripping movement (close)
GORIGIN	Gripper axis return-to-origin
GSTATUS	Status acquisition
ORIGIN	Return-to-origin
WHERE	Main group current position acquisition (joint coordinate: pulse)
WHERE2	Sub group current position acquisition (joint coordinate: pulse)
WHRXY	Main group current position acquisition (Cartesian coordinate: mm, degree)
WHRXY2	Sub group current position acquisition (Cartesian coordinate: mm, degree)

POINT 3

Combination with a vision system supports a wide variety of applications.

As the YRG series is combined with controller integrated robot vision "RCXiVY2+ System", the operations from the positioning using the camera to workpiece handling can be controlled in the batch mode using the RCX320, RCX340 controller. Sophisticated systems can be easily configured.

Gripping force comparison of electric gripper models

Application examples

Deformation prevention transfer of resin rings, etc.

Transfer and dimension check of flexible workpieces with different sizes

Measuring function Gripping force control

- Speed control

Note. Air unit cannot control the gripping force and speed, causing workpiece to be scratched or tact time not to be shortened.

Chip assembly transfer Deformation prevention and lead protrusion dimension check

APPLICATION

STEPPING MOTOR SINGLE-AXIS ROBOTS TRANSERVO

Pressing and cutter machines ... 130

SINGLE-AXIS ROBOTS FLIP-X

Clean, dustproof / dripproof, high-speed conveying unit $\cdot \ldots \ldots \ldots \ldots \ldots$.

Screw tightening device ... 131
Device to shift workpiece in width direction 131
Press-fitting device... 131

Carrying and transferring equipment $\cdot \ldots \ldots$
Jig and tool positioning mechanism ... 131
Painting by combining multiple single-axis robots 132
Tape affixing to circular workpieces ... 132

LINEAR MOTOR SINGLE-AXIS ROBOTS PHASER

Ink jet printer.. 132

Open / close device \cdot.. 133
High-speed screw tightening unit .. 133
High-speed applicator (1) .. 133
High-speed applicator (2) .. 133

CARTESIAN ROBOTS XY-X
Conveyor (2 parts simultaneously) .. 134

Tester (2 Cartesian robots controlled simultaneously) 135
Sealing ... 135
Transfer and stacking device within the unit 135
Dispenser 135
Insertion unit (Tare weight cancellation using moving $\mathrm{Z}+$ air balancer) 135
Assembler \& tester base machine (Simultaneous operation at upper and lower levels) $\cdots 136$
Part assembly machine 136
Application example of long-stroke and dual-drive 136
Dual-drive transport between processes 136
Application example of combination with auxiliary single-axis 136
SCARA ROBOT YK-X
Finished product inspection, touch-panel type evaluation machine $\cdots 137$
Conveying masks for wafers 137
Tall work pieces conveying and stacking machine 137
Assembly cell (independent cell) 137
Assembly cell (line cell) 137
Assembly cell (Handling unit for special purpose tester) 138
Inter-process transport 138
Inter-process transport with inverse specifications applied 138
PICK \& PLACE ROBOTS YP-X
Precision part assembler (1) 138
Precision part assembler (2) 138
ROBOT VISION RCXiVY2+
Small part palletizing 139
Loading parts into assembler machine 139
Screw tightening work with SCARA robot 139
Pick \& place work 139
Sealing correction 139
Labeling device 140
Screw attachment position detection 140
Position compensation with upward-facing camera 140

YAMAHA STEPPING MOTOR SINGLE-AXIS ROBOTS

TRANSERVO

Series

P. 253

Pressing and cutter machines

- Cuts plastic lens material Pressing function applications

POINT

1. Cutting tasks using the TRANSERVO (TS-S, TS-X, TS-P) pressing function
2. Pressing torque is adjustable, and time-out time and operation after reaching specified torque can be selected as desired (continuous pressing, position hold).
3. Host control can be simplified by setting multiple continuous operation points.

Pressing and pitch feed

Positioning for bread loaf slicing

- Pressing function and pitch feed applications

POINT

1. Measures bread thickness with robot and identifies bread type. (TS positioner can send feedback on current position.)
2. Varies the pitch feed quantity to match workpiece type.
3. Pressing torque is adjustable to match the workpiece type.

Series

P. 295

Clean, dustproof / dripproof, high-speed

 conveying unitTransfer and conveyance in the clean environment. Transfer and conveyance in the harsh environment.

POINT

1. Belt drive type robot complying with cleanliness requirement.
2. With a large payload, it is optimum for conveying panels.
3. Provided with specifications for cleanliness and applicable to long stroke
4. With the payload and moment permissible value at high level, it is applicable to the Cartesian combination.
5. Equivalent to B10 (YAMAHA model) .

Contact stopper height change unit

Change of stopper height in multiple number of steps.

POINT

1. The stop position for the stopper block is positioned by the cylinder type robot.
2. It is possible to make set-up done by single touch operation or automatically.

Screw tightening device

Tightening screws arranged on a straight line.

POINT

1. High rigidity with a support axis added.
2. Pitch selectable freely in the moving axis direction.

Device to shift workpiece in width direction

Positioning of workpieces flowing on the conveyor.

POINT

1. Arrangement of multiple number of compact robots.
2. Pulse string control from the upper controller.

Press-fitting device

Workpieces are press-fitted in holes arranged on a straight line.

POINT

1. Highly rigid frame.
2. Applicable to work positions arranged linearly.

O-ring fitting device

Handling workpieces to assembly units arranged on a straight line.

POINT

1. Assembly jigs arranged on a straight line under the single axis robot.

Carrying and transferring equipment

Handling parts

POINT

1. Space saving layout using double carrier. (N15 / N18)

Jig and tool positioning mechanism

- Adjustment of cutting fluid nozzle position of machining center - Positioning under harsh working environments

POINT

1. The adoption of a magnetic accuracy detection resolver allows use even under adverse conditions.

Painting by combining multiple single-axis robots

Interpolation control of multiple single-axis robots is performed for painting work.

MOVIE
Web site

POINT

1. As single-axis robots are controlled with the multi-axis controller, such as RCX240, the linear or circular interpolation operation can be performed with combined coordinates.
2. A layout, such as desktop type that is different from the normal Cartesian robot can be configured.
3. Optimal specifications can be selected from the versatile single-axis robot lineup and they can be combined.

Tape affixing to circular workpieces

- Interpolation control of multiple single-axis robots is performed for tape affixing to circular workpieces

POINT

1. Multiple single-axis robots are controlled with one multi-axis controller (multi-robot)
2. Use of an interpolation function of the multi-axis controller makes it possible to synchronize each axis.
3. As each axis is synchronized, a tension applied to the tape is kept constant to provide tape affixing without elongation or sagging.

YAMAHA LINEAR MOTOR SINGLE-AXIS ROBOTS

P H A S ER Series

P. 341

Check camera moving unit

Checking with moving camera.
Multi-point check with a camera.
Drawing created with line sensor and moving axes.

POINT

1. Allows movement with minimal speed fluctuations.
2. Compact size.

Ink jet printer

Ink jet feeding mechanism.

POINT

1. Allows movement with minimal speed fluctuations.
2. Capable of coping with a request for high speed. (Max. $2,500 \mathrm{~mm} / \mathrm{sec}$)
3. Allows setting long constant-speed sections, with large acceleration.

Chip mounter

Bonding and chip mounting on circuit board.
Electronic part mounting process.

POINT

1. Double carrier structure enabled compact size.
2. Layout designing is easy as different workpieces can be carried onto the same axis.
3. Clean specification requirement can be coped with easily.

Check device

Handling to multiple number of check devices.

POINT

1. 2 heads can be installed to the same axis compactly.
2. High speed operation

Open / close device

Wide open/close of shutter.

POINT

1. It is possible to drive a work with a large width (shutter) using the dual drive method
2. Various advantages (such as center layout, higher open / close speed, sharing of effective stroke) are available due to adoption of the double carrier mechanism
3. Drives with the dual drive mechanism with 2 units of double carrier PHASER in parallel and fixing them with sliders respectively.
4. RCX240 can control 4 axes in all.

High-speed screw tightening unit

Positioning 2 nut runners at the same time for a large work piece.2 screws at opposite locations tightened at the same time.

POINT

1. Performs high-speed, high-accuracy screw tightening on large work pieces such as large construction materials.

High-speed applicator (1)

- Application to a large size workpiece such as liquid crystal circuit board and the like.

POINT

1. Capable of applying to a large size work such as a flat panel display.

High-speed applicator (2)

Application to a large size workpiece such as liquid crystal circuit board and the like.

POINT

1. Capable of applying to a large size work such as a flat panel display.
2. It is possible to drive a work with a large width using the dual drive method.

High-speed pick \& place unit

Pick \& place operation from the rack for large size parts.

POINT

1. Capable of carrying over a long distance between processes in various production facilities.

High-speed loading / unloading robot

- The loading unit and unloading unit are mounted on the same axis.

POINT

1. Utilizing double-carriers allows building systems that are highly efficient in saving space.

Series

P. 363

Conveyor (2 parts simultaneously)

Conveyance with high efficiency using double arms.

POINT

1. Setting 2 units on the Z-axis intersecting $X Z$ drastically cuts the total tact time and reduces the required installation space.
2. Customization only possible because a highly rigid frame and guide are used.

Application of adhesive agent

Application of adhesive agent within a large size liquid crystal surface processing unit.

POINT

1. Capable of handling large size workpieces.
2. Also applicable to cutting work with a cutter, surface check with a camera, etc.

IC palletizing within the unit

ICs are taken out of the pallet and parts are transferred to the specified place by the XYZ Cartesian robot.
\square Application as a part of the machine used in the process where a die is attached to the circuit board using thermocompression bonding in the manufacture of semiconductors.

1. By using the RCX controller, it is possible to use the result of the operation based on variables during palletizing.

Tester (2 Cartesian robots controlled simultaneously)

- Use as a tester in the post-process of manufacturing electronic parts.

POINT

1. 2 units of $S X Y x$ are operated using 1 unit of RCX240 with settings for 2 robots
2. The vertical traveling accuracy of $X Y$ axes of both 2 units of $S X Y x$ is within $+/-0.05 \mathrm{~mm}$.

Sealing

Spreading sealant to mating faces of the cases.

POINT

1. Three dimensional application using 3 axes Cartesian robot. Cartesian robot incorporated with special purpose machine.

Transfer and stacking device within the unit

Used in the sheet metal processing unit.

POINT

1. X 1 and X 2 axes are superposed for space efficiency.
2. The unit layout is easy even for the doubled stroke.

Dispenser

Spreading adhesive agent to drums.

POINT

1. Boosting the R axis strength allows 3-dimensional interpolation $+R$ operation.
2. Each axis has high rigidity and so can easily withstand harsh conditions such as on the moving arm (handles $100 \mathrm{~mm} / \mathrm{sec}$).

Insertion unit (Tare weight cancellation using moving $\mathrm{Z}+$ air balancer)

Heavy workpiece inserted in the pallet, etc.
Heavy workpiece before processing set in the processing machine.

POINT

1. Z axis moving type: The heavy workpiece is cancelled by the air balancer and moved up and down.

Assembler \& tester base machine (Simultaneous operation at upper and lower levels)

Tester (upper and lower probes, camera with lighting) .
Precision spot welding machine.Simultaneous assembly at upper and lower levels (caulking parts, screw tightening).

POINT

1. Simultaneous control of 2 Cartesian robots
2. Levelness of upper and lower robots assured (custom specification).

Part assembly machine

Automotive clutch assembly
Efficient alternate assembly of two different parts

 MOVIE

 Web site

POINT

1. Double-arm ensures a short tact time along with a space-saving footprint.
2. Double-arm specifications selectable as standard feature.
3. Y axis and Z axis strokes are selectable separately for left and right. (Special orders available)
4. Nut rotation type X axis supports long stroke and also maintains maximum speed.

Application example of long-stroke and dual-drive

Long-stroke axis is combined with Cartesian axis using the dual-drive control.

Dual-drive transport between processes

Uses dual-drive to convey large and heavy workpieces

POINT

1. Dual-drive allows synchronized operation of two single-axis robots of the same type.
2. Using dual-drive even allows conveying heavy items or large size parts and products.
3. Enhanced acceleration also helps cut tact time

Application example of combination with auxiliary single-axis

- Cartesian robot and single-axis robot are controlled with one controller.

Website

Web site

POINT

1. Multiple robots can be controlled simultaneously with one controller. Up to 8 axes of maximum 2 groups can be expanded.
2. As multiple robots are controlled with one controller, the linking can be performed without using the I/O of the PLC or between the controllers. Therefore, there are merits that the number of control program creation steps is reduced to shorten the equipment startup time and reduce the labor cost.
YAMAHA SCARA ROBOT

Finished product inspection, touch-panel type evaluation machine

- Finished product function test.
- Developed software evaluation.Push-button type quality check.

POINT

1. Supports a variety of systems in a product lineup that is top class in its field with arm lengths from 120 mm to 1200 mm .
2. Space saving.
3. Using SCARA, judgment is made through image processing by pushing each button.

Conveying masks for wafers

Replacing wafer mask from the stocker.

1. Drive section installed beneath work pieces has clean specs + inverted structure.
2. If the cylindrical coordinate type robot is used, a running axis is necessary for this application. However, if SCARA with the interpolation function is used, the fixed type is usable.

Tall work pieces conveying and stacking machine

Tall workpieces stacked by utilizing long Z axis.

POINT

1. Z-axis long stroke is also accepted as special order.

If a stroke longer than the standard stroke shown below is needed, consult YAMAHA.
Standard Z-axis stroke
[YK120XG to YK180XG] 50 mm
[YK250XG to YK600XGL].... 150 mm
[YK180X to YK220X]........ 100mm [YK500XG to YK600XG] .. $200 \mathrm{~mm} / 300 \mathrm{~mm}$ [YK1200X]... \qquad .400 mm
2. SCARA robot is used by utilizing its advantages, such as X / Y-axis speed and space saving installation.

Assembly cell (independent cell)

Base machine of independent type assembly cell.

POINT

1. Optimum for multi type variable quantity production.
2. Setting up reception places forms a construction of multiple number of cells.

Assembly cell (line cell)

Base machine of line type assembly cell.

1. Utilization of advantages of SCARA with a wide operation range.
2. Form a line to any length by coupling these cells together.

Assembly cell (Handling unit for special purpose tester)

When placed between 2 turn tables, handling of both tables is possible.

POINT

1. Utilization of advantages of SCARA which has a wide operation range.

Inter-process transport

Conveys large and heavy workpieces

POINT

1. Built-in structure with no timing belt achieves high allowable moment-ofinertia on R axis.
2. High allowable moment-of-inertia on R axis permits using large hand on robot. So more workpieces can be conveyed per one time which makes operation more efficient.
3. R axis can be driven at high acceleration during low moment-of-inertia. This shortens the tact time.

Inter-process transport with inverse specifications applied

Workpiece inter-process transport with inverse specifications applied

-ロ!-!
 MOVIE
 - ! ! !
 Web site

1. As the inverse specifications are applied, the workpieces can be held from the lower portion to prevent foreign objects from dropping onto workpieces being transported.
2. The performance of the robot mechanical section is similar to the standard specifications. The high performance of the YK-XG series can be utilized.
3. YAMAHA SCARA robot can select three installation patterns, standard floor installation, wall-mount, inverse specifications ${ }^{\text {(Note) }}$. YAMAHA proposes various ideas about equipment design.
Note. If the robot with the standard specifications, normal ceiling-mount specifications, or wall-mount specifications is installed upside down, this may cause a malfunction. When considering the installation like this, be sure to use the robot with the dedicated inverse specifications (YK-XS-U).

P. 553

Precision part assembler (1)

- Assembly of small size precision parts.

POINT

1. High speed assembly
2. Narrow machine width, and settable with a tiny pitch.

Precision part assembler (2)

Assembly of small size precision parts.

POINT

1. Speed increased even more when used in combination with a rotary table.

YAMAHA ROBOT VISION
RCXIVY2+
System
P.712

Small part palletizing

Assemble a sorting pallet for the automated machine in the next process.

POINT

Loading parts into assembler machine

Loads unsorted parts or components into automated equipment.

POINT

Screw tightening work with SCARA robot

Screw tightening work with the SCARA robot is improved using the RCXiVY2+ system.

MOVIE MOVIE Web site

1. As the position detection function using the RCXiVY2+ system is added, the robot is applicable to various conditions. For example, if the screw hole position varies, the workpiece position on the conveyor is not constant, or various workpieces are supplied, the robot can be installed easily.
2. Use of RCXiVY2+ system makes it possible to perform the calibration using system operation. As the teaching steps can be reduced, the equipment startup time is shortened and labor cost can be reduced.

Pick \& place work

Component pick \& place work is improved using

RCXiVY2+ system.

POINT

1. As the position detection function using the RCXiVY2+ system is added, components on soft pallets or pallets with low accuracy can be gripped correctly.
2. Therefore, merits are provided that the pallet manufacture cost is reduced, positioning mechanism is simplified, and equipment cost is reduced.
3. Two camera input channels are provided on one controller.
4. The camera can be incorporated into the robot or secured outside the robot.
Simple calibration work can be performed under either of the conditions.

Sealing correction

Sealing tasks for placing gaskets or applying adhesives in parts
Coating trajectory correction using RCXiVY2+ system

POINT

1. Use of RCXiVY2+ system makes corrections to Cartesian robot sealing tasks.
2. RCXiVY2+ system detects deviations and tilting even if workpiece strayed from its main position, and automatically corrects the coating trajectory.
3. Maintains high coating quality even during low positioning accuracy on component side.

Labeling device

Affixing labels to food packages

POINT

1. Even if the incoming workpieces are irregularly spaced or positioned, labels can be affixed at the same position.

Screw attachment position detection

- Television panel screw attachment

POINT

1. Hole position is detected, and screws are fastened accurately.

Position compensation with upward-facing camera

Installing irregularly-shaped parts on a circuit board

POINT

1. The roughly-positioned circuit board connector is picked up, the upward-facing camera is used to apply position compensation, and the part is mounted directly on the circuit board.

Officially discontinued models and service period
Models listed in the current model column are equivalent Models listed in the current model column are equivalent please contact Yamaha if you are considering replacement. E-MAIL robotn@yamaha-motor.co.jp

Single-axis robots				
Series	Model	Sale discontinued time	Service period	Current model (equivalent)
FLIP-X	YMS45	Dec. 2013	Dec. 2020	-
	YMS555			
	T4	Dec. 2012	Dec. 2019	T4L
	T4H			T4LH
	T5			T5L
	T5H			T5LH
	T6			T6L
	C4			C4L
	C4H			C4LH
	C5			C5L
	C5H			C5LH
	C6			C6L
	T7	Dec. 2009	Dec. 2016	-
	F17 (Former model)	Sep. 2002	Sep. 2009	F17 (Latter model)
	F17 (Latter model)	-	-	On sale
	F20 (Former model)	Sep. 2002	Sep. 2009	F20 (Latter model)
	F20 (Latter model)	-	-	On sale
	T9 (Former model)	Oct. 2001	Oct. 2008	T9 (Latter model)
	T9 (Latter model)	-	-	On sale
	T9H (Former model)	Oct. 2001	Oct. 2008	T9H (Latter model)
	T9H (Latter model)	-	-	On sale
	F10 (Former model)	Oct. 2001	Oct. 2008	F10 (Latter model)
	F10 (Latter model)	-	-	On sale
	F14 (Former model)	Oct. 2001	Oct. 2008	F14 (Latter model)
	F14 (Latter model)	-	-	On sale
	F14H (Former model)	Oct. 2001	Oct. 2008	F14H (Latter model)
	F14H (Latter model)	-	-	On sale
PHASER	MR12/12D	Dec. 2019	Dec. 2026	MF7
	MR16/16D	Dec. 2011	Dec. 2018	MF15/15D
	MR16H/16HD			
	MR20/20D			MF20/20D
	MR25/25D			MF30/30D
	MF50/50D	Mar. 2011	Mar. 2018	MF75
	MF100/100D			
Pico	T4P	Dec. 2009	Dec. 2016	-
	T5P			
FLIPt	FSt	Jan. 2002	Jan. 2009	F10
	BFSt			B10
	LTt			T9
	LSt			F14
	BLSt			B14
	LRt			-
	LTHt			T9H
	LSHt			F14H
	BLSHt			B14H
	MSt			F17
	HSt			F20
	HSLt			F20N
	BHS			-
	FROP-Ft			R5
	FROP-St			R10
	FROP-Mt			R20
	TR			-
	FTt			-
Economy Type	BPS	Jan. 2002	Jan. 2009	-
	PS			
	BSt			
FLIP AC	BFSA	Jul. 1998	Jul. 2005	B10
	BLSA			B14
	BSA			-
	FROP-FA			R5
	FROP-HA			-
	FROP-MA			R20
	FSA			F10
	FTA			-
	HSA			F20
	HSC			C20
	HSLA			F20N
	LRA			-
	LSA			F14
	LTA			T9
	MS			-
	MSA			F17
	MTA			T9H

* When checking the basic specifications and external views of the discontinued models, refer to the catalog PDF on the "Discontinued models and repair support periods" page at YAMAHA's website.

Continues on next page

Single-axis robots (continued)

Series	Model	Sale discontinued time	Service period	Current model (equivalent)
FLIP DC	BFS	Jul. 1998	Jul. 2005	B10
	BLSII			B14
	BS			-
	FROP-F			R5
	FROP-M			R20
	FROP-H			-
	FS			F10
	FT			
	FTB			
	HS			-
	HSL			
	LR			
	LS/LSII/LSB/LSI			F14
	LT/LTB/LTI			T9
	MS			F17
	MT			T9H

Cartesian robots

Series	Model	Sale discontinued time	Service period	Current model (equivalent)
XY-X	MXYX 3 axis ZF	Jan. 2005	Jan. 2012	MXYX 3 axis ZFL/ZFH
	MXYX 4 axis ZRF			MXYX 4 axis ZRFL/ZRFH
	MXYX pole type ZPM			MXYX pole type
	TXYX	Mar. 2004	Mar. 2011	PXYX
	SXYX (Former model)	Oct. 2001	Oct. 2008	SXYX (Latter model)
	SXYX (Latter model)	-	-	On sale
	MXYX (Former model)	Oct. 2001	Oct. 2008	MXYX (Latter model)
	MXYX (Latter model)	-	-	On sale
	HXYX (Former model)	Sep. 2002	Sep. 2009	HXYX (Latter model)
	HXYX (Latter model)	-	-	On sale
XYt	FXYt	Jan. 2002	Jan. 2009	FXYBX
	SXYt-C SXYt-S			SXYX
	SXYLt			SXYBX
	$\begin{aligned} & \text { MXYt-C } \\ & \text { MXYt-S } \end{aligned}$			MXYX
	$\begin{aligned} & \text { HXYt-C } \\ & \text { HXYt-S } \end{aligned}$			HXYX
	HXYLt			HXYLX
XY AC	SXYA	Jan. 1999	Jan. 2006	SXYX
	SXYLA			SXYBX
	MXYA			MXYX
	HXYA			HXYX
	HXYLA			HXYLX
XY DC	FXY	Jan. 1999	Jan. 2006	-
	FXYL			
	SXY			XYX
	SXYI			SXYX
	SXYL			-
	MXY	Oct. 1995	Oct. 2002	-
	MXYL			

Pick \& place robots

Series	Model	Sale discontinued time	Service period	Current model (equivalent)
YP	YPX220	Apr. 2001	Apr. 2008	YP220BX
YP AC	YP320A	Apr. 2001	Apr. 2008	YP320X
	YP340A			YP340X
	YP330A			YP330X
YP DC	YPS21	Jul. 1998	Jul. 2005	-
	YP340	May 1996	May 2003	YP340X
	YP330			YP320X
	YP320			

[^5]| | | | Models listed in items. Since th please contact E-MAIL robot | ent model column are equivalent not be compatible in some cases, if you are considering replacement. ha-motor.co.jp |
| :---: | :---: | :---: | :---: | :---: |
| SCARA robots | | | | |
| Series | Model | Sale discontinued time | Service period | Current model (equivalent) |
| YK-XR | YK400XR | Jun. 2020 | Jun. 2027 | YK400XE-4 |
| YK-XP | YK500XP | Dec. 2013 | Dec. 2020 | YK500XGP |
| | YK600XP | | | YK600XGP |
| | YK700XP | | | YK700XGP |
| | YK800XP | | | YK800XGP |
| | YK1000XP | | | YK1000XGP |
| | YK250XP | Dec. 2012 | Dec. 2019 | YK250XGP |
| | YK350XP | | | YK350XGP |
| | YK400XP | | | YK400XGP |
| YK-XC | YK250XC(H) | Dec. 2012 | Dec. 2019 | YK250XGC |
| | YK350XC(H) | | | YK350XGC |
| | YK400XC(H) | | | YK400XGC |
| YK-XS | YK300XHS | Dec. 2012 | Dec. 2019 | YK300XGS |
| | YK400XHS | | | YK400XGS |
| | YK500XS | | | YK500XGS |
| | YK600XS | | | YK600XGS |
| | YK700XS | | | YK700XGS |
| | YK800XS | | | YK800XGS |
| | YK1000XS | | | YK1000XGS |
| YK-X | YK250X(H) | Dec. 2012 | Dec. 2019 | YK250XG |
| | YK350X(H) | | | YK350XG |
| | YK400XH | | | YK400XG |
| | YK550X(H) | Dec. 2009 | Dec. 2016 | - |
| | YK120X | Dec. 2008 | Dec. 2015 | YK120XG |
| | YK150X | | | YK150XG |
| | YK400X | | | YK400XG |
| | YK500X | | | YK500XG |
| | YK600X | | | YK600XG |
| | YK700X | | | YK700XG |
| | YK800X | | | YK800XG |
| | YK1000X | | | YK1000XG |
| YK AC
 (SANYO motor model) | YK550H | Mar. 2003 | Mar. 2010 | YK550X(H) |
| | YK420A-I/420ALZ-I/440A-I | Mar. 2001 | Mar. 2008 | YK400XG |
| | YK540A-I/541A-I | | | YK500XG |
| | YK520A-I | | | |
| | YK640A-I/641A-I | | | YK600XG |
| | YK620A-I | | | |
| | YK740A-I/741A-I | | | YK700XG |
| | YK720A-I | | | |
| | YK840A-I/841A-I | | | YK800XG |
| | YK820A-I | | | |
| | YK1041A-I | | | YK1000XG |
| | YK1043A-I | | | - |
| | YK1243A-1 | | | YK1200X |
| YK AC (YASUKAWA motor model) | YK420A/420ALZ/440A | Dec. 1995 | Dec. 2002 | YK400XG |
| | YK520A/540A/541A | | | YK500XG |
| | YK620A/640A/641A | | | YK600XG |
| | YK720A/740A/741A | | | YK700XG |
| | YK820A/840A/841A | | | YK800XG |
| | YK1041A | | | YK1000XG |
| | YK1043A | | | - |
| | YK1243A | | | YK1200X |
| YK DC | YK5020/5021 | May 1997 | May 2004 | Replacement unavailable |
| | YK7011/7012/7022 | | | |
| | YK4000/4000LZ/4040 | | | YK400XG |
| | YK420/420LZ/440 | | | |
| | YK520/540/541 | | | YK500XG |
| | YK620/640/641 | | | YK600XG |
| | YK720/740/741 | | | YK700XG |
| | YK820/840/841 | | | YK800XG |
| | YK1041 | | | YK1000XG |
| | YK1200 | | | YK1200X |
| CAME | YK5012 | Mar. 1990 | Mar. 1997 | - |
| | YK8050 | | | |
| | YK8080 | | | |

[^6]| Controllers | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Sale discontinued time | Service period | Service availability | Replacing models for maintenance | Current model (equivalent) |
| RCX240/RCX240S | Dec. 2019 | Dec. 2026 | Being continued | RCX340 | RCX340 |
| RDX/RDP | Aug. 2015 | Aug. 2022 | Being continued | RDV-X/RDV-P | RDV-X/RDV-P |
| TS-S | Sep. 2013 | Sep. 2020 | Already discontinued | TS-S2 | TS-S2 |
| DRCX | Dec. 2012 | Dec. 2019 | Already discontinued | - | - |
| ERCX | Jul. 2011 | Jul. 2018 | Already discontinued | - | - |
| SRCP30 | Mar. 2011 | Mar. 2018 | Already discontinued | - | - |
| PRC | Dec. 2009 | Dec. 2016 | Already discontinued | Replacement unavailable | No current model |
| RCX141 | Dec. 2008 | Dec. 2015 | Already discontinued | RCX340 | RCX340 |
| RCX142 | | | | | |
| RCX142-T | | | | Replacement unavailable | No current model |
| SRCX | Apr. 2008 | Apr. 2015 | Already discontinued | SR1-X | SR1-X |
| SRCP05/10/20 | | | | $\begin{aligned} & \text { SR1-P } \\ & \text { RDP } \end{aligned}$ | $\begin{aligned} & \text { SR1-P } \\ & \text { RDP } \end{aligned}$ |
| SRCD | | | | $\begin{aligned} & \text { SR1-X } \\ & \text { RDX } \end{aligned}$ | $\begin{aligned} & \text { SR1-X } \end{aligned}$ |
| TRCX | | | | Replacement unavailable | RCX340 |
| RCX40 | Oct. 2005 | Oct. 2012 | Already discontinued | RCX340 | RCX340 |
| QRCX | Mar. 2002 | Mar. 2009 | Already discontinued | Replacement unavailable ${ }^{\text {Note. }}$ | RCX340 |
| QRCX-E | | | | | |
| SRCH | Jan. 2002 | Jan. 2009 | Already discontinued | Replacement unavailable | SR1-X |
| DRCH | | | | | RCX222 |
| TRCH3 | | | | | RCX340 |
| TRCH4 | | | | | RCX340 |
| DRC-R | Apr. 2001 | Apr. 2008 | Already discontinued | Replacement unavailable | No current model |
| QRCH | Mar. 2001 | Mar. 2008 | Already discontinued | Replacement unavailable | RCX340 |
| QRCH-E | | | | | |
| QRCH-P | | | | | |
| MRCH | | | | | No current model ${ }^{\text {Note } 2}$ |
| MRCH-E | | | | | No current model ${ }^{\text {Note. } 2}$ |
| SRCA (Latter model) | Oct. 1999 | Oct. 2006 | Already discontinued | Replacement unavailable | SR1-X |
| DRCA (Latter model) | | | | | RCX222 |
| ERC | | | | | SR1-X |
| MRCA | Nov. 1997 | Nov. 2004 | Already discontinued | Replacement unavailable | No current model ${ }^{\text {Note. } 2}$ |
| DRC | Sep. 1997 | Sep. 2004 | Already discontinued | Replacement unavailable | RCX222 |
| SRC-1 | | | | | SR1-X |
| SRC-2 | | | | | SRT-X |
| QRC | May 1997 | May 2004 | Already discontinued | Replacement unavailable | RCX340 |
| QRCA | | | | | |
| SRC-3 | Dec. 1995 | Dec. 2002 | Already discontinued | Replacement unavailable | SR1-X |
| SRC-4 | | | | | |
| SRCA (Former model) | | | | | |
| DRCA (Former model) | | | | | RCX222 |
| MRCA | | | | | RCX340 |
| MRC | | | | | |
| RCH20 | Mar. 1994 | Mar. 2001 | Already discontinued | Replacement unavailable | RCX340 |
| SRC2A | | | | | SR1-X |
| SRC4A | | | | | SRI-X |
| RCH40 | Mar. 1992 | Mar. 1999 | Already discontinued | Replacement unavailable | RCX340 |
| RCH41 | | | | | |
| RCS40 | Mar. 1990 | Mar. 1997 | Already discontinued | Replacement unavailable | RCX340 |
| RCS41 | | | | | |
| LP | | | | | SR1-X |

If a replacing model for maintenance is available, it can be used as a set including the controller and the cable for conversion.
When replacing with the current model, it is necessary to replace the robot and the controller as a set.
Note 1. The replacement can be performed using the QRCX \rightarrow RCX $240 \rightarrow$ RCX340 conversion cable. (Some models are not supported.)
Note 2. Replacement with the current model is possible under certain conditions.

Robot Vision
Model
SVY2 System

* When checking the basic specifications and external views of the discontinued models, refer to the catalog PDF on the "Discontinued models and repair support periods" page at YAMAHA's website.

			Models listed in the current model column are equivalent items. Since these might not be compatible in some cases, please contact Yamaha if you are considering replacement. E-MAIL robotn@yamaha-motor.co.jp	
Programming box				
Model	Sale discontinued time	Service period	Service availability	Current model (equivalent)
TP-2	Dec. 2009	Dec. 2016	Already discontinued	-
MPB	Jan. 2009	Jan. 2016	Already discontinued	RPB ${ }^{\text {Note }}$
TP-1	Oct. 2005	Oct. 2012	Already discontinued	TP-2
TPB	Jun. 2005	Jun. 2012	Already discontinued	HPB
DPB	Jan. 1999	Jan. 2006	Already discontinued	HPB
YPU20	Mar. 1994	Mar. 2001	Already discontinued	-
SPB-2	Aug. 1992	Aug. 1999	Already discontinued	-
YPU1	Mar. 1992	Mar. 1999	Already discontinued	-
YPU2				
YPU3				
SPB	Jan. 1990	Jan. 1997	Already discontinued	-

Note. Customers using the RCX40/RCX141/RCX142 controllers will use a connector adaptor cable.

Software	Usage		
RCX-Studio Pro	RCX320/RCX340 controller	Sale discontinued time	Current model (equivalent)
RCX-Studio	RCX340 controller	May. 2020	RCX-Studio 2020
TOP	Robot driver RDX/RDP	Jul. 2016	RCX-Studio 2020
POPCOM	ERC series / SRC series / DRC series / SR1 series	Aug. 2015	RDV-Manager
VIP	For multi-axis controller	Jul. 2013	POPCOM +
YPB-Win	Pico series	Dec. 2009	VIP $^{+}$

[^7]
MEMO

ARTICULATED ROBOTS

GONTENTS

■ YA SERIES MANIPULATOR SPECIFICATIONS

6-axis 149
YA-R3F 150
YA-R5F 151
YA-R5LF 152
YA-R6F 153
7-axis
154
YA-U5F155
YA-U20F 156
■ YAC100 Specifications 157\square Accessories and part options $\cdots 158$

YA SERIES MANIPULATOR SPECIFICATIONS

		6-axis					7-axis		
Applications		Handling (general)					Assembly / Placement		
		YA-RJ	YA-R3F	Y	YA-R5LF	YA-R6F	YA-U5F	YA-U10F	YA-U20F
Number of axes		6	6	6	6	6	7	7	7
Payload		$\begin{gathered} 1 \mathrm{~kg} \\ \left(\max .2 \mathrm{~kg}^{\text {Note } 2}\right) \end{gathered}$	3 kg	5 kg	5 kg	6 kg	5 kg	10 kg	20 kg
Vertical reach		909 mm	804 mm	1193 mm	1560 mm	2486 mm	1007 mm	1203 mm	1498 mm
Horizontal reach		545 mm	532 mm	706 mm	895 mm	1422 mm	559 mm	720 mm	910 mm
Repeatability		+/-0.03 mm	+/-0.03 mm	+/-0.02 mm	+/-0.03 mm	+/-0.08 mm	+/-0.06 mm	+/-0.1 mm	+/-0.1 mm
Range of Motion	S-axis (turning)	-160° to $+160^{\circ}$	-160° to $+160^{\circ}$	-170° to $+170^{\circ}$	-170° to $+170^{\circ}$	-170° to $+170^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$
	L-axis (lower Arm)	-90° to $+110^{\circ}$	-85° to $+90^{\circ}$	-65° to $+150^{\circ}$	-65° to $+150^{\circ}$	-90° to $+155^{\circ}$	-110° to $+110^{\circ}$	-110° to $+110^{\circ}$	-110° to $+110^{\circ}$
	E-axis (elbow twist)	-	-	-		-	-170° to $+170^{\circ}$	-170° to $+170^{\circ}$	-170° to $+170^{\circ}$
	U-axis (upper arm)	-290° to $+105^{\circ}$	-105° to $+260^{\circ}$	-136° to $+255^{\circ}$	-138° to $+255^{\circ}$	-175° to $+250^{\circ}$	-90° to $+115^{\circ}$	-135° to $+135^{\circ}$	-130° to $+130^{\circ}$
	R-axis (wrist roll)	-180° to $+180^{\circ}$	-170° to $+170^{\circ}$	-190° to $+190^{\circ}$	-190° to $+190^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$
	B-axis (wrist pich/yaw)	-130° to $+130^{\circ}$	-120° to $+120^{\circ}$	-135° to $+135^{\circ}$	-135° to $+135^{\circ}$	-45° to $+225^{\circ}$	-110° to $+110^{\circ}$	-110° to $+110^{\circ}$	-110° to $+110^{\circ}$
	T-axis (wrist twist)	-360° to $+360^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$				
Maximum Speed	S-axis (turning)	160\% ${ }^{\circ}$	200\% ${ }^{\text {s }}$	376% s	270\%/s	220\%s	200\%	170\%s	130\%
	L-axis (lower Arm)	130\%	150\%s	350\%	280\%/s	200\%	200\%	170\%s	130\%s
	E-axis (elbow twist)	-	-	-	-	-	200\%	170\%s	170\%s
	U-axis (upper arm)	200\%	190\%	400\%	300\%	220\%	200\%	170\%s	170\%s
	R-axis (wrist roll)	300\%	300\%	450\%/s	450\%/s	410\%/s	200\%	200\%	200\%s
	B-axis (wrist pich/yaw)	400\%	300\%s	450\%/s	450\%/s	410\%	230\%	200\%	200\%
	T-axis (wrist twist)	500\%/s	420\%/s	720\%s	720\%/s	610\%/s	350\%/s	400\%/s	400\%/s
Allowable Moment	R-axis (wrist roll)	$3.33 \mathrm{~N} \cdot \mathrm{~m}$	$5.39 \mathrm{~N} \cdot \mathrm{~m}$	$12 \mathrm{~N} \cdot \mathrm{~m}$	$12 \mathrm{~N} \cdot \mathrm{~m}$	$11.8 \mathrm{~N} \cdot \mathrm{~m}$	$14.7 \mathrm{~N} \cdot \mathrm{~m}$	$31.4 \mathrm{~N} \cdot \mathrm{~m}$	$58.8 \mathrm{~N} \cdot \mathrm{~m}$
	B-axis (wrist pich/yaw)	$3.33 \mathrm{~N} \cdot \mathrm{~m}$	$5.39 \mathrm{~N} \cdot \mathrm{~m}$	$12 \mathrm{~N} \cdot \mathrm{~m}$	$12 \mathrm{~N} \cdot \mathrm{~m}$	$9.8 \mathrm{~N} \cdot \mathrm{~m}$	$14.7 \mathrm{~N} \cdot \mathrm{~m}$	$31.4 \mathrm{~N} \cdot \mathrm{~m}$	$58.8 \mathrm{~N} \cdot \mathrm{~m}$
	T-axis (wrist twist)	$0.98 \mathrm{~N} \cdot \mathrm{~m}$	$2.94 \mathrm{~N} \cdot \mathrm{~m}$	$7 \mathrm{~N} \cdot \mathrm{~m}$	$7 \mathrm{~N} \cdot \mathrm{~m}$	$5.9 \mathrm{~N} \cdot \mathrm{~m}$	$7.35 \mathrm{~N} \cdot \mathrm{~m}$	$19.6 \mathrm{~N} \cdot \mathrm{~m}$	$29.4 \mathrm{~N} \cdot \mathrm{~m}$
Allowable Inertia (GD²/4)	R-axis (wrist roll)	$0.058 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.30 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.30 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.27 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.45 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	B-axis (wrist pich/yaw)	$0.058 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.30 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.30 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.27 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.45 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	T-axis (wrist twist)	$0.005 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.03 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.06 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.11 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$0.4 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Mass		15 kg	27 kg	27 kg	29 kg	130 kg	30 kg	60 kg	120 kg
Power Requirements ${ }^{\text {Note } 1}$		0.5 kVA	0.5 kVA	1.0 kVA	1.5 kVA				
Detailed info page		P. 149	P. 150	P.151	P. 152	P. 153	P. 154	P.155	P.156

Note 1. Varies in accordance with applications and motion patterns.
Note 2. When a load is more than 1 kg , the motion range will be smaller. Use the robot within the recommended motion range. For details, refer to the dimensional diagram on P. 149 .

\square YA series basic system contents

Ordering method

Network option
No entry : None
CC: CC-Link
M: DeviceNet mast
DS: DeviceNet slave
PB: PROFIBUS
PP: EtherNet//P ${ }^{\text {TM }}$
PM: Profinet master
PT: Profinet slave
S: EtherCAT slave

Note. This unit is ideal for small tabletop devices or for education.
Note. The ultra-light, compact YA-RJ features portability and easy installation for simplified system integration.
Note. Each axis uses a motor of 80 W or less.
Note. This unit can also be used in combination with a travel axis or other external axis. Please contact us.

Specifications

Controlled Axis		6
Payload		1 kg (max. $2 \mathrm{~kg}^{\text {Note } 1}$)
Repeatability		+/-0.03 mm
Range of Motion	S-axis (turning)	-160° to $+160^{\circ}$
	L-axis (lower Arm)	-90° to $+110^{\circ}$
	U-axis (upper arm)	-290° to $+105^{\circ}$
	R-axis (wrist roll)	-180° to $+180^{\circ}$
	B-axis (wrist pich/yaw)	-130° to $+130^{\circ}$
	T-axis (wrist twist)	-360° to $+360^{\circ}$
Axis with brake ${ }^{\text {Note } 2}$		L-axis, U-axis
Maximum Speed	S-axis (turning)	$2.79 \mathrm{rad} / \mathrm{s}, 160 \% \mathrm{~s}$
	L-axis (lower Arm)	$2.27 \mathrm{rad} / \mathrm{s}, 130 \% \mathrm{~s}$
	U-axis (upper arm)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$
	R-axis (wrist roll)	$5.23 \mathrm{rad} / \mathrm{s}, 300 \% \mathrm{~s}$
	B-axis (wrist pich/yaw)	$6.98 \mathrm{rad} / \mathrm{s}, 400 \% \mathrm{~s}$
	T-axis (wrist twist)	$8.72 \mathrm{rad} / \mathrm{s}, 500 \% \mathrm{~s}$

Allowable Moment	R-axis (wrist roll)	$3.33 \mathrm{~N} \cdot \mathrm{~m}$
	B-axis (wrist pich/yaw)	$3.33 \mathrm{~N} \cdot \mathrm{~m}$
	T-axis (wrist twist)	$0.98 \mathrm{~N} \cdot \mathrm{~m}$
Allowable Inertia ($\mathrm{GD}^{2} / 4$)	R-axis (wrist roll)	$0.058 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	B-axis (wrist pich/yaw)	$0.058 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	T-axis (wrist twist)	$0.005 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Mass		15 kg
Ambient Conditions	Ambient Temperature	During operation: 0 to $+40^{\circ} \mathrm{C}$, During storage: -10 to $+60^{\circ} \mathrm{C}$
	Relative Humidity	90\% max. (non-condensing)
	Vibration Acceleration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less
	Others	- Free from corrosive gasses or liquids, or explosive gasses - Free from exposure to water, oil, or dust - Free from excessive electrical noise (plasma)
Power Requirements ${ }^{\text {Note } 3}$		0.5 kVA
Note 1. When a load is more than 1 kg , the motion range will be smaller. Use the robot within the recommended motion range. (See diagrams below)		
Note 2. The S-, R-, B-, and T-axes do not have any brakes. Make sure that the operation does not require brakes.		
Note 3. Varies in accordance with applications and motion patterns. Note. SI units are used for specifications.		

Ordering method

Note. The YA-R3F, a compact manipulator with a motor of 80 W or less mounted on all axes, requires minimal space (baseplate: $240 \mathrm{~mm} \times 170 \mathrm{~mm}$). No fence is required for robot's working area. The robot can be used in applications such as automated guided vehicles (AGVs), testing equipment, and educational tools.
Note. Standard models include four air hoses (diameter: 4 mm), and an internal user I/O wiring harness ($0.2 \mathrm{~mm}^{2} \times 10$) running through the U-arm. This structure simplifies wiring and tubing for easier system construction.
Note. Floor-mounted, wall-mounted, and ceiling-mounted types are available. Please contact us separately regarding wall-mounted or ceiling-mounted installations Note. This unit can also be used in combination with a travel axis or other external axis. Please contact us.

Specifications

Controlled Axis		6
Payload		3 kg
Repeatability		+/-0.03 mm
Range of Motion	S-axis (turning)	-160° to $+160^{\circ}$ Note 1
	L-axis (lower Arm)	-85° to $+90^{\circ}$
	U-axis (upper arm)	-105° to $+260^{\circ}$
	R-axis (wrist roll)	-170° to $+170^{\circ}$
	B-axis (wrist pich/yaw)	-120° to $+120^{\circ}$
	T-axis (wrist twist)	-360° to $+360^{\circ}$
Maximum Speed	S-axis (turning)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$
	L-axis (lower Arm)	$2.62 \mathrm{rad} / \mathrm{s}, 150 \% \mathrm{~s}$
	U-axis (upper arm)	$3.32 \mathrm{rad} / \mathrm{s}, 190 \% \mathrm{~s}$
	R-axis (wrist roll)	$5.24 \mathrm{rad} / \mathrm{s}, 300 \% \mathrm{~s}$
	B-axis (wrist pich/yaw)	$5.24 \mathrm{rad} / \mathrm{s}, 300 \% \mathrm{~s}$
	T-axis (wrist twist)	$7.33 \mathrm{rad} / \mathrm{s}, 420 \% \mathrm{~s}$

Allowable Moment	R-axis (wrist roll)	$5.39 \mathrm{~N} \cdot \mathrm{~m}$
	B-axis (wrist pich/yaw)	$5.39 \mathrm{~N} \cdot \mathrm{~m}$
	T-axis (wrist twist)	$2.94 \mathrm{~N} \cdot \mathrm{~m}$
Allowable Inertia ($\mathrm{GD}^{2} / 4$)	R-axis (wrist roll)	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	B-axis (wrist pich/yaw)	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	T-axis (wrist twist)	$0.03 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Mass		27 kg
Ambient Conditions	Temperature	0 to $+40^{\circ} \mathrm{C}$
	Humidity	20 to $80 \% \mathrm{RH}$ (non-condensing)
	Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less
	Others	- Free from corrosive gasses or liquids, or explosive gasses - Free from exposure to water, oil, or dust - Free from excessive electrical noise (plasma)
Power Requirements ${ }^{\text {Note } 2}$		0.5 kVA
Note 1. For w Note 2. Varie Note. SI units	all-mounted installation, the in accordance with applica are used for specifications.	S -axis operating range is $+/-25^{\circ}$. ations and motion patterns.

ote. Thanks to the higher control rate of the YAC100 controller and vibration-damping control of the arm, we have reduced the residual vibration when the arm stops moving, while shortening the cycle time and achieving the fastest speed in this class.
Note. Longest reach in a respective class (706 mm)
Note. Floor-mounted, wall-mounted, and ceiling-mounted types are available. Please contact us separately regarding wall-mounted or ceiling-mounted installations. Note. This unit can also be used in combination with a travel axis or other external axis. Please contact us.

Specifications

Controlled Axis		6
Payload		5 kg
Repeatability		+/-0.02 mm
Range of Motion	S-axis (turning)	-170° to $+170^{\circ}$ Note 1
	L-axis (lower Arm)	-65° to $+150^{\circ}$
	U -axis (upper arm)	-136° to $+255^{\circ}$
	R-axis (wrist roll)	-190° to $+190^{\circ}$
	B-axis (wrist pich/yaw)	-135° to $+135^{\circ}$
	T-axis (wrist twist)	-360° to $+360^{\circ}$
Maximum Speed	S-axis (turning)	$6.56 \mathrm{rad} / \mathrm{s}, 376 \%$
	L-axis (lower Arm)	$6.11 \mathrm{rad} / \mathrm{s}, 350 \%$
	U-axis (upper arm)	$6.98 \mathrm{rad} / \mathrm{s}, 400 \% \mathrm{~s}$
	R-axis (wrist roll)	$7.85 \mathrm{rad} / \mathrm{s}, 450 \%$
	B-axis (wrist pich/yaw)	$7.85 \mathrm{rad} / \mathrm{s}, 450 \%$
	T-axis (wrist twist)	$12.57 \mathrm{rad} / \mathrm{s}, 720 \% \mathrm{~s}$

Allowable Moment	R-axis (wrist roll)	$12 \mathrm{~N} \cdot \mathrm{~m}$
	B-axis (wrist pich/yaw)	$12 \mathrm{~N} \cdot \mathrm{~m}$
	T-axis (wrist twist)	$7 \mathrm{~N} \cdot \mathrm{~m}$
Allowable Inertia ($\mathrm{GD}^{2} / 4$)	R-axis (wrist roll)	$0.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	B-axis (wrist pich/yaw)	$0.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	T-axis (wrist twist)	$0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Mass		27 kg
Ambient Conditions	Temperature	0 to $+45^{\circ} \mathrm{C}$
	Humidity	20 to 80\%RH (non-condensing)
	Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less
	Others	- Free from corrosive gasses or liquids, or explosive gasses - Free from exposure to water, oil, or dust - Free from excessive electrical noise (plasma)
Power Requirements ${ }^{\text {Note } 2}$		1.0 kVA
Note 1. For w Note 2. Varie Note. SI units	all-mounted installation, the in accordance with applica are used for specifications.	S -axis operating range is $+/-30^{\circ}$. tions and motion patterns.

YA-R5LF

Note. Thanks to the higher control rate of the YAC100 controller and vibration-damping control of the arm, we have reduced the residual vibration when the arm stops moving, while shortening the cycle time and achieving the fastest speed in this class.
Note. Longest reach in a respective class (895 mm)
Note. Floor-mounted, wall-mounted, and ceiling-mounted types are available. Please contact us separately regarding wall-mounted or ceiling-mounted installations Note. This unit can also be used in combination with a travel axis or other external axis. Please contact us.

Specifications

Controlled Axis		6
Payload		5 kg
Repeatability		+/-0.03 mm
Range of Motion	S-axis (turning)	-170° to $+170^{\circ}$ Note 1
	L-axis (lower Arm)	-65° to $+150^{\circ}$
	U-axis (upper arm)	-138° to $+255^{\circ}$
	R -axis (wrist roll)	-190° to $+190^{\circ}$
	B-axis (wrist pich/yaw)	-135° to $+135^{\circ}$
	T-axis (wrist twist)	-360° to $+360^{\circ}$
Maximum Speed	S -axis (turning)	$4.71 \mathrm{rad} / \mathrm{s}, 270 \%$ s
	L-axis (lower Arm)	$4.89 \mathrm{rad} / \mathrm{s}, 280 \%$
	U -axis (upper arm)	$5.24 \mathrm{rad} / \mathrm{s}, 300 \%$
	R -axis (wrist roll)	$7.85 \mathrm{rad} / \mathrm{s}, 450 \%$
	B-axis (wrist pich/yaw)	$7.85 \mathrm{rad} / \mathrm{s}, 450 \% \mathrm{~s}$
	T-axis (wrist twist)	$12.57 \mathrm{rad} / \mathrm{s}, 720 \% \mathrm{~s}$

Note 1. For wall-mounted installation, the S -axis operating range is $+/-30^{\circ}$ Note 2. Varies in accordance with applications and motion patterns. Note. SI units are used for specifications.

YA-R6F

Note. Thanks to the higher control rate of the YAC100 controller and vibration-damping control of the arm, we have reduced the residual vibration when the arm stops moving, while shortening the cycle time and achieving the fastest speed in this class.
Note. Longest reach in its class (1422 mm) and increased moment capacity of the wrist.
Note. Floor-mounted, wall-mounted, and ceiling-mounted types are available. Please contact us separately regarding wall-mounted or ceiling-mounted installations. Note. This unit can also be used in combination with a travel axis or other external axis. Please contact us.

Specifications

Controlled Axis		6
Payload		6 kg
Repeatability		+/-0.08 mm
Range of Motion	S-axis (turning)	-170° to $+170^{\circ}$ Note 1
	L-axis (lower Arm)	-90° to $+155^{\circ}$
	U-axis (upper arm)	-175° to $+250^{\circ}$
	R-axis (wrist roll)	-180° to $+180^{\circ}$
	B-axis (wrist pich/yaw)	-45° to $+225^{\circ}$
	T-axis (wrist twist)	-360° to $+360^{\circ}$
Maximum Speed	S-axis (turning)	$3.84 \mathrm{rad} / \mathrm{s}, 220 \% \mathrm{~s}$
	L-axis (lower Arm)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$
	U-axis (upper arm)	$3.84 \mathrm{rad} / \mathrm{s}, 220 \% \mathrm{~s}$
	R-axis (wrist roll)	$7.16 \mathrm{rad} / \mathrm{s}, 410 \% \mathrm{~s}$
	B-axis (wrist pich/yaw)	$7.16 \mathrm{rad} / \mathrm{s}, 410 \% \mathrm{~s}$
	T-axis (wrist twist)	$10.65 \mathrm{rad} / \mathrm{s}, 610 \% \mathrm{~s}$

Allowable Moment	R-axis (wrist roll)	$11.8 \mathrm{~N} \cdot \mathrm{~m}$
	B-axis (wrist pich/yaw)	$9.8 \mathrm{~N} \cdot \mathrm{~m}$
	T-axis (wrist twist)	$5.9 \mathrm{~N} \cdot \mathrm{~m}$
Allowable Inertia ($\mathrm{GD}^{2 / 4)}$	R-axis (wrist roll)	$0.27 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	B-axis (wrist pich/yaw)	$0.27 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	T-axis (wrist twist)	$0.06 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Mass		130 kg
Ambient Conditions	Temperature	0 to $+45^{\circ} \mathrm{C}$
	Humidity	20 to 80\%RH (non-condensing)
	Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less
	Others	- Free from corrosive gasses or liquids, or explosive gasses - Free from exposure to water, oil, or dust - Free from excessive electrical noise (plasma)
Power Requirements ${ }^{\text {Note } 2}$		1.0 kVA

Note 1. For wall-mounted installation, the S -axis operating range is $+/-30^{\circ}$
Note 2. Varies in accordance with applications and motion patterns
Note. SI units are used for specifications

\square Ordering method

Note. High degree of motion like a human arm with its 7 -axis arm
Note. The arm has been slimmed by employing a newly developed miniaturized actuator for the wrist section, greatly reducing the interference of the arm with the workpiece. Note. The narrowing of the motion range that usually results when downsizing a robot is avoided by an ingenious mechanism used for the arm joints, so maximum range is maintained.
Note. Light and weighs only 30 kg , so many installation choices are available: floor, ceiling, or wall. Please contact us separately regarding wall-mounted or ceiling-mounted installations Note. By utilizing internal user I/O wiring harness and air lines integrated in the arm, layout can be planned offline without worrying about peripheral interference. (Internal user I/O wiring harness and air lines specifications: two air lines and eight-core cables)
External axis specification for a hand can be accommodated. Contact YAMAHA regarding your requirements.

- Specifications						
Controlled Axis		7	Allowable Moment	R-axis (wrist roll)	$14.7 \mathrm{~N} \cdot \mathrm{~m}$	
Payload		5 kg		B-axis (wrist pich/yaw)	$14.7 \mathrm{~N} \cdot \mathrm{~m}$	
Repeatability		+/-0.06 mm		T-axis (wrist twist)	$7.35 \mathrm{~N} \cdot \mathrm{~m}$	
Range of Motion	S-axis (turning)	-180° to $+180^{\circ}$	Allowable Inertia (GD ${ }^{2} / 4$)	R-axis (wrist roll)	$0.45 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	
	L-axis (lower Arm)	-110° to $+110^{\circ}$		B-axis (wrist pich/yaw)	$0.45 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	
	E-axis (elbow twist)	-170° to $+170^{\circ}$		T-axis (wrist twist)	$0.11 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	
	U-axis (upper arm)	-90° to $+115^{\circ}$	Mass		30 kg	
	R-axis (wrist roll)	-180° to $+180^{\circ}$	Power Requirements ${ }^{\text {Note } 1}$		1.0 kVA	
	B-axis (wrist pich/yaw)	-110° to $+110^{\circ}$	Ambient Conditions	Temperature	0 to $+40^{\circ} \mathrm{C}$	
	T-axis (wrist twist)	-180° to $+180^{\circ}$		Humidity	20 to 80\%RH (non-condensing)	
Maximum Speed	S-axis (turning)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$		Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less	
	L-axis (lower Arm)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$		Others	- Free from corrosive gasses or liquids, or	
	E-axis (elbow twist)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$			explosive gasses - Free from exposure to water, oil, or dust	
	U-axis (upper arm)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$			- Free from excessive electrical noise (plasma)	
	R-axis (wrist roll)	$3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}$	Note 1. Varies in accordance with applications and motion patterns. Note. SI units are used for specifications.			
	B-axis (wrist pich/yaw)	$4.01 \mathrm{rad} / \mathrm{s}, 230 \% \mathrm{~s}$				
	T-axis (wrist twist)	$6.11 \mathrm{rad} / \mathrm{s}, 350 \% \mathrm{~s}$				

YA-U5F

Note 1. The flange is equipped with a cable through hole. When mounting equipment such as an attachment, ensure that no foreign liquid, oil, or dust go into hole.
Note 2. A bolt is mounted for T-axis grease replenished. When attaching an attachment to 80 dia $0.035 / 0$ part of the T-axis, enough space for the grease zerk (A-MT6X1) is required to the shape of the attachment.

Language setting	Option I/O	Network option
JE: Japanese/English	N, P: Standard I/O 28/28	No entry : None
JC: Japanese/Chinese	N1, P1: $56 / 56$ points	CC: CC-Link
EJ: English/Japanese	N2, P2: 84/84 points	DM: DeviceNet master
EC: English/Chinese	N3, P3: $112 / 112$ points	DS: DeviceNet slave
	N4, P4: 140/140 points	PB: PROFIBUS EP: EtherNet/IP
		PM: Profinet master
		PT: Profinet slave
		ES: EtherCAT slave

Note. High degree of motion like a human arm with its 7 -axis arm.
Note. The high flexibility of motion makes operation possible even in narrow spaces inaccessible to humans.
Note Folds to compact size when not in use
Note. Many installation options: on the floor, on the wall or on the ceiling. Please contact us separately regarding wall-mounted or ceiling-mounted installations.
Note. Optimal for handling small objects.
Note. By utilizing internal user I/O wiring harness and air lines integrated in the arm, layout can be planned offline without worrying about peripheral interference. (Internal user I/O wiring harness and air lines specifications: two air hoses and twelve-core cables)
External axis specification for a hand can be accommodated. Contact YAMAHA regarding your requirements.

```

Specifications
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Controlled Axis} & 7 & \multirow{3}{*}{Allowable Moment} & R-axis (wrist roll) & \(31.4 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multicolumn{2}{|l|}{Payload} & 10 kg & & B-axis (wrist pich/yaw) & \(31.4 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multicolumn{2}{|l|}{Repeatability} & +/-0.1 mm & & T-axis (wrist twist) & \(19.6 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multirow{7}{*}{Range of Motion} & S-axis (turning) & \(-180^{\circ}\) to \(+180^{\circ}\) & \multirow[t]{3}{*}{Allowable Inertia ( \(\mathrm{GD}^{2} / 4\) )} & R-axis (wrist roll) & \(1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline & L-axis (lower Arm) & \(-110^{\circ}\) to \(+110^{\circ}\) & & B-axis (wrist pich/yaw) & \(1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline & E-axis (elbow twist) & \(-170^{\circ}\) to \(+170^{\circ}\) & & T-axis (wrist twist) & \(0.4 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline & U-axis (upper arm) & \(-135^{\circ}\) to \(+135^{\circ}\) & \multicolumn{2}{|l|}{Mass} & 60 kg \\
\hline & R-axis (wrist roll) & \(-180^{\circ}\) to \(+180^{\circ}\) & \multicolumn{2}{|l|}{Power Requirements \({ }^{\text {Note } 1}\)} & 1.0 kVA \\
\hline & B-axis (wrist pich/yaw) & \(-110^{\circ}\) to \(+110^{\circ}\) & \multirow{6}{*}{Ambient Conditions} & Temperature & 0 to \(+40^{\circ} \mathrm{C}\) \\
\hline & T-axis (wrist twist) & \(-180^{\circ}\) to \(+180^{\circ}\) & & Humidity & 20 to 80\%RH (non-condensing) \\
\hline \multirow{7}{*}{Maximum Speed} & S-axis (turning) & \(2.97 \mathrm{rad} / \mathrm{s}, 170 \% \mathrm{~s}\) & & Vibration & \(4.9 \mathrm{~m} / \mathrm{s}^{2}\) or less \\
\hline & L-axis (lower Arm) & \(2.97 \mathrm{rad} / \mathrm{s}, 170 \% \mathrm{~s}\) & & \multirow{3}{*}{Others} & - Free from corrosive gasses or liquids, or \\
\hline & E-axis (elbow twist) & \(2.97 \mathrm{rad} / \mathrm{s}, 170 \% \mathrm{~s}\) & & & \begin{tabular}{l}
explosive gasses \\
- Free from exposure to water, oil, or dust
\end{tabular} \\
\hline & U-axis (upper arm) & \(2.97 \mathrm{rad} / \mathrm{s}, 170 \% \mathrm{~s}\) & & & \\
\hline & R-axis (wrist roll) & \(3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}\) & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Note 1. Varies in accordance with applications and motion patterns. Note. SI units are used for specifications.}} \\
\hline & B-axis (wrist pich/yaw) & \(3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}\) & & & \\
\hline & T-axis (wrist twist) & \(6.98 \mathrm{rad} / \mathrm{s}, 400 \% \mathrm{~s}\) & & & \\
\hline
\end{tabular}


\section*{Ordering method}

YA-U20F




Note. High degree of motion like a human arm with its 7 -axis arm
Note. The high flexibility of motion makes operation possible even in narrow spaces inaccessible to humans
Note. Folds to compact size when not in use
Note. Many installation options: on the floor, on the wall or on the ceiling. Please contact us separately regarding wall-mounted or ceiling-mounted installations. Note. Assembles and handles heavy objects up to 20 kg .
Note. By utilizing internal user I/O wiring harness and air lines integrated in the arm, layout can be planned offline without worrying about peripheral interference. (Internal user I/O wiring harness and air lines specifications: two air hoses and sixteen-core cables)
External axis specification for a hand can be accommodated. Contact YAMAHA regarding your requirements
\(\square\) Specifications
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Controlled Axis} & 7 \\
\hline \multicolumn{2}{|l|}{Payload} & 20 kg \\
\hline \multicolumn{2}{|l|}{Repeatability} & +/-0.1 mm \\
\hline \multirow{7}{*}{Range of Motion} & S-axis (turning) & \(-180^{\circ}\) to \(+180^{\circ}\) \\
\hline & L-axis (lower Arm) & \(-110^{\circ}\) to \(+110^{\circ}\) \\
\hline & E-axis (elbow twist) & \(-170^{\circ}\) to \(+170^{\circ}\) \\
\hline & U-axis (upper arm) & \(-130^{\circ}\) to \(+130^{\circ}\) \\
\hline & R-axis (wrist roll) & \(-180^{\circ}\) to \(+180^{\circ}\) \\
\hline & B-axis (wrist pich/yaw) & \(-110^{\circ}\) to \(+110^{\circ}\) \\
\hline & T-axis (wrist twist) & \(-180^{\circ}\) to \(+180^{\circ}\) \\
\hline \multirow{7}{*}{Maximum Speed} & S-axis (turning) & \(2.27 \mathrm{rad} / \mathrm{s}, 130 \% \mathrm{~s}\) \\
\hline & L-axis (lower Arm) & \(2.27 \mathrm{rad} / \mathrm{s}, 130 \% \mathrm{~s}\) \\
\hline & E-axis (elbow twist) & \(2.97 \mathrm{rad} / \mathrm{s}, 170 \% \mathrm{~s}\) \\
\hline & U-axis (upper arm) & \(2.97 \mathrm{rad} / \mathrm{s}, 170 \% \mathrm{~s}\) \\
\hline & R-axis (wrist roll) & \(3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}\) \\
\hline & B-axis (wrist pich/yaw) & \(3.49 \mathrm{rad} / \mathrm{s}, 200 \% \mathrm{~s}\) \\
\hline & T-axis (wrist twist) & \(6.98 \mathrm{rad} / \mathrm{s}, 400 \% \mathrm{~s}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{Allowable Moment} & R-axis (wrist roll) & \(58.8 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline & B-axis (wrist pich/yaw) & \(58.8 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline & T-axis (wrist twist) & \(29.4 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Allowable \\
Inertia \\
(GD \({ }^{2} / 4\) )
\end{tabular}} & R-axis (wrist roll) & \(4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline & B-axis (wrist pich/yaw) & \(4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline & T-axis (wrist twist) & \(2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline \multicolumn{2}{|l|}{Mass} & 120 kg \\
\hline \multicolumn{2}{|l|}{Power Requirements \({ }^{\text {Note } 1}\)} & 1.5 kVA \\
\hline \multirow[b]{4}{*}{Ambient Conditions} & Temperature & 0 to \(+40^{\circ} \mathrm{C}\) \\
\hline & Humidity & 20 to 80\%RH (non-condensing) \\
\hline & Vibration & \(4.9 \mathrm{~m} / \mathrm{s}^{2}\) or less \\
\hline & Others & \begin{tabular}{l}
- Free from corrosive gasses or liquids, or explosive gasses \\
- Free from exposure to water, oil, or dust \\
- Free from excessive electrical noise (plasma)
\end{tabular} \\
\hline
\end{tabular}

Note 1. Varies in accordance with applications and motion patterns. Note. SI units are used for specifications.

YA-U20F
Units: mm



Note 1. The flange is equipped with a cable through hole. When mounting equipment such as an attachment, ensure that no foreign liquid, oil, or dust go into hole.
Note 2. A bolt is mounted for T-axis grease replenished. When attaching an attachment to 80 dia \(-0.035 / 0\) part of the T-axis, enough space for the grease zerk (A-MT6X1) is required to the shape of the attachment

\section*{YAC100 controller specifications}
\begin{tabular}{|c|c|}
\hline Configuration & Standard: IP20 (open structure) \\
\hline Dimensions & \(470 \mathrm{~mm}(\mathrm{~W}) \times 420 \mathrm{~mm}(\mathrm{D}) \times 200 \mathrm{~mm}(\mathrm{H})\) (Protrusions are not included.) \\
\hline Mass & 20 kg \\
\hline Cooling System & Direct cooling \\
\hline Ambient Temperature & During operation: \(0^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) During storage : \(-10^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\) \\
\hline Relative Humidity & 90\% max. (non-condensing) \\
\hline Power Supply \({ }^{\text {Note }}\) & Single-phase 200/230 VAC (+10\% to -15\%), \(50 / 60 \mathrm{~Hz}\) Three-phase 200/220 VAC ( \(+10 \%\) to -15\%), \(50 / 60 \mathrm{~Hz}\) \\
\hline Grounding & Grounding resistance: \(100 \Omega\) or less \\
\hline Digital I/Os & Specialized signals: 8 inputs and 11 output General signals : 16 inputs and 16 outputs Max. I/O (optional) : 1,024 inputs and 1,024 outputs \\
\hline Positioning System & By serial encoder \\
\hline Programming Capacity & JOB: 10,000 steps, 1,000 instructions CIO ladder: 1,500 steps \\
\hline Expansion Slots & MP2000 bus \(\times 5\) slots \\
\hline LAN (Connection to Host) & 1 (10BASE-T/100BASE-TX) \\
\hline Interface & RS-232C: 1ch \\
\hline Control Method & Software servo control \\
\hline Drive Units & Six axes for robots. Two more axes can be added as external axes. (Can be installed in the controller.) \\
\hline Painting Color & Munsell notation 5Y7/1 (reference value) \\
\hline
\end{tabular}

Note. YA-R6F: Three-phase only.
- YAP programming pendant specifications
\begin{tabular}{l|l}
\hline Operation Device & \begin{tabular}{l}
169 mm (W) \(\times 314.5 \mathrm{~mm}\) (H) \(\times 50 \mathrm{~mm}\) (D)
\end{tabular} \\
\hline Dimensions & \begin{tabular}{l} 
Select keys, axis keys (8 axes), numerical/application \\
keys, Mode switch with key (mode: teach, play, and \\
remote), emergency stop button, enable switch, \\
compact flash card interface device (compact flash is \\
optional.), USB port (1 port)
\end{tabular} \\
\hline Material & \begin{tabular}{l}
\(640 \times 480\) pixels color LCD, touch panel \\
(Alphanumeric characters, Chinese characters, \\
Japanese letters, Others)
\end{tabular} \\
\hline Reinforced plastics \\
\hline Display & \begin{tabular}{l} 
IP65
\end{tabular} \\
\hline IEC Protection \\
Class & \begin{tabular}{l} 
Standard: \(8 \mathrm{~m}, 4 \mathrm{~m} / 8 \mathrm{~m} / 12 \mathrm{~m}\) extension cable \\
(maximum 20 m\()\)
\end{tabular} \\
\hline Cable Length \\
\hline
\end{tabular}

\section*{Optimum controller for handling and assembly}

The YAC100 is a compact controller with improved performance and functions optimized for handling and assembly.
- Fits in a 19-inch rack and can be installed under conveyors.
- Commands specifically designed for workpiece handling with synchronized conveyors.
\begin{tabular}{|c|c|}
\hline Hardware Options & Optional Functions \\
\hline \begin{tabular}{l}
- External axis (max.: 2 axes) \\
- I/O module (28 points, NPN or PNP) \\
- Major fieldbus interface boards DeviceNet \({ }^{\text {TM }}\) (master/slave), CC-Link (slave), PROFIBUS (slave), EtherNet//P \({ }^{\text {TM }}\) (slave, I/O communications), EtherCAT (slave), PROFINET (master/slave)
\end{tabular} & \begin{tabular}{l}
- Conveyor synchronization \\
- Vision function \\
- External reference point control \\
- Software pendant
\end{tabular} \\
\hline
\end{tabular}

\section*{1 Regarding the concurrent I/O ladder program}

The YAC100 controller is equipped with an NPN (or PNP) for standard I/O. Dedicated input/output is assigned to this standard I/O board. For this reason, if dedicated input/output is to be assigned to various types of field bus, concurrent I/O ladder program settings must be made.


Sample programs can be downloaded from our website. Note
https://global.yamaha-motor.com/business/robot/
Note. The member site requires registration

\section*{A robot simulator that implements the same functionality as the actual controller}

\section*{MotoSim EG-VRC-CadPack for YAMAHA}

Virtual programming before the actual line is completed allows major reduction in line startup time.
\(\square\) Modeling layout
Models of workers and workpieces can be easily laid out.
- Intuitive control of models

Models can be moved intuitively, simply by using the mouse.
\(\square\) Programming and debugging
Automatic generation of robot operating programs, job editing, and job analysis can be performed easily.
\(\square\) Intuitive robot operation
The robot's posture can be operated intuitively, allowing more efficient teaching.
- Robot simulation

The robot can be watched as it operates, allowing visual verification.

\section*{Accessories and part options}

\section*{YA Series}

\section*{Standard accessories}

\section*{YAP programming box (with 8 m cable)}
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{ Model } & \multicolumn{1}{c}{ Language } \\
\hline YAP-J & KEN-M5110-0J & Japanese \\
\hline YAP-E & KEN-M5110-0E & English \\
\hline YAP-C & KEN-M5110-0C & Chinese \\
\hline
\end{tabular}

\section*{Parts for the YAC100 controller}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c}{ Model } \\
\hline Power supply connector & KEN-M4871-00 \\
\hline Power supply cable clamp & KEN-M4836-00 \\
\hline Dummy connector for shorting safety signal & KEN-M5370-00 \\
\hline Power supply protection fuse & KEN-M5853-00 \\
\hline \multirow{2}{*}{ Standard I/O connector (STD.IO) } & KBH-M4420-00 \\
\cline { 2 - 3 } & KEN-M4420-00 \\
\hline
\end{tabular}

Power cable (robot cable)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Manipulator name & Model & Cable length & \multicolumn{2}{|r|}{Cable diameter} & Bending radius \\
\hline \multirow[t]{2}{*}{YA-RJ} & \multirow[t]{2}{*}{KEM-M4710-40} & \multirow[t]{2}{*}{4 m} & Signal wire & ¢8.5 mm & 85.0 mm \\
\hline & & & Power wire & \(\phi 13.5 \mathrm{~mm}\) & 140.0 mm \\
\hline \multirow[t]{2}{*}{YA-R3F} & \multirow[t]{2}{*}{KEM-M4711-40} & \multirow[t]{2}{*}{4 m} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & Power wire & \(\phi 19.5 \mathrm{~mm}\) & 200.0 mm \\
\hline \multirow[t]{2}{*}{YA-R5F/R5LF/R6F} & \multirow[t]{2}{*}{KEM-M4712-40} & \multirow[t]{2}{*}{4 m} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & Power wire & \$19.5 mm & 180.0 mm \\
\hline \multirow[b]{2}{*}{YA-U5F/U10F} & \multirow[b]{2}{*}{KEM-M4713-40} & \multirow[b]{2}{*}{4 m} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & Power wire & \(\phi 16.1 \mathrm{~mm}\) & 180.0 mm \\
\hline \multirow[t]{2}{*}{YA-U20F} & \multirow[t]{2}{*}{KEM-M4714-40} & \multirow[t]{2}{*}{4 m} & Signal wire & ¢ 17.5 mm & 180.0 mm \\
\hline & & & Power wire & \(\phi 26.0 \mathrm{~mm}\) & 260.0 mm \\
\hline
\end{tabular}

\section*{Options}

\section*{Power cable (robot cable)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Manipulator name} & \multicolumn{3}{|c|}{Model} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Cable diameter}} & \multirow[b]{2}{*}{Bending radius} \\
\hline & Cable length (10 m) & Cable length (15 m) & Cable length (20 m) & & & \\
\hline \multirow[b]{2}{*}{YA-RJ} & \multirow[b]{2}{*}{KEM-M4710-A0} & \multirow[b]{2}{*}{KEM-M4710-F0} & \multirow[b]{2}{*}{KEM-M4710-LO} & Signal wire & \$8.5 mm & 85.0 mm \\
\hline & & & & Power wire & \(\phi 13.5 \mathrm{~mm}\) & 140.0 mm \\
\hline \multirow[b]{2}{*}{YA-R3F} & \multirow[b]{2}{*}{KEM-M4711-A0} & \multirow[b]{2}{*}{KEM-M4711-F0} & \multirow[b]{2}{*}{KEM-M4711-L0} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & & Power wire & \(\phi 19.5 \mathrm{~mm}\) & 200.0 mm \\
\hline \multirow[t]{2}{*}{YA-R5F/R5LF/R6F} & \multirow[t]{2}{*}{KEM-M4712-A0} & \multirow[t]{2}{*}{KEM-M4712-F0} & \multirow[t]{2}{*}{KEM-M4712-LO} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & & Power wire & \(\phi 19.5 \mathrm{~mm}\) & 180.0 mm \\
\hline \multirow[t]{2}{*}{YA-U5F/U10F} & \multirow[t]{2}{*}{KEM-M4713-A0} & \multirow[t]{2}{*}{KEM-M4713-F0} & \multirow[t]{2}{*}{KEM-M4713-L0} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & & Power wire & \(\phi 16.1\) mm & 180.0 mm \\
\hline \multirow[b]{2}{*}{YA-U20F} & \multirow[b]{2}{*}{KEM-M4714-A0} & \multirow[b]{2}{*}{KEM-M4714-F0} & \multirow[b]{2}{*}{KEM-M4714-LO} & Signal wire & \(\phi 17.5 \mathrm{~mm}\) & 180.0 mm \\
\hline & & & & Power wire & \(\phi 26.0\) mm & 260.0 mm \\
\hline
\end{tabular}

\section*{Device cable connector (connector for user wiring)}
\begin{tabular}{l|l|l|l}
\hline Manipulator name & Part position & \multicolumn{1}{|c}{ Model } & Remarks \\
\hline \multirow{2}{*}{ YA-RJ } & Base side & KEM-M4870-00 & \\
\cline { 2 - 4 } & Arm side & KEM-M4870-10 & \\
\hline \multirow{2}{*}{ YA-R3F } & Base side & KEM-M4873-00 & \\
\cline { 2 - 4 } & Arm side & KEM-M4874-00 & \\
\hline \multirow{3}{*}{ YA-R5F/R5LF } & Base side & KEM-M4873-10 & \begin{tabular}{l} 
Two \\
connectors
\end{tabular} \\
\cline { 2 - 4 } & Arm side & KEM-M4874-10 & \begin{tabular}{l} 
Two \\
connectors
\end{tabular} \\
\hline \multirow{2}{*}{ YA-R6F } & Base side & KEM-M4870-20 & \\
\cline { 2 - 4 } & Arm side & KEM-M4870-30 & \\
\hline \multirow{2}{*}{ YA-U5F } & Base side & KEM-M4873-30 & \\
\cline { 2 - 4 } & Arm side & KEM-M4870-40 & \\
\hline \multirow{2}{*}{ YA-U10F } & Base side & KEM-M4873-30 & \\
\cline { 2 - 4 } & Arm side & KEM-M4870-50 & \\
\hline \multirow{2}{*}{ YA-U20F } & Base side & KEM-M4870-60 & \\
\cline { 2 - 4 } & Arm side & KEM-M4870-40 Note & \\
\hline
\end{tabular}

Note. Two connectors are required on the arm side of YA-U20F.

Extension cable for YAP (extension cable for programming box)
\begin{tabular}{c|c|c}
\hline Name & Model & Cable length \\
\hline \multirow{3}{*}{\begin{tabular}{c}
\multirow{2}{*}{ Extension cable for } \\
YAP
\end{tabular}} & KEN-M531F-10 & 4 m \\
\cline { 2 - 3 } & KEN-M531F-20 & 8 m \\
\cline { 2 - 3 } & KEN-M531F-30 & 12 m \\
\hline
\end{tabular}

Dummy connector for YAP
\begin{tabular}{c|c}
\hline Name & Model \\
\hline YAP dummy connector & KEN-M5163-00 \\
\hline
\end{tabular}

\section*{Maintenance parts}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c}{ Model } \\
\hline Battery unit for YA-RJ/R3F & KEM-M53G3-10 \\
\hline \begin{tabular}{l} 
YA-R5F/R5LF/R6F \\
Battery unit for YA-U5F/U10F/U20F
\end{tabular} & KEM-M53G3-00 \\
\hline Battery unit for YAC100 controller & KEN-M53G3-00 \\
\hline AC fan motor & KEN-M6175-00 \\
\hline
\end{tabular}

\section*{LINEAR CONVEYOR MODULES LCMR200}

\section*{GONTENTS}

■ LCMR200 basic specifications \(\cdots 160\)
■ Allowable Load ．．．．．．．．．．．．．．．．． 160
■ Configuration parts …．．．．．．． 161
■ External view …．．．．．．．．．．．．．．．． 162
■ Circulation unit Order model \(\cdots 166\)
■ Circulation unit Basic
specifications．
167
■ Circulation unit options \(\cdots \cdot 169\)
■ Circulation unit External view \(\cdots 170\)

\section*{LCMR200 basic specifications}

LCMR200 basic specifications
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Drive method} & Linear motor with moving magnet type core \\
\hline \multicolumn{2}{|l|}{Position Search} & Magnetic absolute position sensor \\
\hline \multicolumn{2}{|l|}{Maximum payload} & 15 kg \\
\hline \multicolumn{2}{|l|}{Maximum speed} & \(2,500 \mathrm{~mm} / \mathrm{sec}^{-1}\) \\
\hline \multicolumn{2}{|l|}{Repeatability} & +/-5 \(\mu \mathrm{m}\) \\
\hline \multicolumn{2}{|l|}{Mechanical tolerance between robot sliders} & +/-30 \(\mu \mathrm{m}\) (Dowel hole standard) \\
\hline \multicolumn{2}{|l|}{Total stroke limit} & \(25.5 \mathrm{~m}^{\text {2 }}\) \\
\hline \multicolumn{2}{|l|}{Maximum number of robot sliders} & 64 units \(^{2}\) \\
\hline \multicolumn{2}{|l|}{Minimum spacing between robot sliders} & \(210 \mathrm{~mm}^{3}\) \\
\hline \multirow{3}{*}{Main frame dimensions} & Max. external size of frame cross-section & W175 \(\times\) H109 mm (Including robot slider) \\
\hline & Linear module length & \(200 \mathrm{~mm} / 300 \mathrm{~mm} / 500 \mathrm{~mm} / 1000 \mathrm{~mm}\) \\
\hline & Robot slider length & 198 mm \\
\hline \multirow[b]{2}{*}{Weight} & Linear module & Approx 20 kg [Per 1 m of linear module] \\
\hline & Robot slider & 2.4 kg \\
\hline \multirow{2}{*}{Power supply} & Control power supply & 48 VDC Required power [W] = \(75[\mathrm{~W} / \mathrm{m}] \times\) Overall length of module \([\mathrm{m}]{ }^{4}\) \\
\hline & Motor power supply & \begin{tabular}{l}
48 VDC \\
Yamaha's designated model \({ }^{5}\)
\end{tabular} \\
\hline \multirow{3}{*}{Operating environment} & Operating temperature & \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}{ }^{\circ} 6\) \\
\hline & Storage temperature & \(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\) \\
\hline & Operating humidity & \(35 \%\) to \(85 \%\) RH [No condensation] \\
\hline \multicolumn{2}{|l|}{Controller} & YHX controller \({ }^{7}\) \\
\hline
\end{tabular}

\section*{Static loading moment}


\section*{Allowable overhang}
\begin{tabular}{c|c|c|c}
\hline payload & \multicolumn{3}{|c}{ Allowable overhang \([\mathrm{mm}]\)} \\
\cline { 2 - 4 }\([\mathrm{kg}]\) & A & B & C \\
\hline 5 & 760 & 405 & 239 \\
\hline 10 & 762 & 231 & 158 \\
\hline 15 & 700 & 173 & 122 \\
\hline
\end{tabular}
* Distance from center of slider
top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).
*1. When the conveying weight exceeds 10 kg , it will drop to \(2,000 \mathrm{~mm} / \mathrm{sec}\) according to the weight.
*2. It may differ depending on the system configuration.
*3. When the jig palette to equip to the robot slider is longer, it shall be the jig palette length +10 mm .
*4. The option 600 W power source supplies the power to the linear module with a length of up to 8 m
while the 1000 W power source supplies the power to the linear module with a length of up to 13.3 m .
5. The option power source can supply the power to up to two robot sliders.
(When AC 200 to 240 V is input.)
*6. Operate LCMR200 in the temperature environment \(\left(+/-5^{\circ} \mathrm{C}\right)\) that installation and adjustment were performed.
*7. The YHX controller requires a separate electrical power supply.

\section*{Allowable Load}

Note. - When center of slider is center of gravity.
- Allowable load in the moving direction of slider is always 28 N regardless of the loading position.

\begin{tabular}{r|c|c|c|c|c|c}
\hline Loading Position & \multicolumn{6}{|c}{ Loading Position Z [mm] } \\
\cline { 2 - 7 } X [mm] & 0 & 20 & 40 & 60 & 80 & 100 \\
\hline 0 & 611 & 514 & 443 & 390 & 348 & 314 \\
\hline 20 & 517 & 445 & 391 & 349 & 315 & 287 \\
\hline 40 & 447 & 393 & 350 & 316 & 288 & 264 \\
\hline 60 & 394 & 352 & 317 & 289 & 265 & 245 \\
\hline 80 & 353 & 318 & 289 & 266 & 245 & 228 \\
\hline 100 & 319 & 290 & 266 & 246 & 229 & 214 \\
\hline \multicolumn{7}{c}{ Unit: [N] }
\end{tabular}

Payload: 5 kg
\begin{tabular}{r|c|c|c|c|c|c}
\hline Loading Position & \multicolumn{7}{|c}{ Loading Position Y [mm] } \\
\cline { 2 - 7 } \(\mathrm{X}[\mathrm{mm}]\) & 0 & 20 & 40 & 60 & 80 & 100 \\
\hline 0 & 924 & 687 & 546 & 453 & 387 & 339 \\
\hline 20 & 760 & 593 & 485 & 411 & 356 & 314 \\
\hline 40 & 647 & 521 & 436 & 375 & 328 & 293 \\
\hline 60 & 562 & 465 & 396 & 345 & 305 & 274 \\
\hline 80 & 498 & 420 & 362 & 319 & 285 & 258 \\
\hline 100 & 446 & 382 & 335 & 297 & 268 & 243 \\
\hline
\end{tabular}
\(\square\) Payload: 10 kg
\begin{tabular}{r|c|c|c|c|c|c}
\hline Loading Position & \multicolumn{6}{|c}{ Loading Position Y [mm] } \\
\cline { 2 - 7 } \(\mathrm{X}[\mathrm{mm}]\) & 0 & 20 & 40 & 60 & 80 & 100 \\
\hline 0 & 874 & 650 & 517 & 429 & 367 & 320 \\
\hline 20 & 721 & 561 & 459 & 389 & 337 & 297 \\
\hline 40 & 613 & 493 & 413 & 355 & 311 & 277 \\
\hline 60 & 533 & 440 & 375 & 327 & 289 & 260 \\
\hline 80 & 471 & 397 & 343 & 303 & 270 & 244 \\
\hline 100 & 423 & 362 & 317 & 282 & 254 & 231 \\
\hline
\end{tabular}

Payload: 15 kg
\begin{tabular}{c|c|c|c|c|c|c}
\hline Loading Position & \multicolumn{6}{|c}{ Loading Position Y [mm] } \\
\cline { 2 - 7 } \(\mathrm{X}[\mathrm{mm}]\) & 0 & 20 & 40 & 60 & 80 & 100 \\
\hline 0 & 826 & 614 & 488 & 406 & 347 & 303 \\
\hline 20 & 680 & 529 & 433 & 367 & 318 & 281 \\
\hline 40 & 578 & 466 & 390 & 335 & 294 & 261 \\
\hline 60 & 503 & 416 & 354 & 309 & 273 & 245 \\
\hline 80 & 445 & 375 & 324 & 285 & 255 & 231 \\
\hline 100 & 399 & 342 & 299 & 266 & 239 & 217 \\
\hline
\end{tabular}

Configuration parts


\section*{YQLink cable}

\section*{YQLink movable cable}

This cable connects the controller (YHX) and linear conveyor module. Refer to the system configuration drawing for a connection example.
\begin{tabular}{|c|c|c|}
\hline Cable length & Model & Parts No. \\
\hline 0.3 m & YHX-YQL-R0.3M & KFA-M5361-P1 \\
\hline 3 m & YHX-YQL-R3M & KFA-M5361-31 \\
\hline 7 m & YHX-YQL-R7M & KFA-M5361-71 \\
\hline 10 m & YHX-YQL-R10M-N & KFA-M5361-A1 \\
\hline \multicolumn{3}{|l|}{YQLink fixation cable} \\
\hline Cable length & Model & Parts No. \\
\hline 15 m & YHX-YQL-M15M & KNA-M5362-F0 \\
\hline
\end{tabular}

\section*{YQLink terminating connector}
\begin{tabular}{c|c}
\hline Model & Parts No. \\
\hline YHX-YQL-TC & KFA-M5361-00 \\
\hline
\end{tabular}

\section*{Other power source options}
Module electric power supply (48 VDC)
Unit type general purpose power supply
corresponding to the peak output that is applica-
be to both the module control and motor power.
Select a power supply suitable for the required
power and equipment installation conditions by
considering the supply capacity and outside
dimensions per application of each power supply.
- Rated output \(600 \mathrm{~W} / 1000 \mathrm{~W}\). Efficiency \(>80 \%\), Power factor \(>90 \%\)
- When AC 200 to 240 V is input, the peak maximum output is 42 A (within 5 seconds).
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{c|}{ Supply capacity } & \\
\hline \begin{tabular}{c} 
Control power supply \\
[Rated output] \(]\) \\
Motor power supply \\
[Peak maximum output]
\end{tabular} & Model & Parts No. \\
\hline \begin{tabular}{c} 
Cluster within 8 m \\
{\([600 \mathrm{~W}]\)}
\end{tabular} & \begin{tabular}{c} 
Within 2 sliders \\
{\([1992 \mathrm{~W}]\)}
\end{tabular} & PS-48V-600W
\end{tabular} KNA-M6561-00

\section*{Flexible power cable for movable module}
\begin{tabular}{c|c}
\hline Model & Parts No. \\
\hline LCMR200-PJ-R2M & KNA-M539H-21 \\
\hline
\end{tabular}
LCMR200 Connection Parts
\begin{tabular}{c|c|l} 
Module connection kit \\
\hline Model & Parts No. & \multicolumn{1}{|c}{ Configuration parts } \\
\hline LCMR200-CKIT & KNA-M2043-C0 & \begin{tabular}{l} 
Connection unit \\
Connection plat \\
Motor power source jumper \\
Control power source jumper
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|c} 
Connection plate & Parts No. \\
\hline Model & KNA-M22GM-C0 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{l}{ Adjuster plate } \\
\hline Model & Parts No. \\
\hline LCMR200-AP & KNA-M22GM-A0 \\
\hline Mnd unit & PNA-M2040-E0 \\
\hline Connec & Parts No. \\
\hline MCMR200-EU & KNA-M2040-C0 \\
\hline LCM200-CU & \\
\hline
\end{tabular}

\footnotetext{
* These are single models of parts included in the module connection kit, adjuster kit, module terminal kit, circulation unit, or module main body.
}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Adjuster kit*} \\
\hline Model & \multicolumn{2}{|r|}{Parts No.} & Configuration parts \\
\hline LCMR200-AKIT & \multicolumn{2}{|l|}{KNA-M2043-A0} & \begin{tabular}{l}
Connection unit \\
Adjuster plate \\
Motor power source jumper Control power source jumper
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Return line length} & Number of adjuster kit & \multirow[t]{4}{*}{\begin{tabular}{l}
* For the return line, use the specified number of adjuster kit according to the return line length. \\
For details about the usage location and how to use, see the user's manual.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{3 m or less} & 1 & \\
\hline More than 3 m and 14 & m or less & 2 & \\
\hline More than 14 m and 25. & 5 m or less & 3 & \\
\hline \multicolumn{4}{|l|}{Maintenance items*} \\
\hline \multicolumn{4}{|l|}{Control power supply connector} \\
\hline \multicolumn{3}{|c|}{Model} & Parts No. \\
\hline \multicolumn{3}{|c|}{LCMR200-CPC} & KNA-M4431-00 \\
\hline \multicolumn{4}{|l|}{Control power source jumper} \\
\hline \multicolumn{3}{|c|}{Model} & Parts No. \\
\hline \multicolumn{3}{|c|}{LCMR200-CPJ} & KNA-M4421-10 \\
\hline \multicolumn{4}{|l|}{Motor power source connector} \\
\hline \multicolumn{3}{|c|}{Model} & Parts No. \\
\hline \multicolumn{3}{|c|}{LCMR200-MPC} & KNA-M4432-00 \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline \multicolumn{2}{|c}{ Motor power source jumper } \\
\hline Model \\
\hline LCMR200-MPJ \\
\hline LCMR200-MPJS (for 1000 mm module relay) \\
\hline End plate \(\quad\) KNA-M4422-10 \\
\hline LCMR200-EP
\end{tabular}

\section*{LCMR200}

\section*{External view}

\section*{LCMR200 Module connection and installation}

Front* cable extraction

\section*{LCMR200-F**}

\begin{tabular}{|c|c|c|}
\hline Module type & LA & LB \\
\hline LCMR200-F2 & 199.4 & 183 \\
\hline LCMR200-F3 & 299.4 & 283 \\
\hline LCMR200-F5 & 499.4 & 483 \\
\hline LCMR200-F10 & 999.4 & 983 \\
\hline
\end{tabular}


Linear module
Front* cable extraction

\section*{LCMR200-F2}


\section*{LCMR200-F3}


\section*{LCMR200-F5}


\section*{LCMR200-F10}


Note 1. The robot slider unstoppable range of 99 mm from both ends of the cluster may vary depending on the pallet length. However, when there is no adjacent cluster, the robot slider unstoppable range is 90 mm regardless of the pallet length. For details, see the manual.
Note 2. Module types can be freely combined within the same cluster after the front and rear of the cable extraction direction have been aligned.
Note 3. The control power source and motor power source can be passed and received by the jumper connector See the manual for detail of passing and receiving.
Note 4. For the YQLink cable and YQLink terminating connector connection location, see the manual.
Note 5. Sixty-four robot sliders can be installed in a system connected by the YQ Link cables * (depending on the
Note 6. Where modules are connected with the connection plate, the clearance between the adjacent modules is 0.6 mm

Note 7. The minimum pitch of each slider at the stopping state is 210 mm ; however, when they start at the same time, they may collide due to operation conditions, and conditions such as command timing from the upper PLC, programming with YHX , etc. In the case, it is necessary to adjust by securing more distance (pitch) between the sliders, changing the start timing (sequential start), etc.
Note 8. There is no mechanical stopper due to the nature of the product. Please install a mechanical stopper by the customer as needed.
Note 9 . The connection plate and connection unit are used to connect the modules, and the end plate and end unit are used at the cluster end.
Note 10.To secure the module, end plate, connection plate, and adjuster plate to the base, use M5 hexagon socket head cap bolts.
Note 11. Distance from the end plate reference surface, connection plate reference surface and adjuster plate reference surface to the spot facing hole for the module clamp bolt.
Note 12.The YQLink movable cable is used. When the YQLink fixation cable is used, the distance is 104 mm .
*It may differ depending on the system configuration.
Orientation corresponds to the order of the driver numbers.

\section*{LCMR200-B**}

\begin{tabular}{|c|c|c|}
\hline Module type & LA & LB \\
\hline LCMR200-B2 & 199.4 & 183 \\
\hline LCMR200-B3 & 299.4 & 283 \\
\hline LCMR200-B5 & 499.4 & 483 \\
\hline LCMR200-B10 & 999.4 & 983 \\
\hline
\end{tabular}


\section*{Linear module}

Rear* cable extraction

LCMR200-B2


LCMR200-B3


\section*{LCMR200-B5}


Grounding terminal (M4) Grounding terminal (M4)


\section*{LCMR200-B10}


Note 1. The robot slider unstoppable range of 99 mm from both ends of the cluster may vary depending on the pallet length. However, when there is no adjacent cluster, the robot slider unstoppable range is 90 mm regardless of the pallet length. For details, see the manual.
Note 2. Module types can be freely combined within the same cluster after the front and rear of the cable extraction direction have been aligned. See the manual for detail of passing and receiving.
Note 4. For the YQLink cable and YQLink terminating connector connection location, see the manual.
Note 5. Sixty-four robot sliders can be installed in a system connected by the YQ Link cables * (depending on the
Note 6. Where modules are connected with the connection plate, the clearance between the adjacent modules is Note 6. 0.6 mm .
0.6 mm .
The minimum pitch of each slider at the stopping state is 210 mm ; however, when they start at the same time, they may collide due to operation conditions, and conditions such as command timing from the upper PLC, programming with YHX, etc. In the case, it is necessary to adjust by securing more distance (pitch) between the sliders, changing the start timing (sequential start), etc.
Note 8. There is no mechanical stopper due to the nature of the product. Please install a mechanical stopper by the customer as needed.
Note 9 . The connection plate and connection unit are used to connect the modules, and the end plate and end unit are used at the cluster end
. To secure the module, end plate, connection plate, and adjuster plate to the base, use M5 hexagon socket head cap bolts.
Note 11. Distance from the end plate reference surface, connection plate reference surface and adjuster plate Note 12. The YQLink movable cable is used. When the YQLink fixation cable is used, the distance is 104 mm .
* It may differ depending on the system configuration.
* Orientation corresponds to the order of the driver numbers.

External view

End plate

Adjuster plate
LCMR200-AP


Note 13. The overall length of the line
after the modules have been
connected using the
adjuster plates can be
adjusted. For details, the manual.

\section*{End unit}

LCMR200-EU


\section*{YQLink movable cable}

YHX-YQL-R \(\square\) M (Only 10 m for R10M-N)
\begin{tabular}{|c|c|}
\hline Within \(\square\) & Cable length \\
\hline 0.3 & 0.3 m \\
\hline 3 & 3 m \\
\hline 7 & 7 m \\
\hline 10 & 10 m \\
\hline
\end{tabular}


\section*{Connection unit}

LCMR200-CU


\section*{YQLink fixation cable}

YHX-YQL-M15M


Flexible power cable for movable module
LCMR200-PJ-R2M

\(\square\)

Control power supply connector /
Motor power source connector
LCMR200-CPC/LCMR200-MPC


\section*{Module electric power supply（DC48V－600W）}

PS－48V－600W


Note．M4 tap holes for installing the customer＇s （The maximum screw thread depth is 6 mm ．）

Module electric power supply（DC48V－1000W）
LCM－XCU－PS－1000W


\section*{LCMR200}

Circulation unit Order model



\footnotetext{
* All illustrations shown above use the circulation installation position R (right installation).
}

\section*{Circulation unit Basic specifications}

\section*{JGX16-H Basic specifications}

■JGX16-H Basic specifications
\begin{tabular}{|c|c|c|c|}
\hline Axis configuration & \multicolumn{2}{|c|}{Junction axis} & LCMR200 *1 \\
\hline Motor output & \multicolumn{2}{|c|}{80■/750W} & - \\
\hline Repeated positioning accuracy & \multicolumn{2}{|c|}{+/- 0.005} & +/- 0.005 \\
\hline Speed reduction mechanism/drive method & \multicolumn{2}{|l|}{Grinding ball screw \(\phi 20\) (C5 grade)} & Linear motor with moving magnet type core \\
\hline Ball screw lead & 40mm & 20mm & - \\
\hline Maximum speed \({ }^{2}\) & \(2400 \mathrm{~mm} / \mathrm{sec}\) & \(1200 \mathrm{~mm} / \mathrm{sec}\) & 2500mm/sec \\
\hline Circulation pitch/linear module length & \multicolumn{2}{|c|}{200 to 800 mm ( 50 mm pitch)} & 200, 300, 500 \\
\hline Position detection & \multicolumn{2}{|l|}{Magnetic type absolute position sensor \({ }^{3}\)} & Magnetic type absolute position sensor \\
\hline Operating temperature & \multicolumn{3}{|c|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}{ }^{4}\)} \\
\hline Controller & \multicolumn{3}{|c|}{YHX controller} \\
\hline
\end{tabular}
* 1. For details about the specifications, see P.160.
* 2. The maximum speed may not be reached depending on the operating range
*3. The circulation transfer position only
3. The circulation transfer position on
* 4. The operation is performed at an environmental temperature \(\left(+/-5^{\circ} \mathrm{C}\right)\) at which the installation and adjustment have been performed.

\section*{\(\square\) JGX16-H Maximum payload per robot slider}
\begin{tabular}{l|c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Linear module length } & 200 & 300 & \multicolumn{2}{|c}{500} \\
\hline Number of robot slider simultaneous circulations & 1 & 1 & 1 & 1 \\
\hline \multirow{2}{*}{ Ball screw lead \({ }^{\circ}\)} & 40 mm & 15 & 15 & 15 & 12 \\
\cline { 2 - 6 } & 20 mm & 15 & 15 & 15 & 15 \\
\hline
\end{tabular}
*1 Note that the optimal lead length may vary depending on the operating environment

\section*{■JGX16-H Allowable overhang amount \({ }^{*}\)}
\begin{tabular}{l|c|c|c|c}
\hline \multicolumn{2}{c|}{ Overhang direction } & A direction & B direction & C direction \({ }^{\circ 2}\) \\
\hline Number of robot slider simultaneous circulations & 1 or 2 & 1 or 2 & 1 or 2 \\
\hline \multirow{3}{*}{ Payload } & 5 kg & 760 & 405 & 239 \\
\cline { 2 - 5 } & 10 kg & 762 & 231 & 158 \\
\cline { 2 - 5 } & 15 kg & 700 & 173 & 122 \\
\hline
\end{tabular}

\({ }^{*} 1\) Distance from the center of the top surface of the robot slider to the center of gravity of the load.
*2 Be aware that the robot sliders do not interfere with each other between the main lines.

\section*{JGX16-V Basic specifications}

JGX16-V Basic specifications
\begin{tabular}{|c|c|c|c|}
\hline Axis configuration & \multicolumn{2}{|c|}{Junction axis} & LCMR200 *1 \\
\hline Motor output & \multicolumn{2}{|c|}{80■/750W} & - \\
\hline Repeated positioning accuracy & \multicolumn{2}{|c|}{+/- 0.005} & +/- 0.005 \\
\hline Speed reduction mechanism/drive method & \multicolumn{2}{|l|}{Grinding ball screw \(\phi 20\) (C5 grade)} & Linear motor with moving magnet type core \\
\hline Ball screw lead & 20mm & 10 mm & - \\
\hline Maximum speed \({ }^{2}\) & \(1200 \mathrm{~mm} / \mathrm{sec}\) & \(600 \mathrm{~mm} / \mathrm{sec}\) & \(2500 \mathrm{~mm} / \mathrm{sec}\) \\
\hline Circulation pitch/linear module length & \multicolumn{2}{|c|}{300 to 600 mm ( 50 mm pitch)} & 200, 300, 500 \\
\hline Position detection & \multicolumn{2}{|l|}{Magnetic type absolute position sensor \({ }^{3}\)} & Magnetic type absolute position sensor \\
\hline Operating temperature & \multicolumn{3}{|c|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}{ }^{4}\)} \\
\hline Controller & \multicolumn{3}{|c|}{YHX controller} \\
\hline
\end{tabular}
* 1. For details about the specifications, see P. 160.
* 2. The maximum speed may not be reached depending on the operating range.
3. The circulation transfer position only
* 4. The operation is performed at an environmental temperature \(\left(+/-5^{\circ} \mathrm{C}\right)\) at which the installation and adjustment have been performed.

■JGX16-V Maximum payload per robot slider
\begin{tabular}{l|c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Linear module length } & 200 & 300 & \multicolumn{2}{|c}{500} \\
\hline Number of robot slider simultaneous circulations & 1 & 1 & 1 & 2 \\
\hline \multirow{2}{*}{ Ball screw lead } & 20 mm & 15 & 15 & 15 & 10 \\
\cline { 2 - 6 } & 10 mm & 15 & 15 & 15 & 15 \\
\hline
\end{tabular}
*1 Note that the optimal lead length may vary depending on the operating environment.
\(\square J G X 16-V\) Allowable overhang amount *1
\begin{tabular}{l|c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Overhang direction } & A direction \(^{* 2}\) & B direction & \multicolumn{2}{c}{ C direction } \\
\hline \multirow{3}{*}{ Number of robot slider simultaneous circulations } & 1 or 2 & 1 or 2 & 1 & 2 \\
\hline \multirow{3}{*}{ Payload } & 5 kg & 380 & 405 & 150 & 150 \\
\cline { 2 - 6 } & 10 kg & 380 & 231 & 150 & 100 \\
\cline { 2 - 6 } & 15 kg & 380 & 173 & 122 & 50 \\
\hline
\end{tabular}


\footnotetext{
1 Distance from the center of the top surface of the robot slider to the center of gravity of the load.
*2 When this unit is inserted or ejected to or from the lower stage line, the pallet height needs to be "circulation pitch - 220 mm " or less.
}

\section*{Circulation unit Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Transferrable pallet size list *1} \\
\hline & \multirow[b]{2}{*}{Circulation unit} & \multirow[t]{2}{*}{Linear module length} & \multicolumn{3}{|c|}{Pallet length [mm]} & \multicolumn{3}{|c|}{Pallet width [mm]} & \multirow[b]{2}{*}{Pallet height [mm]} \\
\hline & & & A & B & A+B & C & D & C+D & \\
\hline \multirow{6}{*}{Recommended size when one slider circulates.} & \multirow{3}{*}{JGX16-H} & 200 & 99 & 99 & 198 & \multicolumn{3}{|c|}{\multirow{3}{*}{Not restricted. \({ }^{2}\)}} & \multirow{3}{*}{Not restricted. \({ }^{\text {2 }}\)} \\
\hline & & 300 & 199 & 199 & 298 & & & & \\
\hline & & 500 & 399 & 399 & 498 & & & & \\
\hline & \multirow{3}{*}{JGX16-V} & 200 & 99 & 99 & 198 & \multirow{3}{*}{150} & \multirow{3}{*}{150} & \multirow{3}{*}{300} & \multirow{3}{*}{Circulation pitch - 220 mm} \\
\hline & & 300 & 199 & 199 & 298 & & & & \\
\hline & & 500 & 399 & 399 & 498 & & & & \\
\hline \multirow{6}{*}{Maximum size when one slider circulates.} & \multirow{3}{*}{JGX16-H} & 200 & 99 & 99 & 198 & \multicolumn{3}{|c|}{\multirow{3}{*}{Not restricted. \({ }^{\text {2 }}\)}} & \multirow{3}{*}{Not restricted. \({ }^{2}\)} \\
\hline & & 300 & 199 & 199 & 398 & & & & \\
\hline & & 500 & 399 & 399 & 798 & & & & \\
\hline & \multirow{3}{*}{JGX16-V} & 200 & 99 & 99 & 198 & \multirow{3}{*}{150} & \multirow{3}{*}{150} & \multirow{3}{*}{300} & \multirow{3}{*}{Circulation pitch - 220 mm} \\
\hline & & 300 & 199 & 199 & 398 & & & & \\
\hline & & 500 & 399 & 399 & 798 & & & & \\
\hline \multirow{6}{*}{Maximum size when two sliders circulate.} & \multirow{3}{*}{JGX16-H} & 200 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Unavailable.}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Unavailable.}} & \multirow[t]{2}{*}{Unavailable.} \\
\hline & & 300 & & & & & & & \\
\hline & & 500 & \(145^{3}\) & \(145{ }^{\text {3 }}\) & \(244{ }^{3}\) & \multicolumn{3}{|c|}{Not restricted. \({ }^{2}\)} & Not restricted. \({ }^{2}\) \\
\hline & \multirow{3}{*}{JGX16-V} & 200 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Unavailable.}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Unavailable.}} & \multirow[t]{2}{*}{Unavailable.} \\
\hline & & 300 & & & & & & & \\
\hline & & 500 & \(145{ }^{\text {³}}\) & \(145{ }^{\text {³ }}\) & \(244{ }^{3}\) & 150 & 150 & 300 & Circulation pitch - 220 mm \\
\hline
\end{tabular}
*1: The pallet size indicates the total size of the loads on the robot slider including the customer's workpieces.
In addition, it is assumed that all pallets on the robot sliders have the same shape.
For the horizontal circulation method, be aware that pallets or workpieces on the robot sliders that pass each other on the outbound and inbound routes do not collide with each other.
*2: The allowable overhang amount must not be exceeded. Be aware that the robot sliders do not collide with each other between the main lines.
*3: When either A or B is 122 mm or more, the pallet cannot be arranged at the center of the robot slider.
It is assumed that all pallets on the robot sliders have the same shape.

\section*{Circulation unit options}

\section*{JGX16 circulation accuracy measuring jig}

Using this jig improves the workability when the following is measured.
- Teaching accuracy of the transfer section when YAMAHA genuine circulation unit is used.
- Accuracy of the transfer section when the circulation part designed by the customer is used.
- Installation accuracy of linear modules that are connected with the adjuster plate.
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
YAMAHA horizontal circulation \\
for JGX16-H
\end{tabular} & \begin{tabular}{c} 
YAMAHA vertical circulation \\
for JGX16-V
\end{tabular} & \begin{tabular}{c} 
For circulation designed \\
by the customer
\end{tabular} \\
\hline Part number & S02J-M5360-202 & S02J-M5360-102 & S02J-M5360-004 \\
\hline \begin{tabular}{c} 
Outside dimensions \\
(Main body and measuring instrument are attached.)
\end{tabular} & \begin{tabular}{c} 
W Approx. \(250 \mathrm{~mm} \times\) D Approx. 300 mm \\
xH Approx. 150 mm
\end{tabular} & \begin{tabular}{c} 
W Approx. \(250 \mathrm{~mm} \times\) D Approx. 300 mm \\
xH Approx. 130 mm
\end{tabular} & \begin{tabular}{c} 
W Approx. \(250 \mathrm{~mm} \times\) D Approx. 300 mm \\
xH Approx. 150 mm
\end{tabular} \\
\hline \begin{tabular}{c} 
Main body weight \\
(Measuring instrument is attached.)
\end{tabular} & Approx. 3.2 kg & Approx. 3.4 kg & Approx. 4.0 kg \\
\hline
\end{tabular}

YAMAHA horizontal circulation for JGX16-H (S02J-M5360-202)


For circulation designed by customer (S02J-M5360-004)


\section*{[Cautions]}


A (Side where there is front line.): Maintain at least 60 mm from the slider end.
B: Maintain at least 100 mm from the top of the slider.
If above spaces cannot be maintained, any part of the measuring jig may interfere with a peripheral device on the equipment side.
Therefore, the measuring jig cannot be used on the linear module.

\section*{<Right figure direction explanation>}



\section*{LCMR200}

Circulation unit External view
Horizontal circulation
JGX16-H1L/H2L

\section*{JGX16-H1L}


2-slider circulation (Note 6)



Note 1. For details about the installation and operation procedures, see the user's manual.
Note 2. The user wiring cannot be passed through the flexible cable serrier
Note 2. The user wiring cannot be passed through the flexible cable carrier.
Note 3. Do not use the installation hole at each location for an application other than that specified
Note 4. Movable module position when the junction axis is stopped by the mechanical stopper
Note 5. Robot slider unstoppable range from the module end
An unstoppable range of 99 mm on the main line side may vary depending on the pallet length.
For details, see the Manual.
Note 6. Two-slider simultaneous circulation can be performed only when the movable module is 500 mm -module.
Note 7. When the pallet length is 200 mm or more, this pitch is "pallet length +10 mm ".
However, when two sliders start at the same time, the minimum pitch is 250 mm or "pallet length +50 mm ".
Note 8. Reference value for installation of the base. Install the circulation unit so that it is not in contact with the base end
Note 9. The robot cable fixing R is R30. The lead-out direction may vary depending on the specifications.
Note 10. The YQLink cable fixing R is R55. This cable may become the termination connector depending on the specifications.
Note 11. The power cable fixing R is R55.
Note 12. The weight of the main body is a reference value. The weights of the module and robot slider are not included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Circulat & tion pitch & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 \\
\hline & La & 639.5 & 689.5 & 739.5 & 789.5 & 839.5 & 889.5 & 939.5 & 989.5 & 1039.5 & 1089.5 & 1139.5 & 1189.5 & 1239.5 & 1289.5 & 1339.5 & 1389.5 & 1439.5 & 1489.5 & 1539.5 & 1589.5 & 1639.5 & 1689.5 & 1739.5 & 1789.5 \\
\hline & Lb & 542.5 & 592.5 & 642.5 & 692.5 & 742.5 & 792.5 & 842.5 & 892.5 & 942.5 & 992.5 & 1042.5 & 1092.5 & 1142.5 & 1192.5 & 1242.5 & 1292.5 & 1342.5 & 1392.5 & 1442.5 & 1492.5 & 1542.5 & 1592.5 & 1642.5 & 1692.5 \\
\hline & Lc & 196.5 & 253.5 & 307.5 & 60.5 & 85.5 & 171.5 & 196.5 & 251.5 & 306.5 & 361.5 & 416.5 & 471.5 & 496.5 & 553.5 & 607.5 & 360.5 & 385.5 & 471.5 & 496.5 & 551.5 & 606.5 & 661.5 & 716.5 & 771.5 \\
\hline & Ld & 300 & 300 & 300 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 902 & 902 & 902 & 902 & 902 & 902 & 902 & 902 & 902 \\
\hline & Le & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 \\
\hline & Qa & 8 & 8 & 8 & 8 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 \\
\hline & Qb & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & Qc & 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Weight & \((\mathrm{Kg})^{\text {Note } 12}\) & 27.6 & 28.7 & 31.7 & 33.6 & 34.7 & 35.8 & 37 & 38.1 & 39.3 & 40.4 & 41.6 & 42.7 & 43.9 & 45 & 46.2 & 48.1 & 49.3 & 50.4 & 51.6 & 52.7 & 53.9 & 55 & 56.2 & 57.3 \\
\hline \multirow[t]{3}{*}{Maximum speed (mm/sec)} & Lead 40 & \multicolumn{13}{|c|}{2400} & 2160 & 1920 & 1680 & 1440 & 1320 & 1200 & 1080 & \multicolumn{2}{|r|}{960} & 840 & 720 \\
\hline & Lead 20 & \multicolumn{13}{|c|}{1200} & 1080 & 960 & 840 & 720 & 660 & 600 & 540 & \multicolumn{2}{|r|}{480} & 420 & 360 \\
\hline & Speed setting & \multicolumn{13}{|l|}{-} & 90\% & 80\% & 70\% & 60\% & 55\% & 50\% & 45\% & \multicolumn{2}{|r|}{40\%} & 35\% & 30\% \\
\hline
\end{tabular}


\section*{LCMR200}

\section*{Circulation unit External view}

Horizontal circulation
JGX16-H1R/H2R


2-slider circulation (Note 6)


Note 1. For details about the installation and operation procedures, see the user's manual.
Note 2. The user wiring cannot be passed through the floxible cable see the
Note 2. The user wiring cannot be passed through the flexible cable carrier.
Note 3. Do not use the installation hole at each location for an application other than that specified.
Note 4. Movable module position when the junction axis is stopped by the mechanical stopper.
Note 5. Robot slider unstoppable range from the module end.
An unstoppable range of 99 mm on the main line side may vary depending on the pallet length.
For details, see the Manual.
Note 6. Two-slider simultaneous circulation can be performed only when the movable module is 500 mm -module.
Note 7. When the pallet length is 200 mm or more, this pitch is "pallet length +10 mm ".
However, when two sliders start at the same time, the minimum pitch is 250 mm or "pallet length +50 mm ".
Note 8. Reference value for installation of the base. Install the circulation unit so that it is not in contact with the base end.
Note 9. The robot cable fixing R is R30. The lead-out direction may vary depending on the specifications.
Note 10. The YQLink cable fixing \(R\) is R55. This cable may become the termination connector depending on the specifications.
Note 11. The power cable fixing \(R\) is R55.
Note 12. The weight of the main body is a reference value. The weights of the module and robot slider are not included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Circulat & tion pitch & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 \\
\hline & La & 639.5 & 689.5 & 739.5 & 789.5 & 839.5 & 889.5 & 939.5 & 989.5 & 1039.5 & 1089.5 & 1139.5 & 1189.5 & 1239.5 & 1289.5 & 1339.5 & 1389.5 & 1439.5 & 1489.5 & 1539.5 & 1589.5 & 1639.5 & 1689.5 & 1739.5 & 1789.5 \\
\hline & Lb & 542.5 & 592.5 & 642.5 & 692.5 & 742.5 & 792.5 & 842.5 & 892.5 & 942.5 & 992.5 & 1042.5 & 1092.5 & 1142.5 & 1192.5 & 1242.5 & 1292.5 & 1342.5 & 1392.5 & 1442.5 & 1492.5 & 1542.5 & 1592.5 & 1642.5 & 1692.5 \\
\hline & Lc & 196.5 & 253.5 & 307.5 & 60.5 & 85.5 & 171.5 & 196.5 & 251.5 & 306.5 & 361.5 & 416.5 & 471.5 & 496.5 & 553.5 & 607.5 & 360.5 & 385.5 & 471.5 & 496.5 & 551.5 & 606.5 & 661.5 & 716.5 & 771.5 \\
\hline & Ld & 300 & 300 & 300 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 601 & 902 & 902 & 902 & 902 & 902 & 902 & 902 & 902 & 902 \\
\hline & Le & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 356 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 & 366 \\
\hline & Qa & 8 & 8 & 8 & 8 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 \\
\hline & Qb & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & Qc & 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Weight & \((\mathrm{Kg})^{\text {Note } 12}\) & 27.6 & 28.7 & 31.7 & 33.6 & 34.7 & 35.8 & 37 & 38.1 & 39.3 & 40.4 & 41.6 & 42.7 & 43.9 & 45 & 46.2 & 48.1 & 49.3 & 50.4 & 51.6 & 52.7 & 53.9 & 55 & 56.2 & 57.3 \\
\hline \multirow[t]{3}{*}{Maximum speed (mm/sec)} & Lead 40 & \multicolumn{13}{|c|}{2400} & 2160 & 1920 & 1680 & 1440 & 1320 & 1200 & 1080 & \multicolumn{2}{|r|}{960} & 840 & 720 \\
\hline & Lead 20 & \multicolumn{13}{|c|}{1200} & 1080 & 960 & 840 & 720 & 660 & 600 & 540 & \multicolumn{2}{|r|}{480} & 420 & 360 \\
\hline & Speed setting & \multicolumn{13}{|l|}{- -} & 90\% & 80\% & 70\% & 60\% & 55\% & 50\% & 45\% & \multicolumn{2}{|r|}{40\%} & 35\% & 30\% \\
\hline
\end{tabular}



Circulation unit External view
Vertical circulation

JGX16-V1L/V2L/V3L

\section*{JGX16-V2L}


Note 1. For details about the installation and operation procedures, see the user's manual.
Note 2. The user wiring cannot be passed through the flexible cable carrier.
Note 3. Do not use the installation hole at each location for an application other than that specified.
Note 4. The robot cable fixing R is R30. The lead-out direction may vary depending on the specifications
Note 5. The YQLink cable fixing R is R55. This cable may become the termination connector depending on the specifications.
Note 6. The power cable fixing \(R\) is R55.
Note 7. The weight of the main body is a reference value. The weights of the module and robot slider are not included.


Note 8. Hexagon socket head cap bolt for fine adjustment of circulation pitch.
Maintain a work space where you can access the bolt.
Note 9. Robot slider unstoppable range from the module end.
An unstoppable range of 99 mm on the main line side may vary depending on the pallet length For details, see the manual
Note 10. Design and install the base so that it is within the described tolerance.
Note 11. When securing the unit using the installation spot facing hole (cross section of \(C\) ), peel off the dust-proof seal adhered to the inside of the axis, and then install the unit.

\section*{2-slider circulation (Note 15)}



Detailed drawing D

Note 12. Reference value for installation of the base. Install the circulation unit so that it is not in contact with the base end.
Note 13. This value may differ from the allowable overhang amount of the robot slider
For details about the payload and allowable overhand amount, see the LCMR200 specifications.
Even when the circulation operation is performed with workpieces placed, the dimensions are restricted in the same manner.
Note 14. When the pallet length is 200 mm or more, this pitch is "pallet length +10 mm "
However, when two sliders start at the same time, the minimum pitch is 250 mm or "pallet length +50 mm ".
Note 15. Two-slider simultaneous circulation can be performed only when the movable module is 500 mm -module.
Note 16. The origin position is located on the motor side.
Note 17. Slider top surface position when the junction axis is stopped by the mechanical stopper.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Circulation pitch & 300 mm & 350 mm & 400 mm & 450 mm & 500 mm & 550 mm & 600 mm \\
\hline La & 421 & 471 & 521 & 571 & 621 & 671 & 721 \\
\hline Lb & 467.8 & 517.8 & 567.8 & 617.8 & 667.8 & 717.8 & 767.8 \\
\hline Lc & 300 & 350 & 400 & 450 & 500 & 550 & 600 \\
\hline Ld & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline Le & 80 & 130 & 180 & 230 & 280 & 330 & 380 \\
\hline Lf & 389 & 439 & 489 & 539 & 589 & 639 & 689 \\
\hline Qa & 10 & 12 & 12 & 12 & 12 & 14 & 14 \\
\hline Qb & 6 & 8 & 8 & 8 & 8 & 10 & 10 \\
\hline Qc & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Qd & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Weight \((\) Kg)(Note 7) & 47.6 & 49.0 & 50.5 & 52.0 & 53.5 & 55.0 & 56.4 \\
\hline
\end{tabular}

\section*{LCMR200}

Circulation unit External view
Vertical circulation

\section*{JGX16-V4L/V5L/V6L}


Note 1. For details about the installation and operation procedures, see the user's manual
Note 2. The user wiring cannot be passed through the flexible cable carrier.
Note 3. Do not use the installation hole at each location for an application other than that specified.
The robot cable fixing R is R30. The lead-out direction may vary depending on the specifications.
Note 5. The YQLink cable fixing \(R\) is R55. This cable may become the termination connector depending on the specifications.

Note 7. The weight of the main body is a reference value. The weights of the module and robo slider are not included.
Note 8. Hexagon socket head cap bolt for fine adjustment of circulation pitch
Maintain a work space where you can access the bolt.
Note 9. Robot slider unstoppable range from the module end.
An unstoppable range of 99 mm on the main line side may vary depending on the pallet length. For details, see the manual.


\section*{Detailed drawing D}

Note 10. Design and install the base so that it is within the described tolerance
Note 11. When securing the unit using the installation spot facing hole (cross section of C), peel off the dust-proof seal adhered to the inside of the axis, and then install the unit.
Note 12. Reference value for installation of the base. Install the circulation unit so that it is not in contact with the base end.
Note 13. This value may differ from the allowable overhang amount of the robot slider.
For details about the payload and allowable overhand amount, see the LCMR200 specifications.
Even when the circulation operation is performed with workpieces placed, the dimensions are restricted in the same manner
Note 14. When the pallet length is 200 mm or more, this pitch is "pallet length +10 mm "
However, when two sliders start at the same time, the minimum pitch is 250 mm or "pallet length +50 mm ".
Note 15. Two-slider simultaneous circulation can be performed only when the movable module is 500 mm -module.
Note 16. The origin position is located on the motor side.
Note 17. Slider top surface position when the junction axis is stopped by the mechanical stopper

\section*{2-slider circulation (Note 15)}




Cross section of C
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Circulation pitch & 300 mm & 350 mm & 400 mm & 450 mm & 500 mm & 550 mm & 600 mm \\
\hline La & 421 & 471 & 521 & 571 & 621 & 671 & 721 \\
\hline Lb & 467.8 & 517.8 & 567.8 & 617.8 & 667.8 & 717.8 & 767.8 \\
\hline Lc & 300 & 350 & 400 & 450 & 500 & 550 & 600 \\
\hline Ld & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline Le & 80 & 130 & 180 & 230 & 280 & 330 & 380 \\
\hline Lf & 389 & 439 & 489 & 539 & 589 & 639 & 689 \\
\hline Qa & 10 & 12 & 12 & 12 & 12 & 14 & 14 \\
\hline Qb & 6 & 8 & 8 & 8 & 8 & 10 & 10 \\
\hline Qc & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Qd & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Weight (Kg) (Note 7) & 47.6 & 49.0 & 50.5 & 52.0 & 53.5 & 55.0 & 56.4 \\
\hline
\end{tabular}

\section*{LCMR200}

Circulation unit External view
Vertical circulation
JGX16-V1R/V2R/V3R


Note 1. For details about the installation and operation procedures, see the user's manual.
Note 2. The user wiring cannot be passed through the flexible cable carrier.
direction may vary depending on the specifications.
Note 5. The YQLink cable fixing R is R55. This cable may become the termination connector The YQLink cable fixing \(R\) is \(R 55\).
depending on the specifications.
Note 6. The power cable fixing R is R55
Note 7. The weight of the main body is a reference value. The weights of the module and robot slider are not included.
Note 8. Hexagon socket head cap bolt for fine adjustment of circulation pitch.
Maintain a work space where you can access the bolt.
Note 9 . Robot slider unstoppable range from the module end.
An unstoppable range of 99 mm on the main line side may vary depending on the pallet length. For details, see the manual.
Note 10. Design and install the base so that it is within the described tolerance.

JGX16-V1R
\(4 \times 4-\phi 7.3\) through hole
\(\phi 11.5\) spot facing depth 6 (A in the figure) Spot facing hole for installation of base

4 -M5 \(\times 0.8\) depth 12
\begin{tabular}{l} 
4-M5 \(\times 0.8\) depth 12 \\
Tap for installation of module \\
\hline
\end{tabular}



Note 11. When securing the unit using the installation spot facing hole (cross section of C ), peel off the dust-proof seal adhered to the inside of the axis, and then install the unit.
Note 12. Reference value for installation of the base. Install the circulation unit so that it is not in contact with the base end.
Note 13. This value may differ from the allowable overhang amount of the robot slider For details about the payload and allowable overhand amount, see the LCMR200 specifications. Even when the circulation operation is performed with workpieces placed, the dimensions are restricted in the same manner.
Note 14. When the pallet length is 200 mm or more, this pitch is "pallet length +10 mm ".
However, when two sliders start at the same time, the minimum pitch is 250 mm or "pallet length +50 mm ".
Note 15. Two-slider simultaneous circulation can be performed only when the movable module is 500 mm -module.
Note 16. The origin position is located on the motor side
Note 17. Slider top surface position when the junction axis is stopped by the mechanical stopper.

\section*{2-slider circulation (Note 15)}


JGX16-V3R

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Circulation pitch & 300 mm & 350 mm & 400 mm & 450 mm & 500 mm & 550 mm & 600 mm \\
\hline La & 421 & 471 & 521 & 571 & 621 & 671 & 721 \\
\hline Lb & 467.8 & 517.8 & 567.8 & 617.8 & 667.8 & 717.8 & 767.8 \\
\hline Lc & 300 & 350 & 400 & 450 & 500 & 550 & 600 \\
\hline Ld & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline Le & 80 & 130 & 180 & 230 & 280 & 330 & 380 \\
\hline Lf & 389 & 439 & 489 & 539 & 589 & 639 & 689 \\
\hline Qa & 10 & 12 & 12 & 12 & 12 & 14 & 14 \\
\hline Qb & 6 & 8 & 8 & 8 & 8 & 10 & 10 \\
\hline Qc & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Qd & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Weight (Kg)(Note 7) & 47.6 & 49.0 & 50.5 & 52.0 & 53.5 & 55.0 & 56.4 \\
\hline
\end{tabular}


Circulation unit External view
Vertical circulation
JGX16-V4R/V5R/V6R


\section*{JGX16-V5R}


Note 1. For details about the installation and operation procedures, see the user's manual.
Note 2. The user wiring cannot be passed through the flexible cable carrier.
Note 3. Do not use the installation hole at each location for an application other than that specified.
Note 4. The robot cable fixing R is R30. The lead-out direction may vary depending on the specifications.
Note 5. The YQLink cable fixing \(R\) is R55. This cable may become the termination connector depending on the specifications.
Note 6. The power cable fixing \(R\) is R55.
Note 7. The weight of the main body is a reference value. The weights of the module and robot slider are not included

Note 8. Hexagon socket head cap bolt for fine adjustment of circulation pitch. Maintain a work space where you can access the bolt.
Note 9. Robot slider unstoppable range from the module end
An unstoppable range of 99 mm on the main line side may vary depending on the pallet length. For details, see the manual.
Note 10. Design and install the base so that it is within the described tolerance.
Note 11. When securing the unit using the installation spot facing hole (cross section of C), peel off the dust-proof seal adhered to the inside of the axis, and then install the unit.
Note 12. Reference value for installation of the base. Install the circulation unit so that it is not in contact with the base end.

2-slider circulation (Note 15)


JGX16-V6R


Detailed drawing D

Note 13. This value may differ from the allowable overhang amount of the robot slider For details about the payload and allowable overhand amount, see the LCMR200 specifications. Even when the circulation operation is performed with workpieces placed, the dimensions are restricted in the same manner.
Note 14. When the pallet length is 200 mm or more, this pitch is "pallet length +10 mm "
However, when two sliders start at the same time, the minimum pitch is 250 mm or "pallet length + 50 mm "
Note 15. Two-slider simultaneous circulation can be performed only when the movable module is 500 mm -module.
Note 16. The origin position is located on the motor side
Note 17. Slider top surface position when the junction axis is stopped by the mechanical stopper.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Circulation pitch & 300 mm & 350 mm & 400 mm & 450 mm & 500 mm & 550 mm & 600 mm \\
\hline La & 421 & 471 & 521 & 571 & 621 & 671 & 721 \\
\hline Lb & 467.8 & 517.8 & 567.8 & 617.8 & 667.8 & 717.8 & 767.8 \\
\hline Lc & 300 & 350 & 400 & 450 & 500 & 550 & 600 \\
\hline Ld & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline Le & 80 & 130 & 180 & 230 & 280 & 330 & 380 \\
\hline Lf & 389 & 439 & 489 & 539 & 589 & 639 & 689 \\
\hline Qa & 10 & 12 & 12 & 12 & 12 & 14 & 14 \\
\hline Qb & 6 & 8 & 8 & 8 & 8 & 10 & 10 \\
\hline Qc & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Qd & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline Weight \((\mathrm{Kg})(\) Note 7\()\) & 47.6 & 49.0 & 50.5 & 52.0 & 53.5 & 55.0 & 56.4 \\
\hline
\end{tabular}

\section*{LINEAR CONVEYOR MODULES LCM100}

\section*{CONTENTS}

■ LCM100 basic specifications \(\cdots 184\)
\(\square\) Static tolerable load of slider \(\cdots 184\)
■ Allowable overhang \(\cdot\)........... 184
■ Ordering method \(\cdot \cdots \cdots \cdots \cdots \cdot 184\)
■ External view of LCM100 \(\cdots 185\)
- Accessory parts188
- Controller for linear module

LCC140 basic specifications \(\cdots 190\)
■ External view of LCC140 \(\cdots 190\)

\section*{LCM100 basic specifications}

\begin{tabular}{|c|c|}
\hline Model & LCM100-4M / 3M / 2MT \\
\hline Drive method & Moving magnet type, Linear motor with flat core \\
\hline Repeat positioning accuracy & \[
\begin{aligned}
& +/-0.015 \mathrm{~mm} \text { (single slider) Note } 1 \text { / } \\
& \text { width } 0.1 \mathrm{~mm} \text { (mutual difference among all sliders) }{ }^{\text {Note } 2} \\
& \hline
\end{aligned}
\] \\
\hline Scale & Electromagnetic type / resolution \(5 \mu \mathrm{~m}\) \\
\hline Max. speed & \(3000 \mathrm{~mm} / \mathrm{sec}\) \\
\hline Max. acceleration & 2G \\
\hline Max. payload & 15 kg Note 3 Note 4 \\
\hline Rated thrust & 48N \\
\hline Total module length & 640mm (4M) / 480mm (3M) / 400mm (for 2MT circulation) \\
\hline Max. number of combined modules & 16 (total length: 10240 mm ) \\
\hline Max. number of sliders & 16 (when 16 modules are combined) \\
\hline Min. pitch between sliders & 420 mm \\
\hline Mutual height difference between sliders & 0.08 mm \\
\hline Max. external size of body cross-section & W136.5mm \(\times\) H155mm (including slider) \\
\hline Bearing method & 1 guide rail / 2 blocks (with retainer) \\
\hline Module weight & 12.5 kg (4M) / 9.4kg (3M) / 7.6kg (2MT) \\
\hline Slider weight & \(2.4 \mathrm{~kg} / 3.4 \mathrm{~kg}\) (when the belt module is used.) \\
\hline Cable length & \(3 \mathrm{~m} / 5 \mathrm{~m}\) \\
\hline Controller & LCC140 \\
\hline
\end{tabular}

Note 1. Repeated positioning accuracy when positioning in the same direction (pulsating). Note 2. Positioning accuracy in the pulsating when using the position correction function with the RFID.
Note 3. Weight per single slider
Note 4 . When used together with the belt module, the max. payload becomes 14 kg since the parts dedicated to the belt are attached to the slider.
Note. Operate LCM100 in the temperature environment ( \(+/-5^{\circ} \mathrm{C}\) ) that installation and adjustment were performed

\section*{Basic specifications of belt module}
\begin{tabular}{l|l}
\hline Model & LCM100-4B \(/\) 3B \\
\hline Drive method & Belt back surface pressing force drive \(^{\text {Note } 1}\) \\
\hline Bearing method & 1 guide rail \(/ 2\) blocks (with retainer) \\
\hline Max. speed & \(560 \mathrm{~mm} / \mathrm{sec}\) \\
\hline Max. payload & 14 kg \\
\hline Module length & \(640 \mathrm{~mm}(4 \mathrm{~B}) / 480 \mathrm{~mm}(3 \mathrm{~B})\) \\
\hline \begin{tabular}{l} 
Max. number of sliders
\end{tabular} & 1 slider \(/ 1\) module \\
\hline \begin{tabular}{l} 
Main unit maximum \\
cross-section outside \\
dimensions
\end{tabular} & W173.8mm \(\times \mathrm{H} 155 \mathrm{~mm}\) (including slider) \\
\hline Cable length & None \\
\hline Controller & Dedicated driver (Included) \\
\hline Power supply & DC24V 5A \\
\hline Communication I/F & Dedicated input/output 16 points \\
\hline Module weight & \(11.2 \mathrm{~kg} \mathrm{(4B)/8.8kg} \mathrm{(3B)} \mathrm{)}\) \\
\hline
\end{tabular}

Note 1. Because the belt module works on the principle of using the friction of the belt to move the slider, the belt will be abraded and generate dust, making it unsuitable for environments that require a degree of cleanliness

\section*{\(\square\) Static tolerable load of slider}

Static loads shown below are tolerable as references when performing the screw tightening, part assembly, or light press-fitting on the slider.


\begin{tabular}{c|c|c|c}
\hline FC & \multicolumn{3}{|c}{ Payload } \\
\hline \multirow{2}{*}{\(\mathrm{C}(\mathrm{mm})\)} & \multicolumn{3}{|c}{ (Unit: N) } \\
\cline { 2 - 4 } & 5 kg & 10 kg & 15 kg \\
\hline 0 & 1190 & 850 & 780 \\
\hline 10 & 970 & 710 & 650 \\
\hline 20 & 760 & 610 & 560 \\
\hline 30 & 630 & 530 & 490 \\
\hline 40 & 540 & 480 & 430 \\
\hline 50 & 470 & 430 & 390 \\
\hline 60 & 410 & 390 & 360 \\
\hline
\end{tabular}

Note. The loads shown above are tolerable loads at a position "C"mm away from the slider upper surface.

Allowable overhang
Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of \(10,000 \mathrm{~km}\).
\begin{tabular}{c|c|c|c}
\multicolumn{4}{l}{} \\
\hline & A & B & (Unit: mm) \\
\hline 5 kg & 677 & 325 & 325 \\
\hline 10 kg & 533 & 146 & 146 \\
\hline 15 kg & 468 & 90 & 90 \\
\hline
\end{tabular}


Ordering method
Linear module


Belt module

LCM100


Note 2. Perform the bonding with the connection cable that comes from the belt module.

Connection cable
(When the termination option L for the belt module is selected.)

LCM100-4M/3M Linear conveyor module ( \(640 \mathrm{~mm} / 480 \mathrm{~mm}\) )


LCM100-2MT Module for circulation


Details of A

Note 1. Use M6 hex socket head bolts to install the main body.
Note 2. For the stop point when the slider enters, specify a point 190 mm or more away from the module end face.
When ejecting the slider, eject the slider after it has been stopped at a point 190 mm or more away from the end face of the module on the ejection side. Otherwise, the slider may not be stopped or ejected correctly.
Note 3. The movement range above the module is 140 mm around the center.
Note. No mechanical stoppers are provided due to product characteristics. When necessary, the customer installs appropriate mechanical stoppers


LCM100-4B Belt module ( 640 mm )


LCM100-3B Belt module (480mm)


Note 1. Use the M6 hex socket head bolts to install the main unit. Note 2. The sensor option position can be moved in a range of \(+/-50 \mathrm{~mm}\).
Note 3. Input power supply and signals to drive the motor. The connector is AMP's dynamic connector D-3100D series.
Prepare 178289-7 (16 poles) for the housing and 175217-2 (gold plated contact) for the contact.
Note 4 . Select 24 V power supply with a capacity of 5A or more.
Note. No mechanical stoppers are provided due \(\quad 7-\phi 8\) through-hole
to product characteristics. When necessary,
the customer installs appropriate mechanical stoppers.


Belt module slider



\section*{Belt module outline diagram of input/output signal wiring}

Connector on front panel
\begin{tabular}{c|l|ll}
\hline Pin No. & \multicolumn{1}{|c}{ Signal name } & \multicolumn{2}{c}{ Function } \\
\hline A1 & +24 V & Power supply connection DC24V (+/-10\%)
\end{tabular}

Note. For each input, a side to be connected to GND by the external switch is ON (L level).
Note. When both the START/STOP and RUN/BRAKE signals are turned ON (L level), the motor starts rotating. In this case, when the CW/CCW signal is turned ON (L level), the slider moves to the left as viewed from the connector side.
Conversely, when this signal is turned OFF (H level), the slider moves to the right.
Note. When the START/STOP signal is turned OFF (H level) in the RUN/BRAKE signal ON (L level)
state, the motor stops naturally.
According to the operation speed, the slider may overrun several tens to hundreds of millimeters.
Note. When the RUN/BRAKE signal is turned OFF (H level) in the START/STOP signal ON (L level) state, the motor stops instantaneously to suppress the slider overrun to its minimal level.

\section*{LCM100/LCC140 Accessory parts}

\begin{tabular}{l}
\hline (1) Module \\
\hline (2) Robot cable \\
\hline (3) Sider \\
\hline (4) Termination option (R side) \\
\hline (5) Termination option (L side) \\
\hline (6) Insertion/ejection rail \\
\hline (7) Module connection block (with fastening bolts) \\
\hline (8) Module connection cable
\end{tabular}

\section*{LCM100 main body}

Linear module
\begin{tabular}{|c|c|}
\hline \multirow{6}{*}{Model} & LCM100-4M \\
\hline & KDJ-M2020-40 (640mm) \\
\hline & LCM100-3M \\
\hline & KDJ-M2020-30 (480mm) \\
\hline & LCM100-2MT (for circulation) \\
\hline & KDJ-M2022-20 (400mm) \\
\hline \multicolumn{2}{|l|}{Belt module} \\
\hline \multirow{4}{*}{Model} & LCM100-4B \\
\hline & KDJ-4K111-40 (640mm) \\
\hline & LCM100-3B \\
\hline & KDJ-4K111-30 (480mm) \\
\hline
\end{tabular}

Robot cable for linear module
Robot cables for the number of modules are required.


\begin{tabular}{|c|c|}
\hline \multirow{3}{*}{Model} & For LCM100-4M/3M \\
\hline & For LCM100-2MT \\
\hline & \begin{tabular}{l}
KDJ-M4721-30 \\
(Flexible cable \(3 \mathrm{~m} \times 1 \mathrm{pc}\).) \\
KDJ-M4721-50 \\
(Flexible cable \(5 \mathrm{~m} \times 1 \mathrm{pc}\).)
\end{tabular} \\
\hline
\end{tabular}

\section*{Slider}


Linear module
Model KDJ-M2264-00
Belt module
Model KDJ-M2264-10

\section*{Parts for LCM100}

Termination option for linear module ( R side)
This part is attached to the right end of the module. One termination module per line is required. Note 1 Additionally, even when using only one module without connections, one termination module is required.
(4)

Model \(\quad\) KDJ-M2021-R0
Module connection block (with fastening bolts)
This block connects modules.
([Number of modules making up the line \({ }^{\text {Note }{ }^{1} \text { ] - 1) }}\) blocks are required
Additionally, when installing insertion/ejection rails, one block per rail is required

Termination option for linear module (L side)
This part is attached to the left end of the module. One termination module per line is required. Note 1 Additionally, even when using only one module without connections, one termination module is required.
(5)
\begin{tabular}{l|l}
\hline Model & KDJ-M2021-L0
\end{tabular}
Module connection cable
This cable connects modules.
([Number of modules] - 1) cables per line are required. \({ }^{\text {Note }}\)

(7)
\begin{tabular}{l|l}
\hline Model & \(\frac{\text { KDJ-M6100-00 (44mm) }}{\text { KDJ-M6100-10 }(100 \mathrm{~mm})^{\text {Note }}}\) \\
\hline Note. Use this model when installing 100 mm insertion/
\end{tabular} ejection rails to \(L\) side.

Insertion/ejection rail
Tapered rail.
Up to two rails per line can be installed. \({ }^{\text {Note } 1}\)

\begin{tabular}{|l}
\(44 \mathrm{~mm}:\) KDJ-M6200-00 \\
(With a dedicated 44 mm connection \\
block
\end{tabular}\(|\)\begin{tabular}{l}
\(100 \mathrm{~mm}:\) KDJ-M2222-10 \\
\hline \(160 \mathrm{~mm}:\) KDJ-M2222-20 \\
\hline \(220 \mathrm{~mm}:\) KDJ-M2222-30 \\
\hline \(280 \mathrm{~mm}:\) KDJ-M2222-40 \\
\hline \(340 \mathrm{~mm}:\) KDJ-M222- \\
\hline
\end{tabular}

Note. Not in stock. We require some lead time for delivery.
\(\square\)
Model KDJ-M4811-00

\section*{Parts for LCC140 controller}

Power connector + connection lever
One set of parts per LCC140 is required.

\begin{tabular}{l|l}
\hline Model & KAS-M5382-00 \\
\hline
\end{tabular}

HPB dummy connector
When performing the operation with the programming box HPB removed, connect this dummy connector to the HPB connector. One connector per LCC140 is required.


SAFETY connector
One connector per LCC140 is required.


Not wired (plug + shell kit)

\section*{ \\ Wired \({ }^{\text {Note }}\)} \begin{tabular}{l|l}
\hline \multirow{2}{*}{ Model } & Not wired : KDK-M5370-10 \\
\cline { 2 - 2 } & Wired \(^{\text {Note }}:\) KDK-M5370-00 \\
\hline
\end{tabular}
Note. The wired connector is that the wiring for the emergency stop cancel was performed inside the connector. Select this model when performing the operation check or debugging with single linear conveyor.

Parts for line configuration

LINK cable
([Number of modules] - 1) cables per line are required.

\begin{tabular}{l|l}
\hline \multirow{3}{*}{ Model } & \(1 \mathrm{~m}:\) KDK-M5361-10 \\
\cline { 2 - 3 } & \(3 \mathrm{~m}:\) KDK-M5361-30 \\
\cline { 2 - 3 } & \(5 \mathrm{~m}:\) KDK-M5361-50 \\
\hline
\end{tabular}

Terminator connector
When connecting modules, two connectors per line are required.


\section*{Dust cover (for LINK connector)}

This dust cover is attached to the insertion port, into which the LINK cable terminator connector is not inserted.
When using only one module without connections, two dust covers are required.
Note. The dust cover is essential for the 2MT.

\begin{tabular}{l|l}
\hline Model & KDK-M658K-00 (for MDR20 pin) \\
\hline
\end{tabular}

\section*{Selection parts}

Proximity sensor for belt module
A sensor for checking the slider position. Install this to prevent slider collisions and to ensure smooth action.

\begin{tabular}{l|ll}
\hline \multirow{3}{*}{ Model } & L (Left): \(\quad\) KDJ-M2205-L0 \\
\cline { 2 - 3 } & C (Center): KDJ-M2205-C0 \\
\cline { 2 - 3 } & R (Right): & KDJ-M2205-R0 \\
\hline
\end{tabular}

\section*{Programming box HPB/HPB-D}

All operations, such as robot manual operation, program input or edit, teaching, and parameter setting can be performed with this programming box.
As an interactive interface with the screen display is used, even personnel who use this programming box for the first time can easily understand how to operate it.
\begin{tabular}{l|l}
\hline \multirow{3}{*}{ Model } & \begin{tabular}{l} 
HPB: KBB-M5110-01 \\
\cline { 2 - 3 }
\end{tabular} \begin{tabular}{l} 
HPB-D: KBB-M5110-21 \\
(CE specifications / with 3-position \\
enable switch)
\end{tabular} \\
\hline
\end{tabular}


HPB-D


Backside of HPB-D (with enable switch)

\section*{Support software POPCOM \({ }^{+}\)}

PC supporting software POPCOM \({ }^{+}\)


POPCOM+ software model KBG-M4966-00

Data cables (5m)
Communication cable for POPCOM \({ }^{+}\).
Select from USB cable or D-sub cable.



D-Sub
\begin{tabular}{l|l|l}
\hline Model & \begin{tabular}{l} 
USB type (5m) \\
\end{tabular} \begin{tabular}{l} 
D-Sub type \\
9pin-9pin \((5 \mathrm{~m})\)
\end{tabular} & KBG-M538F-00 \\
\hline
\end{tabular}

\section*{RRID}


Whether or not the RFID system can be used may vary depending on the destination place (country).
Before selecting a RFID system, please contact YAMAHA.
\(\square\) Maintenance parts
Robot cable for LCM100
Lithium battery for system backup
Replacement filter for LCC140 (5 pcs. in package)

\begin{tabular}{l|l}
\hline \multirow{4}{*}{ Model } & Fixed cable \\
\hline & \begin{tabular}{l} 
KDJ-M4751-30 \((3 \mathrm{~m} \times 1 \mathrm{pc})\). \\
KDJ-M4751-50 ( \(5 \mathrm{~m} \times 1 \mathrm{pc})\).
\end{tabular} \\
\cline { 2 - 4 } & Flexible cable \\
\cline { 2 - 4 } & \begin{tabular}{l} 
KDJ-M4755-30 \((3 \mathrm{~m} \times 1 \mathrm{pc})\). \\
KDJ-M4755-50 ( \(5 \mathrm{~m} \times 1 \mathrm{pc})\). \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Model & KDK-M4252-00
\end{tabular}

Model
KDK-M427G-00

\section*{Controller for linear module}

\section*{LCC140 basic specifications}

Basic specifications of LCC140 controller


\section*{External view of LCC140}


\section*{SINGLE-AXIS ROBOTS \\ }

\section*{CONTENTS}

■ Single-axis AC servo motor robot \(\cdots 192\)
GX05
192
GX05L ..... 193
GX07 ..... 194
GX10 ..... 195
GX12. ..... 196
GX16 ..... 197
GX20 ..... 198
Reference drawing for mountingbending unit(example of right side mounting) \(\cdots 199\)

\section*{OOrdering method}





Note 1．RoHS2（EU）2015／863 compliant motor
Note 2．All robot cables are flexible cables．The robot cable dimensions drawing is provided on page 732 Note 3．The brake unit cannot be used with an external brake power input．

\section*{\(\square\) Specifications \\ Repeatability Note 1
Deceleration mechanism \\ Decele \\ Stroke
Maximum spee
Ball screw lead \\ Ball screw lead \\  \\ Overall length（Horizontal） ST＋ 188 mm \\ Overall length（Vertical） ST＋ 228.5 mm \\ Degree of cleanliness \({ }^{\text {Note } 3}\) ISO CLASS 3 （ISO14644－1）or equivalent \\ Intake air Not \(30 \mathrm{~N} \ell /\) min to \(100 \mathrm{~N} \ell / \mathrm{min}\) \\ Note 1．Positioning repeatability in one direction \\ and if the travel distance is short or because of other operation conditions． \\ If the effective stroke exceeds 600 mm ，the ball screw may \\ resonate．（Critical speed） \\ At this time，make the adjustment to decrease the speed while \\ referring to the maximum speed shown in the table． \\ Note 3．When using in a clean environment，attach a suction air joint． \\ The degree of cleanness is the cleanliness when using at 1000 \\ Note 4．The required suction amount will vary according to the \\ operating conditions and operating environment． \\ \begin{tabular}{l|r|c|c|c} 
Maximum \\
payload
\end{tabular}\(\quad\) Horizontal \(15 \mathrm{~kg} ~ 10 \mathrm{~mm} ~ 5 \mathrm{~mm}\) \\ \begin{tabular}{l|c|c|c|c} 
payload & Vertical & 2 kg & 4 kg & 8 kg \\
\hline Rated thrust & & 41 N & 69 N & 138 N \\
\hline
\end{tabular} \\ \begin{tabular}{l|c} 
Rated thrust & W \(48 \mathrm{~mm} \times \mathrm{H} 65 \mathrm{~mm}\)
\end{tabular} \\ }



\section*{GX05－10}

Horizontal installation（Unit：mm）
\begin{tabular}{r|r|r|l}
\hline & A & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{2 k g}\) & 2505 & 382 & 625 \\
\hline \(\mathbf{5 k g}\) & 1366 & 149 & 246 \\
\hline \(\mathbf{8 k g}\) & 1036 & 90 & 150 \\
\hline
\end{tabular}
\begin{tabular}{r|r|r|r}
\multicolumn{4}{l}{ Wall installation } \\
\hline & \multicolumn{1}{c}{（Unit：mm）} & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{2 k g}\) & 585 & 346 & 2386 \\
\hline \(\mathbf{5 k g}\) & 195 & 113 & 1164 \\
\hline \(\mathbf{8 k g}\) & 95 & 54 & 745
\end{tabular}

GX05－5
Horizontal installation（Unit： mm ）Wall installation（Unit： mm ）Vertical installation（Unit：mm）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C & & A & C \\
\hline 3 kg & 4604 & 281 & 497 & 3 kg & 439 & 245 & 4371 & 4kg & 183 & 183 \\
\hline 8kg & 2197 & 101 & 179 & 8kg & 117 & 65 & 1812 & 6kg & 111 & 111 \\
\hline 13kg & 1593 & 59 & 105 & 13kg & 42 & 24 & 1000 & 8kg & 75 & 75 \\
\hline
\end{tabular}

Note．Distance from center of slider upper surface to carrier center－of－gravity at a guide service life of \(10,000 \mathrm{~km}\)
Note．Service life is calculated for 600 mm stroke models．

Robot cable
R3R（3 m／extracted to rear）
Encoder cable＋
\begin{tabular}{l|l|l|}
\hline Encoder cable + & KES－M4710－30 \\
\hline Power cable set model & \\
\hline
\end{tabular}

R5R（5 m／extracted to rear）
\begin{tabular}{l|l} 
Encoder cable + & KES－M4710－50 \\
\hline Power cable set model & KES－
\end{tabular}
R10R（10 m／extracted to rear）
\begin{tabular}{l|l} 
Encoder cable + & KES－M4710－A0 \\
\hline
\end{tabular}
R3F（3 m／extracted to front） Encoder cable＋
Power cable set model KES－M4720－30

\section*{R5F（5 m／extracted to front）} \begin{tabular}{l|l} 
Encoder cable + & KES－M4720－50 \\
\hline
\end{tabular}

\section*{R10F（10 m／extracted to front）}
\begin{tabular}{l|l} 
Encoder cable + & KES－M4720－A0 \\
\hline Power cable set model &
\end{tabular}



\section*{- Ordering method}





Note 1. RoHS2 (EU) 2015/863 compliant motor
Note 2. All robot cables are flexible cables. The robot cable dimensions drawing is provided on page 732 Note 3. The brake unit cannot be used with an external brake power input.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{3}{|c|}{\(40 \square / 100 \mathrm{~W}\)} \\
\hline \multicolumn{2}{|l|}{Repeatability Note 1} & \multicolumn{3}{|c|}{+/-0.005 mm} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|l|}{Ground ball screw \(\phi 12\) (Class C5)} \\
\hline \multicolumn{2}{|l|}{Stroke} & \multicolumn{3}{|l|}{50 mm to 800 mm ( 50 mm pitch)} \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\)} & \multicolumn{3}{|l|}{\(1333 \mathrm{~mm} / \mathrm{sec} 666 \mathrm{~mm} / \mathrm{sec} 333 \mathrm{~mm} / \mathrm{sec}\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead} & 20 mm & 10 mm & 5 mm \\
\hline \multirow[t]{2}{*}{Maximum payload} & Horizonta & 12 kg & 24 kg & 32 kg \\
\hline & Vertica & 3 kg & 6 kg & 12 kg \\
\hline \multicolumn{2}{|l|}{Rated thrust} & 84 N & 169 N & 339 N \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit} & \multicolumn{3}{|l|}{W \(48 \mathrm{~mm} \times \mathrm{H} 65 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length (Horizontal)} & \multicolumn{3}{|c|}{ST + 230 mm} \\
\hline \multicolumn{2}{|l|}{Overall length (Vertical)} & \multicolumn{3}{|c|}{ST + 270.5 mm} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness \({ }^{\text {Note } 3}\)} & \multicolumn{3}{|l|}{SO CLASS 3 (ISO14644-1) or equivalent} \\
\hline \multicolumn{2}{|l|}{Intake air \({ }^{\text {Note } 4}\)} & \multicolumn{3}{|l|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(100 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Controller} & \multicolumn{3}{|c|}{YHX series} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. The maximum speed may not be reached if the travel distance is short or because of other operation conditions. If the effective stroke exceeds 600 mm , the ball screw may resonate. (Critical speed) \\
At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Note 3. When using in a clean environment, attach a suction air joint.
The degree of cleanness is the cleanliness when using at 1000
\(\mathrm{~mm} / \mathrm{sec}\) or less.} \\
\hline \multicolumn{5}{|l|}{Note 4. The required suction amount will vary according to the operating conditions and operating environment.} \\
\hline
\end{tabular}

\section*{\(\square\) Static loading moment}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|r|}{Unit} \\
\hline & MY & P & MR \\
\hline & 72 & 72 & 64 \\
\hline
\end{tabular}


GX05L-20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 3kg & 1755 & 559 & 426 & 3kg & 396 & 486 & 1594 & 1kg & 1486 & 1486 \\
\hline 8kg & 737 & 200 & 153 & 8kg & 106 & 128 & 525 & 2kg & 730 & 730 \\
\hline 12kg & 608 & 133 & 104 & 12kg & 52 & 61 & 329 & 3kg & 478 & 478 \\
\hline
\end{tabular}

\section*{GX05L-10}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{4}{|l|}{Wall installation (Unit} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 6 kg & 2416 & 389 & 333 & 6 kg & 277 & 316 & 2192 & 4kg & 555 & 555 \\
\hline 12kg & 1397 & 187 & 161 & 12kg & 101 & 115 & 1084 & 6 kg & 360 & 360 \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

\section*{GX05L-5}

Horizontal installation (Unit: mm) Wall installation (Unit: mm) Vertical installation (Unit:mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 10kg & 3127 & 254 & 225 & 10kg & 162 & 181 & 280 \\
\hline 20kg & 1841 & 120 & 106 & 20kg & 42 & 47 & 12 \\
\hline & 1554 & 70 & 62 & & & & \\
\hline
\end{tabular} Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.

GX05L


\section*{OOrdering method}
 BKBL40: Battery-less absolute / With brake \(\square\) A10
Cable entry location R: From rear of motor
F: From front of motor

Note 1. RoHS2 (EU) 2015/863 compliant motor
Note 2. All robot cables are flexible cables. The robot cable dimensions drawing is provided on page 732 Note 3. The brake unit cannot be used with an external brake power input.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{4}{|c|}{\(40 \square / 100 \mathrm{~W}\)} \\
\hline \multicolumn{2}{|l|}{Repeatability Note 1} & \multicolumn{4}{|c|}{+/-0.005 mm} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{4}{|l|}{Ground ball screw \(\phi 15\) (Class C5)} \\
\hline \multicolumn{2}{|l|}{Stroke} & \multicolumn{4}{|l|}{50 mm to 1100 mm ( 50 mm pitch)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Maximum speed \({ }^{\text {Note } 2}\) Ball screw lead}} & \multicolumn{4}{|l|}{1800 mm/sed \(1200 \mathrm{~mm} / \mathrm{sec} 600 \mathrm{~mm} / \mathrm{sec} 300 \mathrm{~mm} / \mathrm{sec}\)} \\
\hline & & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline \multirow[t]{2}{*}{Maximum payload} & Horizontal & 10 kg & 25 kg & 45 kg & 85 kg \\
\hline & Vertical & 2 kg & 4 kg & 8 kg & 16 kg \\
\hline \multicolumn{2}{|l|}{Rated thrust} & 56 N & 84 N & 169 N & 339 N \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit} & \multicolumn{4}{|c|}{W \(70 \mathrm{~mm} \times \mathrm{H} 76.5 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length (Horizontal)} & \multicolumn{4}{|c|}{\(\mathrm{ST}+270.5 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length (Vertical)} & \multicolumn{4}{|c|}{ST + 311 mm} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Degree of } \\
& \text { cleanliness }
\end{aligned}
\]} & \multicolumn{4}{|l|}{ISO CLASS 3 (ISO14644-1)
or equivalent} \\
\hline \multicolumn{2}{|l|}{Intake air Note 4} & \multicolumn{4}{|c|}{\(30 \mathrm{~N} /\) /min to \(115 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Controller} & \multicolumn{4}{|c|}{YHX series} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. The maximum speed may not be reached if the travel distance is short or because of other operation conditions. If the effective stroke exceeds 700 mm , the ball screw may resonate. (Critical speed) \\
At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Note 3. When using in a clean environment, attach a suction air joint. The degree of cleanness is the cleanliness when using at 1000 \(\mathrm{mm} / \mathrm{sec}\) or less.} \\
\hline \multicolumn{6}{|l|}{Note 4. The required suction amount will vary according to the operating conditions and operating environment.} \\
\hline \multicolumn{6}{|l|}{Static loading moment} \\
\hline \multicolumn{3}{|c|}{\multirow[t]{3}{*}{}} & \multicolumn{3}{|r|}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline & & & MY & MP & MR \\
\hline & & & 138 & 121 & 121 \\
\hline
\end{tabular}


\section*{GX07-30}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm} & \multicolumn{4}{|l|}{Wall installation} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 2kg & 3078 & 1509 & 1221 & 2kg & 1237 & 1442 & 2975 & 1 kg & 2335 & 2335 \\
\hline 6kg & 1191 & 501 & 418 & 6 kg & 393 & 435 & 1062 & 2kg & 1158 & 1158 \\
\hline 10kg & 957 & 317 & 282 & 10kg & 244 & 251 & 793 & & & \\
\hline \multicolumn{11}{|l|}{GX07-20} \\
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 10kg & 1327 & 370 & 358 & 10kg & 313 & 304 & 1164 & 1 kg & 3416 & 3416 \\
\hline 20kg & 1136 & 186 & 188 & 20kg & 131 & 119 & 804 & 2kg & 1701 & 1701 \\
\hline 25kg & 1509 & 163 & 173 & 25kg & 109 & 97 & 1010 & 4kg & 841 & 841 \\
\hline
\end{tabular}

\section*{GX07-10}

\begin{tabular}{c|r|r|r}
\multicolumn{3}{c}{ Wall installation } & \multicolumn{2}{c}{ (Unit: \(\mathbf{m m}\) ) } \\
\hline & \multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{1 5 k g}\) & 306 & 271 & 2192 \\
\hline \(\mathbf{3 0 k g}\) & 106 & 94 & 1155 \\
\hline \(\mathbf{4 5 k g}\) & 39 & 34 & 623
\end{tabular}


GX07-5
Horizontal installation (Unit: mm ) Wall installation (Unit: mm ) Vertical installation (Unit: mm)


Robot cable
R3R (3 m/extracted to rear)
Encoder cable +
\begin{tabular}{l|l} 
Encoder cable + \\
Power cable set model & KES-M4710-30 \\
\hline
\end{tabular}
R5R (5 m/extracted to rear)
\begin{tabular}{l|l}
\hline Encoder cable + & KES-M4710-50 \\
\hline Power cable set model & KES-
\end{tabular}
R10R (10 m/extracted to rear)
\begin{tabular}{l|l} 
Encoder cable + & KES-M4710-A0 \\
\hline Power cable set model
\end{tabular}
R3F (3 m/extracted to front)
\begin{tabular}{l|l}
\hline Encoder cable + \\
Power cable set model & KES-M4720-30 \\
\hline
\end{tabular}
R5F (5 m/extracted to front)
\begin{tabular}{l|l} 
Encoder cable + & KES-M4720-50 \\
\hline
\end{tabular}
R10F (10 m/extracted to front)
\begin{tabular}{l|l} 
Encoder cable + & KES-M4720-A0
\end{tabular}

\section*{\(\square\) Driver unit}
\begin{tabular}{c|l|l}
\hline 10A & Model & YHX-A10-SET \\
\cline { 2 - 3 } Spec. & Control & Standard profile \\
\hline
\end{tabular}
Spec. \begin{tabular}{l|l|l|}
\hline Control \\
method
\end{tabular} Standard profile

GX07


\section*{O Ordering method}


Note 1. RoHS2 (EU) 2015/863 compliant motor
Note 2. All robot cables are flexible cables. The robot cable dimensions drawing is provided on page 733.
Note 3. The brake unit cannot be used with an external brake power input.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{4}{|c|}{\(60 \square / 200 \mathrm{~W}\)} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{4}{|c|}{\(+/-0.005 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{4}{|l|}{Ground ball screw \(\phi 15\) (Class C5)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Stroke \\
Maximum speed \({ }^{\text {Note } 2}\)
\end{tabular}}} & \multicolumn{4}{|l|}{100 mm to 1250 mm ( 50 mm pitch)} \\
\hline & & \multicolumn{4}{|l|}{\(1800 \mathrm{~mm} / \mathrm{sed} 1200 \mathrm{~mm} / \mathrm{sec} 600 \mathrm{~mm} / \mathrm{sec} 300 \mathrm{~mm} / \mathrm{sec}\)} \\
\hline \multirow[t]{3}{*}{Ball screw Maximum payload} & & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline & Horizonta & 25 kg & 40 kg & 80 kg & 100 kg \\
\hline & Vertical & 4 kg & 8 kg & 20 kg & 30 kg \\
\hline \multicolumn{2}{|l|}{Rated thrust} & 113 N & 170 N & 341 N & 683 N \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Maximum \\
dimensions of cross \\
section of main unit
\end{tabular}} & \multicolumn{4}{|c|}{W \(100 \mathrm{~mm} \times \mathrm{H} 99.5 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length (Horizontal)} & \multicolumn{4}{|c|}{ST + 245 mm} \\
\hline \multicolumn{2}{|l|}{Overall length (Vertical)} & \multicolumn{4}{|c|}{\(\mathrm{ST}+285.5 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|l|}{ISO CLASS 3 (ISO14644-1)
or equivalent} \\
\hline \multicolumn{2}{|l|}{Intake air \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Controller} & \multicolumn{4}{|c|}{YHX series} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. The maximum speed may not be reached if the travel distance is short or because of other operation conditions. If the effective stroke exceeds 700 mm , the ball screw may resonate. (Critical speed) \\
At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Note 3. When using in a clean environment, attach a suction air joint. The degree of cleanness is the cleanliness when using at 1000 \(\mathrm{mm} / \mathrm{sec}\) or less.} \\
\hline \multicolumn{6}{|l|}{Note 4. The required suction amount will vary according to the operating conditions and operating environment.} \\
\hline
\end{tabular}



\section*{GX10-30}
\begin{tabular}{|c|c|c|c|}
\hline & A & B & C \\
\hline 10kg & 878 & 537 & 292 \\
\hline 20kg & 609 & 256 & 146 \\
\hline 25kg & 608 & 211 & 124 \\
\hline \multicolumn{4}{|l|}{GX10-20 Horizontal installation (Unit: mm} \\
\hline
\end{tabular}

\begin{tabular}{r|r|r}
\multicolumn{4}{c}{ Vertical installation (Unit: \(\mathbf{~ m m}\) ) } \\
\hline & \multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{1 k g}\) & 4135 & 4135 \\
\hline \(\mathbf{4 k g}\) & 985 & 985 \\
\hline
\end{tabular}
\begin{tabular}{r|r|r|r}
\hline & \multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{1 5 k g}\) & 1269 & 451 & 282 \\
\hline \(\mathbf{2 5 k g}\) & 754 & 253 & 158 \\
\hline \(\mathbf{4 0 k g}\) & 466 & 142 & 88 \\
\hline
\end{tabular}

GX10-10
\begin{tabular}{r|c|c|c}
\multicolumn{4}{c}{ Horizontal installation (Unit: mm) } \\
\hline & A & B & C \\
\hline \(\mathbf{3 0 k g}\) & 1794 & 298 & 203 \\
\hline \(\mathbf{5 0 k g}\) & 1358 & 162 & 111 \\
\hline \(\mathbf{8 0 k g}\) & 1206 & 20 & 59 \\
\hline
\end{tabular}
\begin{tabular}{r|r|r|r}
\(\mathbf{5 0 k g}\) & 1358 & 162 & 111 \\
\hline \(\mathbf{8 0 k g}\) & 1266 & 86 & 59 \\
\hline \hline
\end{tabular}

GX10-5
Horizontal installation (Unit: mm) Wall installation (Unit: mm) Vertical installation (Unit:mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{4}{|l|}{Wall installation} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 30kg & 5605 & 321 & 225 & 30kg & 181 & 258 & 5195 & 10kg & 1018 & 1018 \\
\hline 50kg & 3694 & 177 & 124 & 50kg & 79 & 113 & 3111 & 20kg & 477 & 477 \\
\hline 80kg & 2619 & 95 & 67 & 80kg & 22 & 31 & 1557 & 30kg & 296 & 296 \\
\hline 100kg & 2224 & 68 & 48 & 100kg & 0 & 0 & 0 & & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
100 kg & 2224 & 68 & 48 \\
\hline
\end{tabular}
e. Distance fro
\(10,000 \mathrm{~km}\).
. Service life is calculated for 600 mm stroke models.
\(\square\) Robot cable
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ R3R (3 m/extracted to rear) } \\
\hline \multicolumn{2}{|c}{ Encoder cable + } \\
Power cable set model & KEV-M4710-30 \\
\hline
\end{tabular}
R5R (5 m/extracted to rear) \begin{tabular}{l|l}
\hline Encoder cable + & KEV-M4710-50 \\
\hline Power cable set model & KV \\
\hline
\end{tabular}

R10R (10 m/extracted to rear)
\begin{tabular}{l|l}
\hline Encoder cable + \\
Power cable set model & KEV-M4710-A0 \\
\hline
\end{tabular}
R3F (3 m/extracted to front)
\begin{tabular}{l|l}
\hline Encoder cable + & KEV-M4720-30 \\
\hline
\end{tabular}

\section*{R5F (5 m/extracted to front)} \begin{tabular}{l|l}
\hline Encoder cable + & KEV-M4720-50 \\
\hline
\end{tabular}

\section*{R10F (10 m/extracted to front)}
\begin{tabular}{l|l}
\hline Encoder cable + & KEV-M4720-A0 \\
\hline
\end{tabular}

\section*{\(\square\) Driver unit}

10A \begin{tabular}{l|l|l}
\hline 1 & Model & YHX-A10-SET \\
\hline
\end{tabular}
\begin{tabular}{c|c|c} 
Spec. & \(\begin{array}{l}\text { Control } \\
\text { method }\end{array}\) & Standard profile \\
\hline
\end{tabular}


\section*{-Ordering method}

Note 1. RoHS2 (EU) 2015/863 compliant motor
Note 2. All robot cables are flexible cables. The robot cable dimensions drawing is provided on page 733
Note 3. The brake unit cannot be used with an external brake power input.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{4}{|c|}{\(60 \square / 400 \mathrm{~W}\)} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{4}{|l|}{+/-0.005 mm} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{4}{|l|}{Ground ball screw \(\phi 15\) (Class C5)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Stroke Maximum speed \({ }^{\text {Note } 2}\)}} & \multicolumn{4}{|l|}{100 mm to 1250 mm ( 50 mm pitch)} \\
\hline & & \multicolumn{4}{|l|}{\(1800 \mathrm{~mm} / \mathrm{sec} 1200 \mathrm{~mm} / \mathrm{sec} 600 \mathrm{~mm} / \mathrm{sec} 300 \mathrm{~mm} / \mathrm{sec}\)} \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) Ball screw lead} & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline \multirow[t]{2}{*}{Maximum payload} & Horizontal & 35 kg & 50 kg & 95 kg & 115 kg \\
\hline & Vertical & 8 kg & 15 kg & 25 kg & 45 kg \\
\hline \multicolumn{2}{|l|}{Rated thrust} & 225 N & 339 N & 678 N & 1360 N \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit} & \multicolumn{4}{|c|}{W \(125 \mathrm{~mm} \times \mathrm{H} 101 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length (Horizontal)} & \multicolumn{4}{|c|}{ST + 297 mm} \\
\hline \multicolumn{2}{|l|}{Overall length (Vertical)} & \multicolumn{4}{|c|}{ST + 337.5 mm} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{4}{|l|}{ISO CLASS 3 (ISO14644-1)} \\
\hline \multicolumn{2}{|l|}{Intake air Note 4} & \multicolumn{4}{|c|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Controller} & \multicolumn{4}{|c|}{YHX series} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. The maximum speed may not be reached if the travel distance is short or because of other operation conditions. If the effective stroke exceeds 700 mm , the ball screw may resonate. (Critical speed) At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Note 3. When using in a clean environment, attach a suction air joint. The degree of cleanness is the cleanliness when using at 1000 \(\mathrm{mm} / \mathrm{sec}\) or less.} \\
\hline \multicolumn{6}{|l|}{Note 4. The required suction amount will vary according to the operating conditions and operating environment.} \\
\hline
\end{tabular}

\section*{\(\square\) Static loading moment \\ }


\section*{GX12-30}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{4}{|l|}{Wall installation} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm )} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 10kg & 1796 & 1074 & 637 & 10kg & 631 & 1009 & 1720 & 3 kg & 2642 & 2642 \\
\hline 20kg & 1300 & 531 & 332 & 20kg & 316 & 466 & 1171 & 6 kg & 1289 & 1289 \\
\hline 35kg & 1341 & 334 & 227 & 35kg & 197 & 269 & 1130 & 8kg & 951 & 951 \\
\hline \multicolumn{11}{|l|}{GX12-20} \\
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & W & allati & & t: mm & tical & tallat & Unit:m \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 15kg & 2231 & 904 & 613 & 15kg & 591 & 839 & 2141 & 5 kg & 2424 & 2424 \\
\hline 30kg & 1290 & 428 & 293 & 30kg & 260 & 363 & 1167 & 10kg & 1207 & 1207 \\
\hline 50kg & 882 & 237 & 164 & 50kg & 126 & 172 & 710 & 15kg & 803 & 803 \\
\hline
\end{tabular}

\section*{GX12-10}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
GX12-10 \\
Horizontal installation (Unit: mm )
\end{tabular}} & \multicolumn{3}{|l|}{Wall installation} & (Unit: mm) & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 30kg & 3109 & 607 & 456 & 30kg & 413 & 542 & 2978 & 10kg & 1862 & 1862 \\
\hline 50 kg & 2421 & 345 & 260 & 50kg & 215 & 280 & 2208 & 15kg & 1221 & 1221 \\
\hline 80kg & 2417 & 198 & 150 & 80kg & 103 & 133 & 1927 & 25kg & 708 & 708 \\
\hline
\end{tabular}
\(\begin{array}{r}\text { 95kg } \\ \hline \text { GX12-5 }\end{array}\)


\section*{Robot cable}

R3R (3 m/extracted to rear)
Encoder cable +
\begin{tabular}{l|l|}
\hline Encoder cable \({ }^{+}\) & KEV-M4710-30 \\
\hline Power cable set model & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{R5R (5 m/extracted to rear)} \\
\hline \multicolumn{2}{|l|}{Encoder cable + Power cable set model} & KEV-M4710-50 \\
\hline \multicolumn{3}{|l|}{R10R (10 m/extracted to rear)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Encoder cable + \\
Power cable set model
\end{tabular}} & KEV-M4710-A0 \\
\hline \multicolumn{3}{|l|}{R3F (3 m/extracted to front)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Encoder cable + \\
Power cable set mode
\end{tabular}} & KEV-M4720-30 \\
\hline \multicolumn{3}{|l|}{R5F (5 m/extracted to front)} \\
\hline \multicolumn{2}{|l|}{Encoder cable + Power cable set model} & 1 KEV-M4720-50 \\
\hline \multicolumn{3}{|l|}{R10F (10 m/extracted to front)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Encoder cable + \\
Power cable set model
\end{tabular}} & KEV-M4720-A0 \\
\hline \multicolumn{3}{|c|}{Driver unit} \\
\hline \multirow[b]{2}{*}{30A Spec.} & Model & YHX-A30-SET \\
\hline & Control method & Standard profile \\
\hline
\end{tabular}

GX12


\section*{OOrdering method}


Note 1. RoHS2 (EU) 2015/863 compliant motor
Note 2. All robot cables are flexible cables. The robot cable dimensions drawing is provided on page 733 Note 3. The brake unit cannot be used with an external brake power input.

\(\square\) Allowable overhang Note


\section*{GX16-4}

\(\begin{array}{r}95 \mathrm{~kg} \\ \hline \mathbf{G X 1 6}\end{array}\)
GX16-10
Horizontal installation (Unit: mm)
\begin{tabular}{r|r|r|r} 
& \multicolumn{1}{c}{ A } & B & \multicolumn{1}{c}{ ( } \\
\hline \(\mathbf{5 0 k g}\) & 6253 & 1026 & 1024 \\
\hline \(\mathbf{8 0 k g}\) & 4447 & 623 & 624 \\
\hline \(\mathbf{1 0 0 k g}\) & 3957 & 489 & 490 \\
\hline \(\mathbf{1 3 0 k}\) & 3786 & 365 & 367 \\
\hline
\end{tabular}
 \begin{tabular}{l|l|l|l}
\hline 130kg & 3786 & 365 & 367 \\
\hline
\end{tabular} \(\begin{array}{llll}130 \mathrm{~kg} & 312 & 302 & 3422\end{array}\)

Robot cable
\begin{tabular}{l|l|}
\multicolumn{2}{c}{ R3R (3 m/extracted to rear) } \\
\hline Encoder cable + & KEX-M4710-30 \\
\hline
\end{tabular}

R5R (5 m/extracted to rear) Encoder cable +
Power cable set model KEX-M4710-50

R10R (10 m/extracted to rear)
\begin{tabular}{l|l} 
Encoder cable + & KEX-M4710-A0 \\
\hline
\end{tabular}
R3F (3 m/extracted to front) Encoder cable +
\begin{tabular}{l|l} 
Encoder cable + \\
Power cable set model & KEX-M4720-30 \\
\hline
\end{tabular}

\section*{R5F (5 m/extracted to front)} Encoder cable +
\begin{tabular}{l|l} 
Encoder cable + \\
Power cable set model & KEX-M4720-50 \\
\hline
\end{tabular}

\section*{R10F (10 m/extracted to front) Encoder cable + \begin{tabular}{l|l} 
Encoder cable + & KEX-M4720-A0 \\
\hline
\end{tabular} \\ D Driver unit \\ \begin{tabular}{c|l|l} 
30A & Model & YHX-A30-SET \\
Spec. & \(\begin{array}{l}\text { Control }\end{array}\) & Standard profile
\end{tabular}} \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.

GX16


Note 1. Stop positions are determined by the mechanical stoppers at both ends
Note 2. Adjustments are required when changing the return-to-origin direction.
(The standard origin is on the motor side.)
Note 3. The length under head of the hex socket h
the mounting countersunk holes (section C cross-section) must used to mount the body with recommended length under head of the hex socket head bolts \(<\) M \(8 \times 1.25>\) used to mount the body with the mounting tap hole specifications is <<frame thickness +15 mm or less>>.

Note 4. When using the mounting countersunk holes (section C cross-section) to mount the body, remove Ne seal, and then fix.
Note 5 . This is the weight without brakes. When brakes are mounted, the weight will be 1.1 kg heavier than the body weight given in the table.
Note 6 . The specifications of the robot cable will vary according to the extraction direction.
Note 7 . When secured in place, the minimum bending radius of the robot cable is R 30









Cable entry location R：From rear of motor Driver

Note 1．RoHS2（EU）2015／863 compliant motor
Note 2．All robot cables are flexible cables．The robot cable dimensions drawing is provided on page 733.
Note 3．The brake unit cannot be used with an external brake power input．
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Specifications} \\
\hline Motor & \multicolumn{3}{|c|}{\(80 \square / 750 \mathrm{~W}\)} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{3}{|c|}{\(+/-0.005 \mathrm{~mm}\)} \\
\hline Deceleration mechanism & \multicolumn{3}{|l|}{Ground ball screw \(\phi 20\)（Class C5）} \\
\hline Stroke & \multicolumn{3}{|l|}{100 mm to 1450 mm （ 50 mm pitch）} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) & \multicolumn{3}{|l|}{\(2400 \mathrm{~mm} / \mathrm{sec} 1200 \mathrm{~mm} / \mathrm{sec} 600 \mathrm{~mm} / \mathrm{sec}\)} \\
\hline Ball screw lead & 40 mm & 20 mm & 10 mm \\
\hline Maximum & \multicolumn{2}{|l|}{65 kg 130 kg} & 160 kg \\
\hline payload & \multicolumn{2}{|l|}{15 kg 源 35} & 65 kg \\
\hline Rated thrust & \multicolumn{2}{|l|}{320 N 640 N} & 1280 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{3}{|l|}{W \(200 \mathrm{~mm} \times \mathrm{H} 140 \mathrm{~mm}\)} \\
\hline Overall length（Horizontal） & \multicolumn{3}{|c|}{ST＋ 385.5 mm} \\
\hline Overall length（Vertical） & \multicolumn{3}{|c|}{ST＋ 432.5 mm} \\
\hline \multirow[t]{2}{*}{Degree of cleanliness Note 3 Intake air Note 4} & \multicolumn{3}{|l|}{ISO CLASS 3（ISO14644－1）or equivalent} \\
\hline & \multicolumn{3}{|l|}{30 N ／／min to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline Controller & \multicolumn{3}{|c|}{YHX series} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1．Positioning repeatability in one direction． \\
Note 2．The maximum speed may not be reached if the travel distance is short or because of other operation conditions． If the effective stroke exceeds 800 mm ，the ball screw may resonate．（Critical speed） \\
At this time，make the adjustment to decrease the speed while referring to the maximum speed shown in the table．
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 3．When using in a clean environment，attach a suction air joint． The degree of cleanness is the cleanliness when using at 1000 \(\mathrm{mm} / \mathrm{sec}\) or less． \\
Note 4．The required suction amount will vary according to the operating conditions and operating environment．
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Static loading moment} \\
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|r|}{（Unit： \(\mathrm{N} \cdot \mathrm{m}\) ）} \\
\hline & MY & Y MP & MR \\
\hline & 1423 & 23 1423 & 1251 \\
\hline
\end{tabular}

GX20

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{\begin{tabular}{l}
Note 1．Stop positions are determined by the mechanical stoppers at both ends． \\
Note 2．Adjustments are required when changing the return－to－origin direction． \\
（The standard origin is on the motor side．） \\
Note 3．The length under head of the hex socket head bolts \(<\mathrm{M} 8 \times 1.25>\) used to mount the body with the mounting countersunk holes（section C cross－section）must be \(\ll 25 \mathrm{~mm}\) or more＞＞．The recommended length under head of the hex socket head bolts \(<\mathrm{M} 8 \times 1.25>\) used to mount the body with the mounting tap hole specifications is＜＜frame thickness +15 mm or less＞＞．
\end{tabular}} & \multicolumn{16}{|r|}{\begin{tabular}{l}
Note 4．When using the mounting countersunk holes（section C cross－section）to mount the body，remove the seal，and then fix． \\
Note 5 ．This is the weight without brakes．When brakes are mounted，the weight will be 1.1 kg heavier than the body weight given in the table． \\
Note 6 ．The specifications of the robot cable will vary according to the extraction direction． \\
Note 7．When secured in place，the minimum bending radius of the robot cable is R30．
\end{tabular}} \\
\hline Effective stroke & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline La & 485.5 & 535.5 & 585.5 & 635.5 & 685.5 & 735.5 & 785.5 & 835.5 & 885.5 & 935.5 & 985.5 & 1035.5 & 1085.5 & 1135.5 & 1185.5 & 1235.5 & 1285.5 & 1335.5 & 1385.5 & 1435.5 & 1485.5 & 1535.5 & 1585.5 & 1635.5 & 1685.5 & 1735.5 & 1785.5 & 1835.5 \\
\hline Lb & 388.5 & 438.5 & 488.5 & 538.5 & 588.5 & 638.5 & 688.5 & 738.5 & 788.5 & 838.5 & 888.5 & 938.5 & 988.5 & 1038.5 & 1088.5 & 1138.5 & 1188.5 & 1238.5 & 1288.5 & 1338.5 & 1388.5 & 1438.5 & 1488.5 & 1538.5 & 1588.5 & 1638.5 & 1688.5 & 1738.5 \\
\hline Lc & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline Ld & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 \\
\hline Qa & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & 20 & 20 & 20 & 20 & 22 & 22 & 22 & 22 \\
\hline Qb & 4 & 6 & 6 & 6 & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 \\
\hline Qc & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 \\
\hline Qd & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 \\
\hline Weight（kg）\({ }^{\text {Note } 5}\) & 19.4 & 20.7 & 22 & 23.3 & 24.6 & 25.9 & 27.2 & 28.5 & 29.8 & 31 & 32.3 & 33.6 & 34.9 & 36.2 & 37.5 & 38.8 & 40.1 & 41.4 & 42.6 & 43.9 & 45.2 & 46.5 & 47.8 & 49.1 & 50.4 & 51.7 & 53 & 54.2 \\
\hline Lead 40 & \multicolumn{15}{|c|}{2400} & 2160 & 1920 & 1680 & 1440 & 1320 & 1200 & 1080 & & 0 & 840 & & & 600 \\
\hline Maximum Lead 20 & \multicolumn{15}{|c|}{1200} & 1080 & 960 & 840 & 720 & 660 & 600 & 540 & & 80 & 420 & & 6 & 300 \\
\hline speed
\((\mathrm{mm} / \mathrm{sec})\)
Lead 10 & \multicolumn{15}{|c|}{600} & 540 & 480 & 420 & 360 & 330 & 300 & 270 & & 40 & 210 & & 80 & 150 \\
\hline Speed setting & \multicolumn{15}{|c|}{－} & 90\％ & 80\％ & 70\％ & 60\％ & 55\％ & 50\％ & 45\％ & & \％ & 35\％ & 30 & \％ & 25\％ \\
\hline
\end{tabular}

\section*{series}

Reference drawing for mounting bending unit (example of right side mounting)


\section*{GX05L}


\footnotetext{
1. Mount the bending unit onto the body. Refer to the user's Manual for details on mounting
*2. The motor is not enclosed with the bending unit. Remove the motor from the robot body, and mount the bending unit.
*3. The bending unit can be mounted on the right or left sides.
}

\begin{tabular}{l|c|c|c}
\multicolumn{1}{c|}{ Model } & Product model & Part No. & Weight \\
\hline GX05, GX05L, GX07 & GX-BEND-40 & KES-M221M-00 & 0.4 kg \\
\hline GX10, GX12 & GX-BEND-60 & KEV-M221M-00 & 1.2 kg \\
\hline GX16, GX20 & GX-BEND-80 & KEX-M221M-00 & 2.7 kg \\
\hline
\end{tabular}


MOTOR-LESS SINGLE AXIS ACTUATOR
RODODity

CONTENTS
- Basic Specifications List \(\cdots 202\)
- Robot ordering method terminology \(\cdot 203\)

Basic model
LBAS04........................................... 204
LBAS05......................................... 206
LBAS08............................................ 208
Advanced model
LGXS05.......................................... 210
LGXS05L .......................................... 212
LGXS07.......................................... 214
LGXS10........................................ 216
LGXS12........................................ 218
LGXS16........................................ 220
LGXS20......................................... 222
- External Sensor Installation Guide
(Left side shown) .......................... 224
Reference guide for right angle motor mount
(Right side shown) ....................... 227
Acceleration/Deceleration and Inertia Moment \(\cdots 228\)

\section*{Robonity Specifications List}

\section*{A motor is not attached to this product.}

For a motor and driver, prepare, attach, and adjust by the customer.

Basic model LBAS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Model & \multicolumn{2}{|c|}{LBAS04} & \multicolumn{4}{|c|}{LBAS05} & \multicolumn{3}{|c|}{LBAS08} \\
\hline Adaptable motor & \multicolumn{2}{|c|}{50 W} & \multicolumn{4}{|c|}{100 W} & \multicolumn{3}{|c|}{200 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{2}{|c|}{+/-0.01 mm} & \multicolumn{4}{|c|}{+/-0.01 mm} & \multicolumn{3}{|c|}{+/-0.01 mm} \\
\hline Deceleration mechanism & \multicolumn{2}{|l|}{Shifting position ball screw \(\phi 10\) (C7 class)} & \multicolumn{4}{|l|}{Shifting position ball screw \(\phi 12\) (C7 class)} & \multicolumn{3}{|l|}{Shifting position ball screw \(\phi 16\) (C7 class)} \\
\hline Stroke & \multicolumn{2}{|l|}{50 mm to 800 mm ( 50 mm pitch)} & \multicolumn{4}{|l|}{50 mm to 800 mm ( 50 mm pitch)} & \multicolumn{3}{|l|}{50 mm to 1100 mm ( 50 mm pitch)} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) & \(800 \mathrm{~mm} / \mathrm{sec}\) & \(400 \mathrm{~mm} / \mathrm{sec}\) & \[
\begin{gathered}
1333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
666 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
133 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] \\
\hline Ball screw lead & 12 mm & 6 mm & 20 mm & 10 mm & 5 mm & 2 mm & 20 mm & 10 mm & 5 mm \\
\hline Maximum payload Note 3 Horizontal & 12 kg & 20 kg & 12 kg & 24 kg & 40 kg & 45 kg & 40 kg & 80 kg & 100 kg \\
\hline (or equivalent) & 2 kg & 5 kg & 3 kg & 6 kg & 12 kg & 15 kg & 8 kg & 20 kg & 30 kg \\
\hline Rated thrust Note 3 (or equivalent) & 71 N & 141 N & 84 N & 169 N & 339 N & 854 N & 174 N & 341 N & 683 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{2}{|l|}{W \(44 \mathrm{~mm} \times \mathrm{H} 52 \mathrm{~mm}\)} & \multicolumn{4}{|c|}{W \(54 \mathrm{~mm} \times \mathrm{H} 60 \mathrm{~mm}\)} & \multicolumn{3}{|c|}{W \(82 \mathrm{~mm} \times \mathrm{H} 78 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{2}{|c|}{ST + 214 mm} & \multicolumn{4}{|c|}{ST + 220.5 mm} & \multicolumn{3}{|c|}{ST + 278 mm} \\
\hline Using ambient temperature and humidity & \multicolumn{9}{|c|}{0 to \(40{ }^{\circ} \mathrm{C}, 35\) to \(80 \% \mathrm{RH}\) (non-condensing)} \\
\hline Detailed info page & \multicolumn{2}{|c|}{P. 204} & \multicolumn{4}{|c|}{P. 206} & \multicolumn{3}{|c|}{P. 208} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed.
Note 3. The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated torque.

\section*{Advanced model LGXS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & \multicolumn{3}{|c|}{LGXS05} & \multicolumn{3}{|c|}{LGXS05L} & \multicolumn{4}{|c|}{LGXS07} \\
\hline Adaptable motor & \multicolumn{3}{|c|}{50 W} & \multicolumn{3}{|c|}{100 W} & \multicolumn{4}{|c|}{100 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{3}{|c|}{+/-0.005 mm} & \multicolumn{3}{|c|}{+/-0.005 mm} & \multicolumn{4}{|c|}{+/-0.005 mm} \\
\hline Deceleration mechanism & \multicolumn{3}{|c|}{Ground ball screw \(\phi 12\) (C5 class)} & \multicolumn{3}{|c|}{Ground ball screw \(\phi 12\) (C5 class)} & \multicolumn{4}{|c|}{Ground ball screw \(\phi 15\) (C5 class)} \\
\hline Stroke & \multicolumn{3}{|l|}{50 mm to 800 mm ( 50 mm pitch)} & \multicolumn{3}{|l|}{50 mm to 800 mm ( 50 mm pitch)} & \multicolumn{4}{|l|}{50 mm to 1100 mm ( 50 mm pitch)} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) & \[
\begin{gathered}
1333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
666 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
666 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1800 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] \\
\hline Ball screw lead & 20 mm & 10 mm & 5 mm & 20 mm & 10 mm & 5 mm & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline Maximum payload Note 3 Horizontal & 5 kg & 8 kg & 13 kg & 12 kg & 24 kg & 32 kg & 10 kg & 25 kg & 45 kg & 85 kg \\
\hline (or equivalent) & 2 kg & 4 kg & 8 kg & 3 kg & 6 kg & 12 kg & 2 kg & 4 kg & 8 kg & 16 kg \\
\hline Rated thrust Note 3 (or equivalent) & 41 N & 69 N & 138 N & 84 N & 169 N & 339 N & 56 N & 84 N & 169 N & 339 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{3}{|c|}{W \(48 \mathrm{~mm} \times \mathrm{H} 65 \mathrm{~mm}\)} & \multicolumn{3}{|c|}{W \(48 \mathrm{~mm} \times \mathrm{H} 65 \mathrm{~mm}\)} & \multicolumn{4}{|c|}{W \(70 \mathrm{~mm} \times \mathrm{H} 76.5 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{3}{|c|}{ST + 131.5 mm} & \multicolumn{3}{|c|}{ST + 161.5 mm} & \multicolumn{4}{|c|}{ST + 202 mm} \\
\hline Degree of cleanliness Note 4 & \multicolumn{10}{|c|}{ISO CLASS 3 (ISO14644-1) or equivalent} \\
\hline Intake air Note 5 & \multicolumn{3}{|l|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(100 \mathrm{~N} \ell / \mathrm{min}\)} & \multicolumn{3}{|l|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(100 \mathrm{~N} \ell / \mathrm{min}\)} & \multicolumn{4}{|c|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(115 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline Using ambient temperature and humidity & \multicolumn{10}{|c|}{0 to \(40^{\circ} \mathrm{C}, 35\) to \(80 \% \mathrm{RH}\) (non-condensing)} \\
\hline Detailed info page & \multicolumn{3}{|c|}{P. 210} & \multicolumn{3}{|c|}{P. 212} & \multicolumn{4}{|c|}{P. 214} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & \multicolumn{4}{|c|}{LGXS10} & \multicolumn{4}{|c|}{LGXS12} & \multicolumn{3}{|c|}{LGXS16} & \multicolumn{3}{|c|}{LGXS20} \\
\hline Adaptable motor & \multicolumn{4}{|c|}{200 W} & \multicolumn{4}{|c|}{400 W} & \multicolumn{3}{|c|}{750 W} & \multicolumn{3}{|c|}{750 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{4}{|c|}{+/-0.005 mm} & \multicolumn{4}{|c|}{+/-0.005 mm} & \multicolumn{3}{|c|}{+/-0.005 mm} & \multicolumn{3}{|c|}{+/-0.005 mm} \\
\hline Deceleration mechanism & \multicolumn{4}{|c|}{Ground ball screw \(\phi 15\) (C5 class)} & \multicolumn{4}{|c|}{Ground ball screw \(\phi 15\) (C5 class)} & \multicolumn{3}{|l|}{Ground ball screw \(\phi 20\) (C5 class)} & \multicolumn{3}{|l|}{Ground ball screw \(\phi 20\) (C5 class)} \\
\hline Stroke & \multicolumn{4}{|l|}{100 mm to 1250 mm ( 50 mm pitch)} & \multicolumn{4}{|l|}{100 mm to 1250 mm ( 50 mm pitch)} & \multicolumn{3}{|l|}{100 mm to 1450 mm ( 50 mm pitch)} & \multicolumn{3}{|l|}{100 mm to 1450 mm ( 50 mm pitch)} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) & \[
\begin{gathered}
1800 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1800 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2400 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
2400 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline Ball screw lead & 30 mm & 20 mm & 10 mm & 5 mm & 30 mm & 20 mm & 10 mm & 5 mm & 40 mm & 20 mm & 10 mm & 40 mm & 20 mm & 10 mm \\
\hline Maximum payload Note 3 Horizontal & 25 kg & 40 kg & 80 kg & 100 kg & 35 kg & 50 kg & 95 kg & 115 kg & 45 kg & 95 kg & 130 kg & 65 kg & 130 kg & 160 kg \\
\hline (or equivalent) & 4 kg & 8 kg & 20 kg & 30 kg & 8 kg & 15 kg & 25 kg & 45 kg & 12 kg & 28 kg & 55 kg & 15 kg & 35 kg & 65 kg \\
\hline Rated thrust \({ }^{\text {Note }} 3\) (or equivalent) & 113 N & 170 N & 341 N & 683 N & 225 N & 339 N & 678 N & 1360 N & 320 N & 640 N & 1280 N & 320 N & 640 N & 1280 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{4}{|c|}{W \(100 \mathrm{~mm} \times \mathrm{H} 99.5 \mathrm{~mm}\)} & \multicolumn{4}{|c|}{W \(125 \mathrm{~mm} \times \mathrm{H} 101 \mathrm{~mm}\)} & \multicolumn{3}{|l|}{W \(160 \mathrm{~mm} \times \mathrm{H} 130 \mathrm{~mm}\)} & \multicolumn{3}{|l|}{W \(200 \mathrm{~mm} \times \mathrm{H} 140 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{4}{|c|}{ST + 175.5 mm} & \multicolumn{4}{|c|}{ST + 211.5 mm} & \multicolumn{3}{|c|}{ST + 242.5 mm} & \multicolumn{3}{|c|}{ST + 288.5 mm} \\
\hline Degree of cleanliness \({ }^{\text {Note } 4}\) & \multicolumn{14}{|c|}{ISO CLASS 3 (ISO14644-1) or equivalent} \\
\hline Intake air \({ }^{\text {Note } 5}\) & \multicolumn{14}{|c|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline Using ambient temperature and humidity & \multicolumn{14}{|c|}{0 to \(40^{\circ} \mathrm{C}, 35\) to \(80 \% \mathrm{RH}\) (non-condensing)} \\
\hline Detailed info page & \multicolumn{4}{|c|}{P. 216} & \multicolumn{4}{|c|}{P. 218} & \multicolumn{3}{|c|}{P.220} & \multicolumn{3}{|c|}{P. 222} \\
\hline
\end{tabular}

\footnotetext{
Note 1. Positioning repeatability in one direction
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed.
Note 3. The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated torque.
Note 4. When using in a clean environment, attach a suction air joint. The degree of cleanliness is the cleanliness level achieved when using at \(1000 \mathrm{~mm} / \mathrm{sec}\) or less.
Note 5 . The required suction amount will vary according to the operating conditions and operating environment.
}

\section*{[Basic model LBAS]}
\begin{tabular}{|c|c|}
\hline (1) Model & Fill in the model of the motorless actuator main body. \\
\hline (2) Lead designation & Select the ball screw lead. \\
\hline (3) Shape & \begin{tabular}{l}
Select the actuator shape. \\
S: Straight \\
A : Bending
\end{tabular} \\
\hline (4) Motor specification & \begin{tabular}{l}
[Adaptable Servo Motor] \\
Y: Yaskawa Electric Corp. \\
Keyence Corp. \\
Mitsubishi Electric Corp. \\
Omron Electronics \\
Panasonic Corp. (MHMF5A / MHMF01) \\
Sanyo Denki \\
Tamagawa Seiki \\
Delta Electronics \\
Fanuc Corp. \\
Siemens AG \\
Rockwell Automation, Inc. \\
Schneider Electric SA \\
KINGSERVO Hoof automation CO., LTD. \\
Beckhoff Automation GmbH \& Co. KG \\
P : Panasonic Corp. (MSMD / MSMF / MHMF02) \\
K : KINGSERVO Hoof automation CO., LTD. \\
[Applicable stepping motor] \\
A : Oriental Motor \\
(AZM46 / ARM46 / RKS54) \\
S: Oriental Motor \\
(AZM48) \\
N : NEMA standard \\
(NEMA17 / NEMA23)
\end{tabular} \\
\hline (5) Stroke & Select the stroke of the actuator working envelope. \\
\hline
\end{tabular}

\section*{[Advanced model LGXS]}
\begin{tabular}{|c|c|}
\hline (1) Model & Fill in the model of the motorless actuator main body. \\
\hline (2) Lead designation & Select the ball screw lead. \\
\hline (3) Side cover (LGXS05/LGXS05L/ LGXS07 only) & \begin{tabular}{l}
Select the side cover when installing any external sensor. \\
No entry : Standard \\
\(\mathbf{W}\) : With T-groove (both sides) \\
R: With T-groove (right side) \\
L: With T-groove (left side)
\end{tabular} \\
\hline (4) Motor specification (LGXS10/LGXS12/ LGXS16 / LGXS20 only) & \begin{tabular}{l}
[Adaptable Servo Motor] \\
No entry : Yaskawa Electric Corp. \\
Keyence Corp. \\
Mitsubishi Electric Corp. \\
P : Omron Electronics \\
Panasonic Corp.
\end{tabular} \\
\hline (5) Stroke & Select the stroke of the actuator working envelope. \\
\hline
\end{tabular}

\section*{OOrdering method}

\section*{［Caution］}

This system is provided as mechanical actuator unit and not including any adopters or electric components．Motor，driver and other components required for installation are user＇s responsibility．
Refer to user＇s manual for installation details．Refer to your motor manual for tuning or adjustment．Vibration or resonance from actuator will affect service life of actuator．
The product performance may not be satisfied depending on the compatible motor For special parts for motor installation，install and adjust on your side

Specifications
\begin{tabular}{|c|c|c|}
\hline Adaptable motor & \multicolumn{2}{|c|}{50 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{2}{|c|}{＋／－0．01 mm} \\
\hline Deceleration mechanism & \multicolumn{2}{|l|}{Shifting position ball screw \(\phi 10\) （C7 class）} \\
\hline Stroke & \multicolumn{2}{|l|}{50 mm to 800 mm （ 50 mm pitch）} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) （or equivalent） & \(800 \mathrm{~mm} / \mathrm{sec}\) & \(400 \mathrm{~mm} / \mathrm{sec}\) \\
\hline Ball screw lead & 12 mm & 6 mm \\
\hline \multirow[t]{2}{*}{Maximum payload Note 3 （or equivalent）} & 12 kg & 20 kg \\
\hline & 2 kg & 5 kg \\
\hline Rated thrust \({ }^{\text {Note } 3}\) （or equivalent） & 71 N & 141 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{2}{|l|}{W \(44 \mathrm{~mm} \times \mathrm{H} 52 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{2}{|c|}{ST＋ 214 mm} \\
\hline Using ambient & \multicolumn{2}{|l|}{0 to \(40{ }^{\circ} \mathrm{C}, 35\) to \(80 \% \mathrm{RH}\)} \\
\hline
\end{tabular}
temperature and humidity（non－condensing）
Note 1．Positioning repeatability in one direction
Note 2．When a moving distance is short and depending on an operation condition，it may not reach the maximum
If the effective stroke exceeds 500 mm ，the ball screw may resonate．（Critical speed）
At this time，make the adjustment to decrease the speed
while referring to the maximum speed shown in the table． while referring to the maximum speed shown in the table． Note 3．The rates assuming the attached motor outputs the rated torque．
Note．See P． 228 for acceleration／deceleration and inertia moment．

\section*{Static loading moment}
（Unit：\(\cdot \mathrm{m}\) ）

\section*{\(\square\) Allowable overhang Note}

LBAS04－12
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & \multirow[t]{2}{*}{（Unit：mm）} & \multicolumn{4}{|l|}{Wall installation（Unit：mm）} & \multicolumn{3}{|l|}{Vertical installation（Unit：mm）} \\
\hline & A & B & & & A & B & C & & A & C \\
\hline 2kg & 1187 & 271 & 325 & 2kg & 325 & 271 & 1187 & 1 kg & 534 & 534 \\
\hline 8kg & 473 & 62 & 77 & 8kg & 77 & 62 & 473 & 2kg & 265 & 265 \\
\hline 12kg & 431 & 41 & 53 & 12kg & 53 & 41 & 431 & & & \\
\hline \multicolumn{11}{|l|}{LBAS04－6} \\
\hline \multicolumn{3}{|l|}{Horizontal installation} & （Unit：mm） & Wall ins & allati & & nit：mm） & Vertical in & llation & Unit：mm） \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 4kg & 1808 & 155 & 217 & 4kg & 217 & 155 & 1808 & 1 kg & 639 & 639 \\
\hline 12kg & 801 & 47 & 65 & 12kg & 65 & 47 & 801 & 3kg & 208 & 208 \\
\hline 20kg & 546 & 25 & 35 & 20kg & 35 & 25 & 546 & 5 kg & 122 & 122 \\
\hline
\end{tabular}

Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．

Note．For the NEMA standard motor，check the shaft diameter and shaft length． Note．For the motor specifications A， S ，and N ，the parts dedicated for bending cannot be used．



\section*{OOrdering method}

LBASO5


\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility.
Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator.
The product performance may not be satisfied depending on the compatible motor For special parts for motor installation, install and adjust on your side

Specifications
\begin{tabular}{|c|c|c|c|}
\hline Adaptable motor & \multicolumn{3}{|c|}{100 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{3}{|c|}{+/-0.01 mm} \\
\hline Deceleration mechanism & \multicolumn{3}{|l|}{Shifting position ball screw \(\phi 12\)
(C7 class)} \\
\hline Stroke & \multicolumn{3}{|l|}{50 mm to 800 mm ( 50 mm pitch)} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) & \[
\begin{gathered}
1333 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
666 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
333 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline Ball screw lead & 20 mm & 10 mm & 5 mm \\
\hline  & 12 kg & 24 kg & 40 kg \\
\hline \begin{tabular}{l|l|} 
pay \\
(or equivalent)
\end{tabular} & 3 kg & 6 kg & 12 kg \\
\hline Rated thrust Note 3 (or equivalent) & 84 N & 169 N & 339 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{3}{|r|}{W \(54 \mathrm{~mm} \times \mathrm{H} 60 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{3}{|c|}{\(\mathrm{ST}+220.5 \mathrm{~mm}\)} \\
\hline Using ambient temperature and humidity & \multicolumn{3}{|l|}{\[
\begin{gathered}
0 \text { to } 40^{\circ} \mathrm{C}, 35 \text { to } 80 \% \mathrm{RH} \\
\text { (non-condensing) } \\
\hline
\end{gathered}
\]} \\
\hline
\end{tabular}
temperature and humidi
Note 1. Positioning repeatability in one direction.
Note 2. When a moving distance is short and depending on an
operation condition, it may not reach the maximum speed.
If the effective stroke exceeds 550 mm , the ball screw may resonate. (Critical speed)
At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
The rated thrust and maximum transferable weight are The rated thrust and maximum transferable weight are
torque.


LBAS05-20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & (Unit:mm) & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 2kg & 549 & 324 & 272 & 2kg & 272 & 324 & 549 & 1kg & 544 & 544 \\
\hline 8kg & 155 & 73 & 65 & 8kg & 65 & 73 & 155 & 2kg & 276 & 276 \\
\hline 12kg & 117 & 46 & 42 & 12kg & 42 & 46 & 117 & 3 kg & 195 & 195 \\
\hline \multicolumn{3}{|l|}{LBAS05-10 Horizontal installation} & (Unit: mm) & \multicolumn{2}{|l|}{Wall installation} & \multicolumn{2}{|r|}{(Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 5 kg & 769 & 178 & 213 & 5 kg & 213 & 178 & 769 & 2kg & 443 & 443 \\
\hline 15kg & 314 & 53 & 64 & 15kg & 64 & 53 & 314 & 4kg & 218 & 218 \\
\hline 24kg & 216 & 29 & 36 & 24kg & 36 & 29 & 216 & 6 kg & 142 & 142 \\
\hline
\end{tabular}
Horizontal installation (Unit:mm) Wall installation (Unit: mm) Vertical installation (Unit:mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C & & A & C \\
\hline 10kg & 921 & 97 & 131 & 10kg & 131 & 97 & 921 & 3kg & 345 & 345 \\
\hline 25kg & 459 & 33 & 45 & 25kg & 45 & 33 & 459 & 8kg & 124 & 124 \\
\hline 40kg & 436 & 17 & 23 & 40kg & 23 & 17 & 436 & 12kg & 79 & 79 \\
\hline
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at Note. Service life is calculated for 500 mm stroke models.
\begin{tabular}{l|l|l} 
P & Panasonic Corp. & MSMD01 \\
\hline
\end{tabular}

\section*{- Applicable stepping motor}
\begin{tabular}{c|c|l}
\hline Specification & Flange size & \multicolumn{1}{c}{\(\square 42\)} \\
\hline \multirow{2}{*}{ A } & \multirow{2}{*}{ Oriental Motor } & AZM46 \\
\cline { 3 - 3 } & & ARM46 \\
\cline { 3 - 3 } & RKS54 \\
\hline S & Oriental Motor & AZM48 \\
\hline N & NEMA standard & NEMA17
\end{tabular}

Note. For the NEMA standard motor check . me shaft diameter and shaft length. Note. For the motor specifications A, S , and N , the parts dedicated for
bending cannot be used.

LBAS05 Straight type (S)



\section*{OOrdering method}

LBASO8

\section*{［Caution］}

This system is provided as mechanical actuator unit and not including any adopters or electric components．Motor，driver and other components required for installation are user＇s responsibility．
Refer to user＇s manual for installation details．Refer to your motor manual for tuning or adjustment．Vibration or resonance from actuator will affect service life of actuator．
The product performance may not be satisfied depending on the compatible motor． For special parts for motor installation，install and adjust on your side．
－Adaptable Servo Motor
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Specification}} & \multicolumn{2}{|l|}{Flange size} & \(\square 60\) \\
\hline & & \multicolumn{2}{|l|}{Wattage} & 200 W \\
\hline \[
\begin{gathered}
\text { Motor } \\
\text { specification }
\end{gathered}
\] & \multicolumn{2}{|l|}{Manufacturer} & \multicolumn{2}{|r|}{Model} \\
\hline \multirow{12}{*}{Y} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Yaskawa Electric Corp．}} & \multicolumn{2}{|l|}{SGMJV－02} \\
\hline & & & SGM & J－02 \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Keyence Corp．}} & SV－ & 020 \\
\hline & & & SV2－ & 7020 \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Mitsubishi Electric Corp．}} & HF－K & \\
\hline & & & HG－K & 23 \\
\hline & & & HK－K & \\
\hline & \multicolumn{2}{|l|}{Sanyo Denki} & R2口 & 06020 \\
\hline & \multicolumn{2}{|l|}{Tamagawa Seiki} & TSM & 202 \\
\hline & \multicolumn{2}{|l|}{\[
\begin{array}{|l|}
\hline \text { Delta } \\
\text { Electronics } \\
\hline
\end{array}
\]} & ECMA & C10602 \\
\hline & \multicolumn{2}{|l|}{Siemens} & 1FL60 & 32－2AF \\
\hline & \multicolumn{2}{|l|}{Schneider} & BCH2 & D023 \\
\hline \multirow{5}{*}{P} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Omron Electronics}} & R88M & 20030 \\
\hline & & & R88M & 20030 \\
\hline & \multicolumn{2}{|l|}{\multirow{3}{*}{Panasonic Corp．}} & MSM & \\
\hline & & & MSM & \\
\hline & & & MHM & \\
\hline \multirow[t]{2}{*}{K} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Kingservo}} & KSM & 02LI \\
\hline & & & KSM & 02LG \\
\hline
\end{tabular}


LBAS08－20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & \multirow[t]{2}{*}{\(\frac{\text {（Unit：mm）}}{\text { C }}\)} & \multicolumn{4}{|l|}{Wall installation（Unit：mm）} & \multicolumn{3}{|l|}{Vertical installation（Unit：mm）} \\
\hline & A & B & & & A & B & C & & A & C \\
\hline 15kg & 356 & 131 & 146 & 15kg & 146 & 131 & 356 & 3kg & 634 & 634 \\
\hline 25kg & 278 & 73 & 86 & 25kg & 86 & 73 & 278 & 6 kg & 321 & 321 \\
\hline 40kg & 517 & 54 & 76 & 40kg & 76 & 54 & 517 & 8kg & 240 & 240 \\
\hline
\end{tabular}

\section*{LBAS08－10}
\begin{tabular}{c|c|c|c}
\multicolumn{3}{l}{ Horizontal installation } & \multicolumn{1}{l}{（Unit： mm ）} \\
\hline & A & B & C \\
\hline
\end{tabular}
\begin{tabular}{r|r|r|r}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{3 0 k g}\) & 465 & 83 & 120 \\
\hline \(\mathbf{5 0 k g}\) & 341 & 44 & 65 \\
\hline \(\mathbf{8 0 k g}\) & 228 & 22 & 34 \\
\hline
\end{tabular}
\begin{tabular}{c|r|r|r}
\multicolumn{4}{c}{ Wall installation } \\
\hline & \multicolumn{1}{c}{（Unit：mm）} \\
\hline \(\mathbf{3 0 k g}\) & 120 & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{5 0 k g}\) & 65 & 44 & 465 \\
\hline \(\mathbf{8 0 k g}\) & 34 & 22 & 228 \\
\hline
\end{tabular}
\[

\]

LBAS08－5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & Unit：mm & \multicolumn{4}{|l|}{Wall installation（Unit：mm）} & \multicolumn{3}{|l|}{Vertical installation（Unit mm）} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 30kg & 1604 & 95 & 153 & 30kg & 153 & 95 & 1604 & 10kg & 312 & 312 \\
\hline 50kg & 1035 & 52 & 83 & 50kg & 83 & 52 & 1035 & 20kg & 149 & 149 \\
\hline 80kg & 719 & 27 & 44 & 80kg & 44 & 27 & 719 & 30kg & 95 & 95 \\
\hline 100kg & 608 & 19 & 31 & 100kg & 31 & 19 & 608 & & & \\
\hline
\end{tabular}

Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．
Note．Service life is calculated for 600 mm stroke models．
－Applicable stepping motor \begin{tabular}{l|l|c}
\hline Specification & Flange size & \(\square 60\) \\
& & AZM66
\end{tabular}
\[
\begin{array}{|l|}
\hline \text { AZM66 } \\
\hline \text { AZM9 } \\
\hline
\end{array}
\]

A Oriental Motor \begin{tabular}{|l|l|}
\hline ARM66 \\
\hline & ARM69 \\
\cline { 2 - 3 } & RKS56 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|}
\hline N & NEMA standard & NEMS56 \\
\hline
\end{tabular}
Note．For the NEMA standard motor，check the shaft diameter，shaft length，and dimensional tolerance of the spigot diameter．
Note．For the motor specifications A and N ，the parts dedicated for bending N ，the parts dedic

Static loading moment


Specifications
\begin{tabular}{|c|c|c|c|}
\hline Adaptable motor & \multicolumn{3}{|c|}{200 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{3}{|c|}{＋／－0．01 mm} \\
\hline Deceleration mechanism & \multicolumn{3}{|l|}{Shifting position ball screw \(\phi 16\) （C7 class）} \\
\hline Stroke & \multicolumn{3}{|l|}{50 mm to 1100 mm （ 50 mm pitch）} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) （or equivalent） & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] \\
\hline Ball screw lead & 20 mm & 10 mm & 5 mm \\
\hline \begin{tabular}{|l|l|}
\hline Maximum \\
payload Note 3 & Horizontal \\
\cline { 2 - 2 } \\
\cline { 2 - 3 } & \\
\hline
\end{tabular} & 40 kg & 80 kg & 100 kg \\
\hline （or equivalent）Vertical & 8 kg & 20 kg & 30 kg \\
\hline Rated thrust Note 3 （or equivalent） & 174 N & 341 N & 683 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{3}{|r|}{W \(82 \mathrm{~mm} \times \mathrm{H} 78 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{3}{|c|}{ST＋ 278 mm} \\
\hline Using ambient temperature and humidity & \multicolumn{3}{|l|}{0 to \(40^{\circ} \mathrm{C}, 35\) to \(80 \% \mathrm{RH}\) （non－condensing）} \\
\hline
\end{tabular}

Note 1．Positioning repeatability in one direction．
operation condition it may not reach the maxing on an
If the effective stroke exceeds 650 mm ，the ball screw may resonate．（Critical speed）
At this time，make the adjustment to decrease the speed Note 3．The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated
Note．See P． 231 for acceleration／deceleration and inertia moment．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effecti & ve stroke & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 \\
\hline & La & 314.5 & 364.5 & 414.5 & 464.5 & 514.5 & 564.5 & 614.5 & 664.5 & 714.5 & 764.5 & 814.5 & 864.5 & 914.5 & 964.5 & 1014.5 & 1064.5 & 1114.5 & 1164.5 & 1214.5 & 1264.5 & 1314.5 & 1364.5 \\
\hline & Lb & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 & 50 & 100 \\
\hline & Lc & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 \\
\hline & Qa & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 \\
\hline & Qb & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 \\
\hline Weig & ght（kg） & 4.1 & 4.5 & 4.9 & 5.2 & 5.6 & 5.9 & 6.2 & 6.6 & 6.9 & 7.2 & 7.6 & 7.9 & 8.3 & 8.6 & 8.9 & 9.2 & 9.6 & 9.8 & 10.2 & 10.5 & 10.9 & 11.3 \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { Maximum } \\
\text { speed } \\
(\mathrm{mm} / \mathrm{sec})
\end{gathered}
\]} & Lead 20 & \multicolumn{13}{|c|}{1200} & 1020 & 900 & 780 & 660 & 600 & 540 & 480 & 420 & 360 \\
\hline & Lead 10 & \multicolumn{13}{|c|}{600} & 510 & 450 & 390 & 330 & 300 & 270 & 240 & 210 & 180 \\
\hline & Lead 5 & \multicolumn{13}{|c|}{300} & 255 & 225 & 195 & 165 & 150 & 135 & 120 & 105 & 90 \\
\hline & Speed setting & \multicolumn{13}{|l|}{－－} & 85\％ & 75\％ & 65\％ & 55\％ & 50\％ & 45\％ & 40\％ & 35\％ & 30\％ \\
\hline
\end{tabular}
        bolts <M5 \(\times 0.8>\). In the instalation tap
        bolts <M5 \(\times 0.8>\). In the instalation tap
        hole, the length under head <<thickness on
stand +15 mm or less>> is recommended
        hole, the length under head <<thickness on
stand +15 mm or less>> is recommended
        stand +15 mm or less \(\gg\) is recommended
for the hex socket head bolts <M6 \(\times 1.0>\)
        stand +15 mm or less \(\gg\) is recommended
for the hex socket head bolts <M6 \(\times 1.0>\)
        used to install the main unit.
        used to install the main unit.
    Note 4. Nozzle set for greasing (recommended)
    Note 4. Nozzle set for greasing (recommended)
                        (see P. 224 for detail)
                        (see P. 224 for detail)

\section*{OOrdering method}

\section*{LGXS05}

\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility. Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator. The product performance may not be satisfied depending on the compatible motor. The bending unit cannot be used for the high agility model.

\section*{Specifications}

\section*{Adaptable motor}

Repeatability \({ }^{\text {Note }}\)
Deceleration

\section*{Stroke}

Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) Ball screw lead
Maximum \(\quad\) Horizontal
\begin{tabular}{l|l|}
\hline payload Note 3 \\
(or equivalent) & Vertical \\
\cline { 2 - 3 } &
\end{tabular} Rated thrust Note 3
(or equivalent)
Maximum dimensions of
Maximum dimensions of Overall length
Degree of cleanliness Note 4
Intake air \({ }^{\text {Note } 5}\)
Using ambient
temperature and humidity
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{50 W} \\
\hline \multicolumn{3}{|c|}{+/-0.005 mm} \\
\hline \multicolumn{3}{|l|}{Ground ball screw \(\phi 12\) (C5 class)} \\
\hline \multicolumn{3}{|l|}{50 mm to 800 mm ( 50 mm pitch)} \\
\hline \[
\begin{gathered}
1333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
666 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
333 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline 20 mm & 10 mm & 5 mm \\
\hline 5 kg & 8 kg & 13 kg \\
\hline 2 kg & 4 kg & 8 kg \\
\hline 41 N & 69 N & 138 N \\
\hline \multicolumn{3}{|c|}{W \(48 \mathrm{~mm} \times \mathrm{H} 65 \mathrm{~mm}\)} \\
\hline
\end{tabular}

LGXS05-20

\begin{tabular}{l|l|l|l}
\hline & A & B & C \\
\hline \(\mathbf{2 k g}\) & 898 & 269 & 350 \\
\hline \(\mathbf{5 k g}\) & 583 & 112 & 159 \\
\hline
\end{tabular}

LGXS05-10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & (Unit: mm) & \multicolumn{4}{|l|}{Wall installation} & \multicolumn{3}{|l|}{Vertical installation (Unit:mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 2kg & 2505 & 382 & 625 & 2kg & 585 & 346 & 2386 & 1kg & 732 & 732 \\
\hline 5 kg & 1366 & 149 & 246 & 5kg & 195 & 113 & 1164 & 2kg & 351 & 351 \\
\hline 8kg & 1036 & 90 & 150 & 8kg & 95 & 54 & 745 & 4kg & 160 & 160 \\
\hline
\end{tabular}

\section*{LGXS05-5}

If the effective strok, it may not reach the maximum speed
may efective stroke exceeds 600 mm , the ball screw
At this time, make the adjustment to decrease the speed Note 3. While referring to the maximum speed shown in the table values assuming the attached motor outputs the rated torque.
Note 4. When using in a clean environment, attach a suction air
joint. The degree of cleanliness is the cleanliness level achieved when using at \(1000 \mathrm{~mm} / \mathrm{sec}\) or less.
Note 5 . The required suction amount will vary according to the
Note. See P. 233 for acceleration/deceleration and inertia moment.

\section*{}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit. mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 3kg & 4604 & 281 & 497 & 3kg & 439 & 245 & 4371 & 4kg & 183 & 183 \\
\hline 8kg & 2197 & 101 & 179 & 8kg & 117 & 65 & 1812 & 6kg & 111 & 111 \\
\hline 13kg & 1593 & 59 & 105 & 13kg & 42 & 24 & 1000 & 8kg & 75 & 75 \\
\hline
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at
\[
\text { a guide service life of } 10,000 \mathrm{~km} \text {. }
\]

Note. Service life is calculated for 600 mm stroke models.


\begin{tabular}{|c|c|c|}
\hline MY & MP & MR \\
\hline 24 & 27 & 23 \\
\hline \multicolumn{3}{|l|}{\(\square\) Adaptable Servo Motor} \\
\hline \multirow[b]{2}{*}{Specification} & Flange size & \(\square 40\) \\
\hline & Wattage & 50 W \\
\hline Manufacturer & \multicolumn{2}{|l|}{Model} \\
\hline \multirow[t]{2}{*}{Yaskawa Electric Corp.} & \multicolumn{2}{|l|}{SGMJV-A5} \\
\hline & \multicolumn{2}{|l|}{SGM7J-A5} \\
\hline \multirow[t]{2}{*}{Keyence Corp.} & \multicolumn{2}{|l|}{SV- \(\square 005\)} \\
\hline & \multicolumn{2}{|l|}{SV2- \(\square 005\)} \\
\hline \multirow{3}{*}{Mitsubishi Electric Corp.} & \multicolumn{2}{|l|}{HF-KP053 \({ }^{\text {Note }}\)} \\
\hline & \multicolumn{2}{|l|}{HG-KR053 \({ }^{\text {Note }}\)} \\
\hline & \multicolumn{2}{|l|}{HK-KT053 \({ }^{\text {Note }}\)} \\
\hline \multirow[t]{2}{*}{Omron Electronics} & \multicolumn{2}{|l|}{R88M-K05030} \\
\hline & \multicolumn{2}{|l|}{R88M-1M05030 \({ }^{\text {Note }}\)} \\
\hline Panasonic Corp. & \multicolumn{2}{|l|}{M \({ }^{\text {mF5A }}\)} \\
\hline
\end{tabular}

Note. To combine with the conversion adapter <GX-BEND-40> the shim plate ( t 1 ) is necessary.
\begin{tabular}{c|c} 
Conversion \\
adapter product
\end{tabular} \begin{tabular}{c} 
Shim plate part \\
number
\end{tabular}

KND 40 KES M2295-00

\section*{When used with high acceleration or deceleration (High agility model)}
\begin{tabular}{l|c|c|c|c}
\hline \multicolumn{4}{|c}{ Specifications } \\
\hline Stroke & \multicolumn{3}{|c}{50 mm to \(550 \mathrm{~mm}(50 \mathrm{~mm}\) pitch \()\)} \\
\hline Ball screw lead & 20 mm & 10 mm & 5 mm \\
\hline \begin{tabular}{l} 
Maximum \\
payload
\end{tabular} & Horizontal & 2 kg & 3 kg & - \\
\hline \begin{tabular}{l} 
Maximum \\
acceleration
\end{tabular} & \begin{tabular}{c}
\(11.77 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.2 \mathrm{G})\)
\end{tabular} & \begin{tabular}{c}
\(11.77 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.2 \mathrm{G})\)
\end{tabular} & - \\
\begin{tabular}{l} 
Maximum \\
payload
\end{tabular} & Vertical & \begin{tabular}{c}
1 kg \\
\begin{tabular}{l} 
Maximum \\
acceleration
\end{tabular}
\end{tabular} & \begin{tabular}{c}
\(11.77 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.2 \mathrm{G})\)
\end{tabular} & \begin{tabular}{c}
\(11.77 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.2 \mathrm{G})\)
\end{tabular} \\
\hline
\end{tabular}


\section*{\(\square\) Allowable overhang \({ }^{\text {Note }}\)}

LGXS05-20


LGXS05-5
Vertical installation (Unit: mm)
\begin{tabular}{r|c|c}
\multicolumn{2}{c}{ Vertical instaliation (Unit:mm) } \\
\hline & A & C \\
\hline \(\mathbf{1 k g}\) & 478 & 478 \\
\hline \(\mathbf{3 k g}\) & 138 & 138 \\
\hline
\end{tabular}

\section*{LGXS05-10}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Horiz & instal & & (Unit: mm) & Wall ins & lat & & it: mm) & Vertical & allatio & mm) \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 1kg & 1159 & 460 & 645 & 1kg & 606 & 424 & 1129 & 1kg & 396 & 396 \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 550 mm stroke models.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 \\
\hline \multirow[t]{3}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 20 & \multicolumn{11}{|c|}{1333} \\
\hline & Lead 10 & \multicolumn{11}{|c|}{666} \\
\hline & Lead 5 & \multicolumn{11}{|c|}{333} \\
\hline
\end{tabular}

Note. The bending unit cannot be used for the high agility model.
Note. The high agility model is used in an effective stroke range of 50 to 550 ( 50 mm pitch).
Note. There is no critical speed setting. The maximum speed can be set for a selectable stroke.
The speed may not reach the maximum speed if the movement distance is short or depending on the operating conditions.
Note. See P. 234 for acceleration/deceleration and inertia moment

\section*{Access the website below.}

The tact simulation and service life calculation can be performed easily from our member site. For details, see P.42.


\section*{OOrdering method}

\section*{LGXS05L}


\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility. Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator. The product performance may not be satisfied depending on the compatible motor. The bending unit cannot be used for the high agility model.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Adaptable motor} & \multicolumn{3}{|c|}{100 W} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{3}{|c|}{+/-0.005 mm} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|l|}{Ground ball screw \(\phi 12\) (C5 class)} \\
\hline \multicolumn{2}{|l|}{Stroke} & \multicolumn{3}{|l|}{50 mm to 800 mm ( 50 mm pitch)} \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) (or equivalent)} & \[
\begin{gathered}
1333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
666 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
333 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{Ball screw lead} & 20 mm & 10 mm & 5 mm \\
\hline \multirow[t]{2}{*}{Maximum payload Note 3 (or equivalent)} & Horizontal & 12 kg & 24 kg & 32 kg \\
\hline & Vertical & 3 kg & 6 kg & 12 kg \\
\hline \multicolumn{2}{|l|}{Rated thrust Note 3 (or equivalent)} & 84 N & 169 N & 339 N \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit} & \multicolumn{3}{|c|}{W \(48 \mathrm{~mm} \times \mathrm{H} 65 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length} & \multicolumn{3}{|c|}{ST + 161.5 mm} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness \({ }^{\text {Note } 4}\)} & \multicolumn{3}{|l|}{ISO CLASS 3 (ISO14644-1)
or equivalent} \\
\hline \multicolumn{2}{|l|}{Intake air \({ }^{\text {Note } 5}\)} & \multicolumn{3}{|l|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(100 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Using ambient temperature and humidity} & \multicolumn{3}{|l|}{\[
\begin{gathered}
0 \text { to } 40^{\circ} \mathrm{C}, 35 \text { to } 80 \% \mathrm{RH} \\
\text { (non-condensing) } \\
\hline
\end{gathered}
\]} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed. \\
If the effective stroke exceeds 600 mm , the ball screw may resonate. (Critical speed) At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Note 3. The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated torque.} \\
\hline \multicolumn{2}{|l|}{Note 4. When using in a clea joint. The degree of achieved when using} & \multicolumn{3}{|l|}{an environment, attach a suction air cleanliness is the cleanliness level g at \(1000 \mathrm{~mm} / \mathrm{sec}\) or less.} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Note 5. The required suction operating conditions \\
Note. See P. 235 for acceleration
\end{tabular}} & \multicolumn{3}{|l|}{amount will vary according to the s and operating environment.} \\
\hline
\end{tabular}

\section*{When used with high acceleration or deceleration (High agility model)}
\begin{tabular}{l|c|c|c|c}
\hline \multicolumn{4}{|c}{ Specifications } \\
\hline \hline Stroke & \multicolumn{3}{|c}{50 mm to \(550 \mathrm{~mm}(50 \mathrm{~mm}\) pitch) } \\
\hline Ball screw lead & 20 mm & 10 mm & 5 mm \\
\hline \begin{tabular}{l} 
Maximum \\
payload
\end{tabular} & Horizontal & 5 kg & 10 kg & - \\
\hline \begin{tabular}{l} 
Maximum \\
acceleration
\end{tabular} & \begin{tabular}{c}
\(14.72 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.5 \mathrm{G})\)
\end{tabular} & \begin{tabular}{c}
\(14.72 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.5 \mathrm{G})\)
\end{tabular} & - \\
\begin{tabular}{l} 
Maximum \\
payload
\end{tabular} & Vertical & 1 kg & 2 kg & 4 kg \\
\hline \begin{tabular}{l} 
Maximum \\
acceleration
\end{tabular} & \begin{tabular}{c}
\(14.72 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.5 \mathrm{G})\)
\end{tabular} & \begin{tabular}{c}
\(12.68 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((1.3 \mathrm{G})\)
\end{tabular} & \begin{tabular}{c}
\(6.65 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((0.7 \mathrm{G})\)
\end{tabular} \\
\hline
\end{tabular}

\section*{}


\section*{Allowable overhang \({ }^{\text {Note }}\)}

LGXS05L-20
\(\begin{array}{lllll}\text { Horizontal installation } & \text { (Unit: } \mathrm{mm} \text { ) Wall installation } & \text { (Unit: } \mathrm{mm} \text { ) } & \text { Vertical installation (Unit: } \mathrm{mm} \text { ) }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C & & A & C \\
\hline 2kg & 675 & 501 & 332 & 2kg & 294 & 428 & 626 & 1 kg & 728 & 728 \\
\hline 5 kg & 330 & 191 & 131 & 5 kg & 87 & 118 & 251 & & & \\
\hline \multicolumn{11}{|l|}{LGXS05L-10} \\
\hline \multicolumn{3}{|l|}{Horizontal installation} & (Unit: mm) & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit:mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 3kg & 1208 & 469 & 385 & 3 kg & 331 & 396 & 1144 & 1kg & 1298 & 1298 \\
\hline 6 kg & 665 & 227 & 188 & 6kg & 131 & 155 & 580 & 2kg & 636 & 636 \\
\hline 10kg & 441 & 130 & 108 & 10kg & 49 & 58 & 315 & & & \\
\hline
\end{tabular}

LGXS05L-5
Vertical installation (Unit: mm)
\begin{tabular}{r|r|r} 
& \multicolumn{1}{|c}{ A } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{1 k g}\) & 1555 & 1555 \\
\hline \(\mathbf{2 k g}\) & 762 & 762 \\
\hline \(\mathbf{4 k g}\) & 365 & 365 \\
\hline
\end{tabular}
\begin{tabular}{ll|l}
\(\mathbf{4 k g}\) & 365 & 365 \\
\hline
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 550 mm stroke models.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 \\
\hline \multirow[t]{3}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 20 & \multicolumn{11}{|c|}{1333} \\
\hline & Lead 10 & \multicolumn{11}{|c|}{666} \\
\hline & Lead 5 & \multicolumn{11}{|c|}{333} \\
\hline
\end{tabular}

Note. The bending unit cannot be used for the high agility model.
Note. The high agility model is used in an effective stroke range of 50 to 550 ( 50 mm pitch).
Note. There is no critical speed setting. The maximum speed can be set for a selectable stroke.
The speed may not reach the maximum speed if the movement distance is short or depending on the operating conditions.
Note. See P. 236 for acceleration/deceleration and inertia moment.

\section*{Access the website below.}


\section*{GOrdering method}


\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility. Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator. The product performance may not be satisfied depending on the compatible motor. The bending unit cannot be used for the high agility model.

\section*{- Specifications}

Adaptable motor Repeatability Deceleration
mechanism
Stroke
Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) Ball screw lead

\section*{Maximum}

Horizontal
(or equivalent) Vertical
Rated thrust \({ }^{\text {Notete }}\)
(or equivalent)
Maximum dimensions of
cross section of main unit
Overall length
Degree of cleanliness \({ }^{\text {Note } 4}\)
Intake air \({ }^{\text {Note } 5}\)
Using ambient
Using ambient
temperature and humidity
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{100 W} \\
\hline \multicolumn{4}{|c|}{+/-0.005 mm} \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
Ground ball screw \(\phi 15\) \\
(C5 class)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{50 mm to 1100 mm ( 50 mm pitch)} \\
\hline \[
\begin{array}{|c|}
\hline 1800 \\
\mathrm{~mm} / \mathrm{sec}
\end{array}
\] & \[
\begin{array}{|c|}
\hline 1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 600 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline 30 mm & 20 mm & 10 mm & 5 mm \\
\hline 10 kg & 25 kg & 45 kg & 85 kg \\
\hline 2 kg & 4 kg & 8 kg & 16 kg \\
\hline 56 N & 84 N & 169 N & 339 N \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed.
If the effective stroke exceeds 700 mm , the ball screw may resonate. (Critical speed)
while referring to the maximum speed shown in the table. Note 3. The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated torque.
Note 4. When using in a clean environment, attach a suction air oint. The degree of cleanliness is the cleanliness level
Note 5 . The required suction amount will vary accord
operating conditions and operating environment.
Note. See P. 237 for acceleration/deceleration and inertia moment.

\section*{\(\square\) Allowable overhang \({ }^{\text {Note }}\)}


Static loading moment


LGXS07-30

\begin{tabular}{r|r|r|r}
\hline & A & B & C \\
\hline \(\mathbf{2 k g}\) & 3078 & 1509 & 1221 \\
\hline \(\mathbf{6 k g}\) & 1191 & 501 & 418 \\
\hline \(\mathbf{1 0 k g}\) & 957 & 317 & 282 \\
\hline \hline
\end{tabular}
\begin{tabular}{r|r|r|c}
\multicolumn{5}{c}{ Wall installation (Unit mm) } \\
\hline & A & \(\mathbf{B}\) & V \\
\hline \(\mathbf{2 k g}\) & 1237 & 1442 & 2975 \\
\hline \(\mathbf{6 k g}\) & 393 & 435 & 1062 \\
\hline \(\mathbf{1 0 k g}\) & 244 & 251 & 793 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{tical instalation} \\
\hline & A & C \\
\hline 1 kg & 2335 & 2335 \\
\hline 2kg & 1158 & 1158 \\
\hline
\end{tabular}

Vertical installation (Unit: mm)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{installation} & \multicolumn{3}{|l|}{ical installation (Unit mm)} \\
\hline & A & B & C & & A & C \\
\hline 10kg & 313 & 304 & 1164 & 1 kg & 3416 & 3416 \\
\hline 20kg & 131 & 119 & 804 & 2kg & 1701 & 1701 \\
\hline & & & & & & \\
\hline
\end{tabular}
Wall

\section*{LGXS07-10}
\begin{tabular}{ll}
\hline LGXSOT-10 & \\
Horizontal installation (Unit: mm) \\
\hline A & B \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & c & & A & C \\
\hline 15 kg & 2420 & 338 & 372 & 15kg & 306 & 271 & 2192 & 3 kg & 1688 & 1688 \\
\hline 30kg & 1531 & 160 & 176 & 30kg & 106 & 94 & 1155 & 6 kg & 827 & 82 \\
\hline 45kg & 1181 & 101 & 111 & 45kg & 39 & 34 & 623 & 8kg & 612 & 61 \\
\hline
\end{tabular}

LGXS07-5

\begin{tabular}{r|r|r|r} 
30kg & 2915 & 172 & 197 \\
\hline \(\mathbf{5 0 k g}\) & 2535 & 96 & 110 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r}
\hline \(\mathbf{3 0 k g}\) & 122 & 106 & 2458 \\
\hline \(\mathbf{5 0 k g}\) & 34 & 30 & 1476 \\
\hline \(\mathbf{8 5 k g}\) & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\(\mathbf{6 k g}\) & 907 & 907
\end{tabular}
\begin{tabular}{llll}
\(\mathbf{8 5 k g}\) & 2024 & 49 & 56
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at
a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline MY & MP & MR \\
\hline 138 & 121 & 121 \\
\hline \multicolumn{3}{|l|}{Adaptable Servo Motor} \\
\hline \multirow[b]{2}{*}{Specification} & Flange size & \(\square 40\) \\
\hline & Wattage & 100 W \\
\hline Manufacturer & \multicolumn{2}{|l|}{Model} \\
\hline \multirow[t]{2}{*}{Yaskawa Electric Corp.} & \multicolumn{2}{|l|}{SGMJV-01} \\
\hline & \multicolumn{2}{|l|}{SGM7J-01} \\
\hline \multirow[t]{2}{*}{Keyence Corp.} & \multicolumn{2}{|l|}{SV- \(\square 010\)} \\
\hline & \multicolumn{2}{|l|}{SV2- \(\square 010\)} \\
\hline \multirow[t]{3}{*}{Mitsubishi Electric Corp.} & \multicolumn{2}{|l|}{HF-KP13 \({ }^{\text {Note }}\)} \\
\hline & \multicolumn{2}{|l|}{HG-KR13 \({ }^{\text {Note }}\)} \\
\hline & \multicolumn{2}{|l|}{HK-KT13 \({ }^{\text {Note }}\)} \\
\hline \multirow[t]{2}{*}{Omron Electronics} & \multicolumn{2}{|l|}{R88M-K10030} \\
\hline & \multicolumn{2}{|l|}{R88M-1M10030 \({ }^{\text {Note }}\)} \\
\hline Panasonic Corp. & \multicolumn{2}{|l|}{MHMF01} \\
\hline
\end{tabular}

Note. To combine with the conversion dapter <GX-BEND-40> the shim plate ( t 1 ) is necessary.
\begin{tabular}{c|c}
\(\begin{array}{c}\text { Conversion } \\
\text { adapter product } \\
\text { moder }\end{array}\) & \(\begin{array}{c}\text { Shim plate part } \\
\text { number }\end{array}\) \\
\hline
\end{tabular}
GX-BEND-40 KES-M2295-00

When used with high acceleration or deceleration (High agility model)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stroke} & \multicolumn{4}{|l|}{50 mm to 650 mm ( 50 mm pitch)} \\
\hline Ball screw & w lead & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline Maximum payload & & 5 kg & 10 kg & 20 kg & - \\
\hline Maximum acceleration & Horizontal & \[
\begin{gathered}
14.72 \mathrm{~m} / \mathrm{s}^{2} \\
(1.5 \mathrm{G})
\end{gathered}
\] & \[
\begin{gathered}
14.72 \mathrm{~m} / \mathrm{s}^{2} \\
(1.5 \mathrm{G})
\end{gathered}
\] & \[
\begin{gathered}
9.64 \mathrm{~m} / \mathrm{s}^{2} \\
(1 \mathrm{G})
\end{gathered}
\] & - \\
\hline Maximum payload & & 1 kg & 2 kg & 4 kg & 8 kg \\
\hline Maximum acceleration & & \[
\begin{array}{|c}
14.72 \mathrm{~m} / \mathrm{s}^{2} \\
(1.5 \mathrm{G})
\end{array}
\] & \[
\begin{gathered}
14.72 \mathrm{~m} / \mathrm{s}^{2} \\
(1.5 \mathrm{G})
\end{gathered}
\] & \[
\begin{aligned}
& 8.44 \mathrm{~m} / \mathrm{s}^{2} \\
& (0.9 \mathrm{G})
\end{aligned}
\] & \[
\begin{aligned}
& 4.32 \mathrm{~m} / \mathrm{s}^{2} \\
& (0.4 \mathrm{G})
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{- Payload - Acceleration / Deceleration Graph (Estimate)}

\(\square\) Allowable overhang \({ }^{\text {Note }}\)

LGXS07-30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
(Unit: mm) \\
\hline
\end{tabular}} & \multicolumn{4}{|l|}{Wall installation (Unit: mm )} & \multicolumn{3}{|l|}{Vertical installation (Unitsm)} \\
\hline & A & B & & & A & B & C & & A & C \\
\hline 2kg & 1020 & 897 & 608 & 2kg & 579 & 830 & 976 & 1 kg & 1165 & 1165 \\
\hline 5 kg & 461 & 346 & 245 & 5 kg & 208 & 279 & 401 & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{LGXS07-20 Horizontal installation}} & \multirow[b]{2}{*}{(Unit: mm)} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Wall installation}} & \multirow[b]{2}{*}{(Unit: mm)} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Vertical installation (Unit. mm)}} \\
\hline & & & & & & & & & & \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 3kg & 1224 & 758 & 640 & 3kg & 600 & 692 & 1175 & 1kg & 1793 & 1793 \\
\hline 6 kg & 684 & 369 & 321 & 6kg & 274 & 303 & 621 & 2kg & 891 & 891 \\
\hline 10kg & 459 & 214 & 190 & 10kg & 138 & 147 & 376 & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{LGXS07-10
Horizontal installation}} & \multirow[b]{2}{*}{(Unit: mm)} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Wall installation}} & \multirow[b]{2}{*}{(Unit: mm)} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Vertical installation (Unit. mm)}} \\
\hline & & & & & & & & & & \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 5 kg & 2208 & 622 & 665 & 5 kg & 603 & 556 & 2129 & 1 kg & 3012 & 3012 \\
\hline 12kg & 991 & 249 & 266 & 12kg & 200 & 182 & 890 & 2kg & 1487 & 1487 \\
\hline 20kg & 637 & 142 & 152 & 20kg & 83 & 75 & 497 & 4kg & 725 & 725 \\
\hline
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at
a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 \\
\hline \multirow{4}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 30 & \multicolumn{13}{|c|}{1800} \\
\hline & Lead 20 & \multicolumn{13}{|c|}{1200} \\
\hline & Lead 10 & \multicolumn{13}{|c|}{600} \\
\hline & Lead 5 & \multicolumn{13}{|c|}{300} \\
\hline
\end{tabular}

Note. The bending unit cannot be used for the high agility model.
Note. The high agility model is used in an effective stroke range of 50 to 650 ( 50 mm pitch)
Note. There is no critical speed setting. The maximum speed can be set for a selectable stroke.
he speed may not reach the maximum speed if the movement distance is short or depending on the operating conditions.
Note. See P. 239 for acceleration/deceleration and inertia moment


Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. When using the tap holes to mount the body, remove the set screws first.
Note 3. When using the countersunk holes (section A cross section) to mount the body, remove the cap from the inner side and then fix. Note 4. Side cover with T-groove is used to install the sensor.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 \\
\hline \multicolumn{2}{|r|}{Lb} & 252 & 302 & 352 & 402 & 452 & 502 & 552 & 602 & 652 & 702 & 752 & 802 & 852 & 902 & 952 & 1002 & 1052 & 1102 & 1152 & 1202 & 1252 & 1302 \\
\hline \multicolumn{2}{|r|}{Lc} & 160 & 160 & 160 & 160 & 360 & 360 & 360 & 360 & 360 & 360 & 360 & 360 & 760 & 760 & 760 & 760 & 760 & 760 & 760 & 760 & 760 & 760 \\
\hline \multicolumn{2}{|r|}{Qa} & 4 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 14 & 15 & 15 & 16 & 17 & 18 & 19 & 20 & 20 & 21 \\
\hline \multicolumn{2}{|r|}{Qb} & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline \multicolumn{2}{|r|}{Qc} & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \multicolumn{2}{|r|}{Qd} & 6 & 8 & 10 & 12 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 \\
\hline \multicolumn{2}{|r|}{Weight (kg)} & 3.2 & 3.4 & 3.7 & 4.0 & 4.3 & 4.5 & 4.8 & 5.1 & 5.3 & 5.6 & 5.9 & 6.2 & 6.4 & 6.7 & 7.0 & 7.2 & 7.5 & 7.8 & 8.1 & 8.3 & 8.6 & 8.9 \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
\hline \begin{tabular}{c} 
Maximum \\
speed \\
\((\mathrm{mm} / \mathrm{sec})\)
\end{tabular}
\end{tabular}} & Lead 30 & \multicolumn{14}{|c|}{1800} & 1530 & 1350 & 1170 & 990 & 900 & 810 & 720 & 630 \\
\hline & Lead 20 & \multicolumn{14}{|c|}{1200} & 1020 & 900 & 780 & 660 & 600 & 540 & 480 & 420 \\
\hline & Lead 10 & \multicolumn{14}{|c|}{600} & 510 & 450 & 390 & 330 & 300 & 270 & 240 & 210 \\
\hline & Lead 5 & \multicolumn{14}{|c|}{300} & 255 & 225 & 195 & 165 & 150 & 135 & 120 & 105 \\
\hline & Speed setting & \multicolumn{14}{|c|}{-} & 85\% & 75\% & 65\% & 55\% & 50\% & 45\% & 40\% & 35\% \\
\hline
\end{tabular}

\section*{LGXS10}

\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility. Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator. The product performance may not be satisfied depending on the compatible motor. The bending unit cannot be used for the high agility model.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Adaptable motor} & \multicolumn{4}{|c|}{200 W} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{4}{|c|}{+/-0.005 mm} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{4}{|c|}{Ground ball screw \(\phi 15\) (C5 class)} \\
\hline \multicolumn{2}{|l|}{Stroke} & \multicolumn{4}{|l|}{100 mm to 1250 mm ( 50 mm pitch)} \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) (or equivalent)} & \[
\begin{array}{|c|}
\hline 1800 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 600 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{Ball screw lead} & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline \multirow[t]{2}{*}{Maximum payload Note 3 (or equivalent)} & rizon & 25 kg & 40 kg & 80 kg & 100 kg \\
\hline & Vertica & 4 kg & 8 kg & 20 kg & 30 kg \\
\hline \multicolumn{2}{|l|}{Rated thrust \({ }^{\text {Note } 3}\) (or equivalent)} & 113 N & 170 N & 341 N & 683 N \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit} & \multicolumn{4}{|c|}{W \(100 \mathrm{~mm} \times \mathrm{H} 99.5 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Overall length} & \multicolumn{4}{|c|}{ST + 175.5 mm} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|l|}{ISO CLASS 3 (ISO14644-1) or equivalent} \\
\hline \multicolumn{2}{|l|}{Intake air Note 5} & \multicolumn{4}{|c|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline \multicolumn{2}{|l|}{Using ambient temperature and humidity} & \multicolumn{4}{|l|}{\[
\begin{gathered}
0 \text { to } 40^{\circ} \mathrm{C}, 35 \text { to } 80 \% \mathrm{RH} \\
\text { (non-condensing) } \\
\hline
\end{gathered}
\]} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed. \\
If the effective stroke exceeds 700 mm , the ball screw may resonate. (Critical speed) At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Note 3. The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated torque.} \\
\hline \multicolumn{2}{|l|}{Note 4. When using in a cle
joint. The degree o
achieved when usin} & \multicolumn{4}{|l|}{an environment, attach a suction air cleanliness is the cleanliness level g at \(1000 \mathrm{~mm} / \mathrm{sec}\) or less.} \\
\hline \multicolumn{2}{|l|}{Note 5. The required suctio operating condition} & \multicolumn{4}{|l|}{\begin{tabular}{l}
n amount will vary according to the s and operating environment. \\
tion/deceleration and inertia moment
\end{tabular}} \\
\hline
\end{tabular}

\section*{When used with high acceleration or deceleration (High agility model)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Stroke \\
Ball screw lead
\end{tabular}}} & \multicolumn{4}{|l|}{100 mm to 650 mm ( 50 mm pitch)} \\
\hline & & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline Maximum payload & Horizontal & 10 kg & 20 kg & 30 kg & - \\
\hline Maximum acceleration & Horizontal & \[
\begin{gathered}
19.62 \mathrm{~m} / \mathrm{s}^{2} \\
(2 \mathrm{G})
\end{gathered}
\] & \[
\begin{gathered}
19.62 \mathrm{~m} / \mathrm{s}^{2} \\
(2 \mathrm{G}) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 11.71 \mathrm{~m} / \mathrm{s}^{2} \\
& (1.2 \mathrm{G})
\end{aligned}
\] & - \\
\hline Maximum payload & Vertical & 2 kg & 4 kg & 8 kg & 12 kg \\
\hline Maximum acceleration & Vertical & \[
\begin{gathered}
19.62 \mathrm{~m} / \mathrm{s}^{2} \\
(2 \mathrm{G}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
19.62 \mathrm{~m} / \mathrm{s}^{2} \\
(2 \mathrm{G}) \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 10.84 \mathrm{~m} / \mathrm{s}^{2} \\
(1.1 \mathrm{G})
\end{array}
\] & \[
\begin{aligned}
& 5.53 \mathrm{~m} / \mathrm{s}^{2} \\
& (0.6 \mathrm{G})
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{Payload - Acceleration / Deceleration Graph (Estimate)} \\
\hline
\end{tabular}


\section*{Access the website below.}


Note. The bending unit cannot be used for the high agility model.
Note. The high agility model is used in an effective strok rang
Note. The high agility model is used in an effective stroke range of 100 to 650 ( 50 mm pitch).
Note. There is no critical speed setting. The maximum speed can be set for a selectable stroke
The speed may not reach the maximum speed if the movement distance is short or depending on the operating conditions.
Note. See P. 242 for acceleration/deceleration and inertia moment.

The tact simulation and service life calculation can be performed easily from our member site. For details, see P.42.


LGXS12

\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility. Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator. The product performance may not be satisfied depending on the compatible motor. The bending unit cannot be used for the high agility model.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline Adaptable motor & \multicolumn{4}{|c|}{400 W} \\
\hline Repeatability \({ }^{\text {Note } 1}\) & \multicolumn{4}{|c|}{+/-0.005 mm} \\
\hline Deceleration mechanism & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { Ground ball screw } \phi 15 \\
& \text { (C5 class) }
\end{aligned}
\]} \\
\hline Stroke & \multicolumn{4}{|l|}{100 mm to 1250 mm ( 50 mm pitch)} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) & \[
\begin{array}{|c|}
\hline 1800 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 1200 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 600 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{array}
\] & \[
\begin{gathered}
300 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] \\
\hline Ball screw lead & 30 mm & 20 mm & 10 mm & 5 mm \\
\hline \multirow[t]{2}{*}{Maximum payload Note 3 (or equivalent)} & 35 kg & 50 kg & 95 kg & 115 \\
\hline & 8 kg & 15 kg & 25 kg & 45 kg \\
\hline Rated thrust Note 3 (or equivalent) & 225 N & 339 N & 678 N & 1360 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{4}{|c|}{W \(125 \mathrm{~mm} \times \mathrm{H} 101 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{4}{|c|}{ST + 211.5 mm} \\
\hline Degree of cleanliness \({ }^{\text {Note } 4}\) & \multicolumn{4}{|l|}{ISO CLASS 3 (ISO14644-1)
or equivalent} \\
\hline Intake air Note 5 & \multicolumn{4}{|r|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline Using ambient
temperature and humidity & \multicolumn{4}{|l|}{\[
\begin{gathered}
0 \text { to } 40^{\circ} \mathrm{C}, 35 \text { to } 80 \% \mathrm{RH} \\
\text { (non-condensing) }
\end{gathered}
\]} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed. \\
If the effective stroke exceeds 700 mm , the ball screw may resonate. (Critical speed) At this time, make the adjustment to decrease the speed while referring to the maximum speed shown in the table.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Note 3. The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated torque.} \\
\hline Note 4. When using in a clea & an enviro cleanline g at 1000 & nment, at ss is the \(\mathrm{mm} / \mathrm{sec}\) & ttach a su cleanlines or less. & ction air ss level \\
\hline \multicolumn{5}{|l|}{Note 5. The required suction amount will va operating conditions and operating Note. See P. 244 for acceleration/deceleration} \\
\hline
\end{tabular}


\section*{When used with high acceleration or deceleration (High agility model)}

\section*{Specifications}
\begin{tabular}{l|c|c|c|c|c}
\hline Stroke & \multicolumn{3}{|c}{100 mm to \(650 \mathrm{~mm}(50 \mathrm{~mm}\) pitch) } \\
\hline \begin{tabular}{l|c|c|c|}
\hline Ball screw lead & 30 mm & 20 mm & 10 mm \\
5 mm \\
\hline \begin{tabular}{l} 
Maximum \\
payload
\end{tabular} & Horizontal & 20 kg & 30 kg \\
\hline \begin{tabular}{l} 
Maximum \\
acceleration
\end{tabular} & \begin{tabular}{c}
\(19.62 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((2 \mathrm{G})\)
\end{tabular} & \begin{tabular}{c}
\(19.62 \mathrm{mg} / \mathrm{s}^{2}\) \\
\((2 \mathrm{G})\)
\end{tabular} & - \\
\begin{tabular}{l} 
Maximum \\
payload
\end{tabular} & \(49.62 \mathrm{~m} / \mathrm{s}^{2}\) \\
\((2 \mathrm{G})\)
\end{tabular} & - \\
\begin{tabular}{l} 
Maximum \\
\begin{tabular}{l} 
Maximal \\
acceleration
\end{tabular}
\end{tabular} & 4 kg & 8 kg & 16 kg & 24 kg \\
\hline
\end{tabular}

\section*{\(\square\) Payload - Acceleration / Deceleration Graph (Estimate)}

Horizontall


Vertical

LGXS12-30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Horizon & stal & ion & (Unit: mm) & Wall ins & allatio & & it: mm) & Vertical & tallation & (Unit mm) \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 5 kg & 1216 & 1297 & 669 & 5 kg & 648 & 1224 & 1183 & 2kg & 1984 & 1984 \\
\hline 12kg & 461 & 506 & 252 & 12kg & 226 & 436 & 427 & 4 kg & 960 & 960 \\
\hline 20kg & 316 & 280 & 147 & 20kg & 117 & 213 & 266 & & & \\
\hline \multicolumn{11}{|l|}{LGXS12-20} \\
\hline \multicolumn{3}{|l|}{Horizontal installation} & (Unit: mm) & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unitsm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 10kg & 999 & 807 & 489 & 10kg & 458 & 740 & 966 & 3 kg & 2031 & 2031 \\
\hline 20kg & 521 & 378 & 231 & 20kg & 196 & 311 & 479 & 5 kg & 1193 & 1193 \\
\hline 30kg & 382 & 234 & 146 & 30kg & 109 & 168 & 325 & 8kg & 722 & 722 \\
\hline
\end{tabular}

\section*{LGXS12-10}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C & & A & C \\
\hline 15kg & 1668 & 737 & 535 & 15kg & 491 & 672 & 1628 & 5 kg & 2071 & 2071 \\
\hline 25kg & 1060 & 423 & 308 & 25kg & 263 & 358 & 1012 & 10kg & 1011 & 1011 \\
\hline 40kg & 709 & 246 & 180 & 40kg & 134 & 181 & 644 & 16kg & 612 & 612 \\
\hline
\end{tabular}
\(\overline{\text { Note. Distance from center of slider top to center of gravity of object being carried at a }}\) guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 \\
\hline \multirow[b]{4}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 30 & \multicolumn{12}{|c|}{1800} \\
\hline & Lead 20 & \multicolumn{12}{|c|}{1200} \\
\hline & Lead 10 & \multicolumn{12}{|c|}{600} \\
\hline & Lead 5 & \multicolumn{12}{|c|}{300} \\
\hline
\end{tabular}
Note. The bending unit cannot be used for the high agility model.
Note. The high agility model is used in an effective stroke range of 100 to 650 ( 50 mm pitch).
Note. There is no critical speed setting. The maximum speed
Note. There is no critical speed setting. The maximum speed can be set for a selectable stroke
The speed may not reach the maximum speed if the movement distance is short or depending on the operating
ote. See P. 246 for acceleration/deceleration and inertia moment.

Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. The length under head of the hex socket head bolts <M6 \(\times 1.0>\) used to mount the body with the mounting countersunk holes (section \(C\) cross-section) must be <<20 mm or more>>
The recommended length under head of the hex socket head bolts \(<\mathrm{M} 6 \times 1.0>\) used to mount the body with the mounting tap hole specifications is <<frame thickness +10 mm or less \(\gg\)
Note 3. When using the mounting countersunk holes (section C cross-section) to mount the body, remove the seal, and then fix.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 \\
\hline \multicolumn{2}{|r|}{Lb} & 311.5 & 361.5 & 411.5 & 461.5 & 511.5 & 561.5 & 611.5 & 661.5 & 711.5 & 761.5 & 811.5 & 861.5 & 911.5 & 961.5 & 1011.5 & 1061.5 & 1111.5 & 1161.5 & 1211.5 & 1261.5 & 1311.5 & 1361.5 & 1411.5 & 1461.5 \\
\hline \multicolumn{2}{|r|}{Lc} & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 \\
\hline \multicolumn{2}{|r|}{Ld} & 0 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 \\
\hline \multicolumn{2}{|r|}{Qa} & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & 20 & 20 & 20 \\
\hline \multicolumn{2}{|r|}{Qb} & 4 & 6 & 6 & 6 & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 \\
\hline \multicolumn{2}{|r|}{Qc} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 \\
\hline \multicolumn{2}{|r|}{Qd} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 \\
\hline \multicolumn{2}{|r|}{Weight (kg)} & 6.5 & 7.1 & 7.8 & 8.5 & 9.1 & 9.8 & 10.5 & 11.2 & 11.8 & 12.5 & 13.2 & 13.9 & 14.5 & 15.2 & 15.9 & 16.5 & 17.2 & 17.9 & 18.6 & 19.2 & 19.9 & 20.6 & 21.3 & 21.9 \\
\hline \multirow{5}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 30 & \multicolumn{13}{|c|}{1800} & 1530 & 1350 & 1170 & 990 & 900 & 810 & 720 & 630 & 54 & 40 & 450 \\
\hline & Lead 20 & \multicolumn{13}{|c|}{1200} & 1020 & 900 & 780 & 660 & 600 & 540 & 480 & 420 & & 60 & 300 \\
\hline & Lead 10 & \multicolumn{13}{|c|}{600} & 510 & 450 & 390 & 330 & 300 & 270 & 240 & 210 & & 80 & 150 \\
\hline & Lead 5 & \multicolumn{13}{|c|}{300} & 255 & 225 & 195 & 165 & 150 & 135 & 120 & 105 & 90 & 0 & 75 \\
\hline & Speed setting & \multicolumn{13}{|c|}{-} & 85\% & 75\% & 65\% & 55\% & 50\% & 45\% & 40\% & 35\% & & \% & 25\% \\
\hline
\end{tabular}

\section*{OOrdering method} 10: 10 mm

\section*{[Caution]}

This system is provided as mechanical actuator unit and not including any adopters or electric components. Motor, driver and other components required for installation are user's responsibility. Refer to user's manual for installation details. Refer to your motor manual for tuning or adjustment. Vibration or resonance from actuator will affect service life of actuator. The product performance may not be satisfied depending on the compatible motor. The bending unit cannot be used for the high agility model.
\begin{tabular}{|c|c|c|c|}
\hline Adaptable motor & \multicolumn{3}{|c|}{750 W} \\
\hline Repeatability Note 1 & \multicolumn{3}{|c|}{+/-0.005 mm} \\
\hline Deceleration mechanism & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Ground ball screw } \phi 20 \\
& \text { (C5 class) }
\end{aligned}
\]} \\
\hline Stroke & \multicolumn{3}{|l|}{100 mm to 1450 mm ( 50 mm pitch)} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (or equivalent) & \[
\begin{gathered}
2400 \\
\mathrm{~mm} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline Ball screw lead & 40 mm & 20 mm & 10 mm \\
\hline \(\mathrm{Maximum}^{\text {paxima }}\) N Horizontal & 45 kg & 95 kg & 130 kg \\
\hline (or equivalent) Vertical & 12 kg & 28 kg & 55 kg \\
\hline Rated thrust Note 3 (or equivalent) & 320 N & 640 N & 1280 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{3}{|l|}{W \(160 \mathrm{~mm} \times \mathrm{H} 130 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{3}{|c|}{\(\mathrm{ST}+242.5 \mathrm{~mm}\)} \\
\hline Degree of cleanliness Note4 & \multicolumn{3}{|l|}{ISO CLASS 3(ISO14644-1)
or equivalent} \\
\hline Intake air Note 5 & \multicolumn{3}{|l|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} /\) /min} \\
\hline Using ambient temperature and humidity & \multicolumn{3}{|l|}{\[
\begin{gathered}
0 \text { to } 40^{\circ} \mathrm{C}, 35 \text { to } 80 \% \mathrm{RH} \\
\text { (non-condensing) }
\end{gathered}
\]} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. When a moving distance is short and depending on an operation condition, it may not reach the maximum speed.
If the effective stroke exceeds 800 mm , the ball screw
At this time, make the adjustment to decrease the speed
Note 3. The rate referring to the maximum speed shown in the table. values assuming the attached motor outputs the rated torque
Note 4. When using in a clean environment, attach a suction air joint. The degree of cleanliness is the cleanliness level achieved when using at \(1000 \mathrm{~mm} / \mathrm{sec}\) or less.
Note 5. The required suction amount will vary according to the Note. See P. 248 for acceleration/deceleration and inertia moment.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{Stroke} & \multicolumn{3}{|l|}{100 mm to 800 mm ( 50 mm pitch)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead} & 40 mm & 20 mm & 10 mm \\
\hline Maximum
payload & \multirow[b]{2}{*}{Horizontal} & 30 kg & 60 kg & \\
\hline Maximum acceleration & & \[
\begin{gathered}
19.62 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
\] & \[
\underset{(2 \mathrm{G})}{19.84 \mathrm{~m} / \mathrm{s}^{2}}
\] & \\
\hline Maximum
payload & \multirow[b]{2}{*}{Vertical} & 8 kg & 16 kg & 32 kg \\
\hline Maximum acceleration & & \[
\begin{gathered}
19.62 \mathrm{~m} / \mathrm{s}^{2} \\
\hline(\mathrm{G})
\end{gathered}
\] & \[
\begin{gathered}
18.43 \mathrm{~m} / \mathrm{s}^{2} \\
(1.9 \mathrm{G})
\end{gathered}
\] & \[
\begin{gathered}
11.17 \mathrm{~m} / \mathrm{s}^{2} \\
(1.1 \mathrm{G})
\end{gathered}
\] \\
\hline \multicolumn{5}{|l|}{Payload - Acceleration / Deceleration Graph (Estimate)} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Vertical} &  &  & \begin{tabular}{l}
LGXS16-10 \\
LGXS16-20 \\
LGXS16-40
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & \multirow[t]{2}{*}{(Unit: mm)} & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit.mm)} \\
\hline & A & B & & & A & B & C & & A & C \\
\hline 15kg & 2876 & 1866 & 1253 & 15kg & 1273 & 1802 & 2797 & 3 kg & 6605 & 6605 \\
\hline 30kg & 2385 & 997 & 776 & 30kg & 782 & 935 & 2263 & 6 kg & 3699 & 3699 \\
\hline 45kg & 2339 & 720 & 604 & 45kg & 598 & 658 & 2174 & 12kg & 2827 & 2827 \\
\hline \multicolumn{11}{|l|}{LGXS16-20} \\
\hline & & & & \multicolumn{4}{|l|}{Wall installation (Unit: mm} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm )} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 30kg & 3862 & 1255 & 1106 & 30kg & 1102 & 1192 & 3742 & 10kg & 3404 & 3404 \\
\hline 50kg & 2568 & 733 & 652 & 50kg & 630 & 671 & 2422 & 20kg & 1740 & 1740 \\
\hline 80kg & 1798 & 440 & 394 & 80kg & 360 & 377 & 1612 & 28kg & 1504 & 1504 \\
\hline 95 kg & 1579 & 362 & 325 & 95kg & 288 & 300 & 1373 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
LGXS16-10 \\
Horizontal installation
\end{tabular}} & (Unit: mm) & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit:mm)} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 50kg & 6253 & 1026 & 1024 & 50kg & 980 & 964 & 6089 & 15kg & 3434 & 3434 \\
\hline 80kg & 4447 & 623 & 624 & 80kg & 573 & 561 & 4240 & 30kg & 1684 & 1684 \\
\hline 100kg & 3957 & 489 & 490 & 100kg & 437 & 426 & 3706 & 55kg & 889 & 889 \\
\hline 130kg & 3786 & 365 & 367 & 130kg & 312 & 302 & 3422 & & & \\
\hline
\end{tabular}

\section*{LGXS16-10
Horizontal ins}

Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.
LGXS16-40

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline \multicolumn{2}{|l|}{MY} & \multicolumn{2}{|l|}{MP} & MR \\
\hline \multicolumn{2}{|l|}{706} & \multicolumn{2}{|l|}{706} & 620 \\
\hline \multicolumn{5}{|l|}{Adaptable Servo Motor} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Specification}} & \multicolumn{2}{|l|}{Flange size} & \(\square 80\) \\
\hline & & \multicolumn{2}{|l|}{Wattage} & 750 W \\
\hline Motor specification & \multicolumn{2}{|l|}{Manufacturer} & \multicolumn{2}{|r|}{Model} \\
\hline \multirow{7}{*}{No entry} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Yaskawa \\
Electric Corp
\end{tabular}}} & \multicolumn{2}{|l|}{SGMJV-08} \\
\hline & & & SGM7J & 7J-08 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Keyence Corp.}} & SV- & 075 \\
\hline & & & SV2- & \(\square 075\) \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Mitsubishi Electric Corp.}} & HF-K & P73 \\
\hline & & & HG-KP & R73 Note 1 \\
\hline & & & HK-KT & 7M3 Note 1 \\
\hline \multirow{5}{*}{\(P^{\text {Note } 2}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Omron Electronics}} & R88M & -K75030 \\
\hline & & & R88M- & 1M75030 \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Panasonic Corp.}} & MSMD & D08 \\
\hline & & & MSM & F08 \\
\hline & & & MHM & F08 \\
\hline
\end{tabular}

Note 1.To combine with the conversion adapter <GX-BEND-80>, the Note 2. For the specifications \(P\), the bending unit cannot be used

When used with high acceleration or deceleration (High agility model)


Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).
Note. Service life is calculated for 600 mm stroke models.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 \\
\hline \multirow[t]{3}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 40 & \multicolumn{15}{|c|}{2400} \\
\hline & Lead 20 & \multicolumn{15}{|c|}{1200} \\
\hline & Lead 10 & \multicolumn{15}{|c|}{600} \\
\hline
\end{tabular}

Note. The bending unit cannot be used for the high agility model.
Note. The high agility model is used in an effective stroke range of 100 to 800 ( 50 mm pitch).
Note. There is no critical speed setting. The maximum speed can be set for a selectable stroke.
The speed may not reach the maximum speed if the movement distance is short or depending on the operating conditions.
Note. See P. 250 for acceleration/deceleration and inertia moment.

\section*{Access the website below.}
Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. The length under head of the hex socket head bolts \(<\mathrm{M} 8 \times 1.25>\) used to mount the body with the mounting countersunk holes (section C cross-section) must be <<25 mm or more>>.
The recommended length under head of the hex socket head bolts \(<\mathrm{M} 8 \times 1.25>\) used to mount the body with the mounting tap hole specifications is <<frame thickness +15 mm or less>>.
Note 3. When using the mounting countersunk holes (section C cross-section) to mount the body, remove the seal, and then fix.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effecti & ive stroke & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline & Lb & 342.5 & 392.5 & 442.5 & 492.5 & 542.5 & 592.5 & 642.5 & 692.5 & 742.5 & 792.5 & 842.5 & 892.5 & 942.5 & 992.5 & 1042.5 & 1092.5 & 1142.5 & 1192.5 & 1242.5 & 1292.5 & 1342.5 & 1392.5 & 1442.5 & 1492.5 & 1542.5 & 1592.5 & 1642.5 & 1692.5 \\
\hline & Lc & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline & Ld & 0 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 \\
\hline & Qa & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & 20 & 20 & 20 & 20 & 22 & 22 & 22 \\
\hline & Qb & 4 & 6 & 6 & 6 & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 \\
\hline & Qc & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 \\
\hline & Qd & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 \\
\hline Weig & ght (kg) & 11.7 & 12.7 & 13.7 & 14.7 & 15.7 & 16.6 & 17.6 & 18.6 & 19.6 & 20.6 & 21.5 & 22.5 & 23.5 & 24.5 & 25.5 & 26.5 & 27.4 & 28.4 & 29.4 & 30.4 & 31.4 & 32.4 & 33.3 & 34.3 & 35.3 & 36.3 & 37.3 & 38.2 \\
\hline \multirow{4}{*}{Maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 40 & \multicolumn{15}{|c|}{2400} & 2160 & 1920 & 1680 & 1440 & 1320 & 1200 & 1080 & \multicolumn{2}{|l|}{960} & 840 & \multicolumn{2}{|r|}{720} & 600 \\
\hline & Lead 20 & \multicolumn{15}{|c|}{1200} & 1080 & 960 & 840 & 720 & 660 & 600 & 540 & & 80 & 420 & \multicolumn{2}{|r|}{360} & 300 \\
\hline & Lead 10 & \multicolumn{15}{|c|}{600} & 540 & 480 & 420 & 360 & 330 & 300 & 270 & \multicolumn{2}{|l|}{240} & 210 & \multicolumn{2}{|r|}{180} & 150 \\
\hline & Speed setting & \multicolumn{15}{|c|}{-} & 90\% & 80\% & 70\% & 60\% & 55\% & 50\% & 45\% & \multicolumn{2}{|l|}{40\%} & 35\% & \multicolumn{2}{|r|}{30\%} & 25\% \\
\hline
\end{tabular}


\section*{GOrdering method}

\section*{［Caution］}

This system is provided as mechanical actuator unit and not including any adopters or electric components．Motor，driver and other components required for installation are user＇s responsibility． Refer to user＇s manual for installation details．Refer to your motor manual for tuning or adjustment．Vibration or resonance from actuator will affect service life of actuator adjustment．Vibration or resonance from actuator will affect service life of actuator．
The product performance may not be satisfied depending on the compatible motor．

\section*{Specifications}
\begin{tabular}{|l|l|}
\hline Adaptable motor & \\
\hline Repeatability Note 1 & \\
\hline \begin{tabular}{l} 
Deceleration \\
mechanism
\end{tabular} & \\
\hline Stroke & 100 \\
\hline
\end{tabular}
\begin{tabular}{|c}
\hline \\
\hline \begin{tabular}{c} 
Ground ball screw \(\phi 20\) \\
（C5 class）
\end{tabular} \\
\hline 100 mm to 1450 mm （50 mm pitch）
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Stroke} & & C5 class & \\
\hline & \multicolumn{3}{|l|}{100 mm to 1450 mm （ 50 mm pitch）} \\
\hline Maximum speed \({ }^{\text {Note } 2}\) （or equivalent） & \[
\begin{gathered}
2400 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
1200 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
600 \\
\mathrm{~mm} / \mathrm{sec}
\end{gathered}
\] \\
\hline Ball screw lead & 40 mm & 20 mm & 10 mm \\
\hline \multirow[t]{2}{*}{Maximum payload Note 3 （or equivalent）} & 65 kg & 130 kg & 160 kg \\
\hline & 15 kg & 35 kg & 65 kg \\
\hline Rated thrust Note 3 （or equivalent） & 320 N & 640 N & 1280 N \\
\hline Maximum dimensions of cross section of main unit & \multicolumn{3}{|l|}{W \(200 \mathrm{~mm} \times \mathrm{H} 140 \mathrm{~mm}\)} \\
\hline Overall length & \multicolumn{3}{|c|}{ST＋ 288.5 mm} \\
\hline Degree of cleanliness \({ }^{\text {Note } 4}\) & \multicolumn{3}{|l|}{ISO CLASS 3 （ISO14644－1）
or equivalent} \\
\hline Intake air \({ }^{\text {Note } 5}\) & \multicolumn{3}{|l|}{\(30 \mathrm{~N} \ell / \mathrm{min}\) to \(90 \mathrm{~N} \ell / \mathrm{min}\)} \\
\hline Using ambient temperature and humidity & \multicolumn{3}{|l|}{0 to \(40^{\circ} \mathrm{C}, 35\) to \(80 \% \mathrm{RH}\) （non－condensing）} \\
\hline
\end{tabular}

Note 1．Positioning repeatability in one direction．
Note 2．When a moving distance is short and depending on an operation condition，it may not reach the maximum speed．
may resoctive stroke exceeds 800 mm ，the ball screw At this time，make the adjustment to decrease the speed Note 3．While referring to the maximum speed shown in the table． The rated thrust and maximum transferable weight are values assuming the attached motor outputs the rated
torque． Note 4．When
oint．The deg a clean environment，attach a suction air achieved when using at \(1000 \mathrm{~mm} / \mathrm{sec}\) or less．
Note 5．The required suction amount will vary according to the
operating conditions and operating environment．


LGXS20－40
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & \multirow[t]{2}{*}{\begin{tabular}{c}
（Unit： mm ） \\
C \\
\hline
\end{tabular}} & \multicolumn{4}{|l|}{Wall installation（Unit：mm）} & \multicolumn{3}{|l|}{Vertical installation（Unit．mm）} \\
\hline & A & B & & & A & B & C & & A & C \\
\hline 20kg & 5318 & 2821 & 2096 & 20kg & 2171 & 2751 & 5211 & 5 kg & 8187 & 8187 \\
\hline 40kg & 4836 & 1609 & 1369 & 40kg & 1417 & 1539 & 4667 & 10kg & 5203 & 5203 \\
\hline 65kg & 4824 & 1088 & 1001 & 65 kg & 1013 & 1018 & 4575 & 15kg & 4810 & 4810 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
LGXS20-20 \\
Horizontal installation
\end{tabular}} & （Unit：mm） & \multicolumn{3}{|l|}{Wall installation（U）} & Unit：mm） & \multicolumn{3}{|l|}{Vertical installation（Unit：mm）} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 50kg & 5436 & 1493 & 1377 & 50kg & 1390 & 1423 & 5265 & 20kg & 3436 & 3436 \\
\hline 80kg & 4417 & 911 & 854 & 80kg & 849 & 841 & 4153 & 30kg & 2600 & 2600 \\
\hline 100kg & 4592 & 756 & 727 & 100kg & 708 & 686 & 4253 & 35kg & 3073 & 3073 \\
\hline 130kg & 4338 & 596 & 584 & 130kg & 550 & 526 & 3933 & & & \\
\hline \multicolumn{3}{|l|}{LGXS20－10 Horizontal installation} & （Unit：mm） & \multicolumn{3}{|l|}{Wall installation} & （Unit：mm） & \multicolumn{3}{|l|}{Vertical installation（Unit：mm）} \\
\hline & A & B & C & & A & B & C & & A & C \\
\hline 40kg & 22519 & 2607 & 2713 & 40kg & 2704 & 2537 & 22210 & 20kg & 5157 & 5157 \\
\hline 80kg & 16716 & 1274 & 1331 & 80kg & 1293 & 1204 & 16141 & 40kg & 2553 & 2553 \\
\hline 120kg & 14066 & 830 & 868 & 120kg & 818 & 760 & 13223 & 65kg & 1600 & 1600 \\
\hline 160kg & 12284 & 608 & 637 & 160kg & 580 & 538 & 11190 & & & \\
\hline
\end{tabular}

Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．
Note．Service life is calculated for 600 mm stroke models．


External Sensor Installation Guide (Left side shown) Grease Gun Nozzle (Basic LBAS Model)
Robonity series
External Sensor Instalation Guide (Left side shown)
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{Specification} & Item & Specification \\
\hline Manufacturer & \multicolumn{2}{|l|}{Panasonic Industrial Device SUNX, Co., Ltd.} & Display lamp & \[
\begin{gathered}
\text { Orange LED } \\
\text { (ON when output ON) } \\
\hline
\end{gathered}
\] \\
\hline Model & GX-F8A & GX-F8B & Ambient environment & -25 to \(+75^{\circ} \mathrm{C}\), \\
\hline Output method & \multicolumn{2}{|c|}{NPN type} & and humidity & 35 to 85 \%RH \\
\hline Output action & ON when approaching & ON when leaving & Protection structure & IP68 \\
\hline Power voltage & \multicolumn{2}{|r|}{DC12 to 24V} & Cable length & 5 m \\
\hline Load current & \multicolumn{2}{|l|}{100 mA or less} & & \\
\hline Consumption current & \multicolumn{2}{|l|}{15 mA or less} & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Note 1. Installation is users' responsibility \\
Note 2. Mounting hardware included \\
Note 3. Sensor cable is 5 m . Adjust as needed. \\
end or no motor end of actuator
\end{tabular}} \\
\hline
\end{tabular}

\section*{LBAS04 \\ }
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|l|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching (NO, Normally Open) & ON when leaving (NC, Normally Closed) & & \\
\hline & sy & Proximity sensor option & KFU-M2205-10 & KFU-M2205-00 & & \\
\hline & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline ¢ & (2) & Sensor Bracket & KFU-M2 & 22FF-00 & 1 & \\
\hline \% & (3) & Bracket screw & 90990-6 & 66J004 & 1 & M3 \(\times 0.5\) Length 8 \\
\hline ¢ & (4) & Bracket bolt & 91312- & -03005 & 2 & M \(3 \times 0.5\) Length 5 \\
\hline 0 & (5) & Bracket nut & 95302- & -03700 & 2 & M3 \\
\hline Targ & t pla & te option & & & & \\
\hline & ass & Name & Num & mber & Qty & Remarks \\
\hline & sy & Target plate option & KFT-M2 & 2206-00 & & \\
\hline 흔 & (6) & Switch target plate & KFT-M2 & 2G5-00 & 1 & \\
\hline 亊 & (7) & Target plate bolt & 90112-02 & 02J005 & 2 & M2 \(\times 0.4\) Length 5 \\
\hline
\end{tabular}

\section*{LBAS05}

\begin{tabular}{l}
\multicolumn{7}{c}{ Proximity sensor option } \\
\hline \multirow{2}{*}{ Cl|ass } \\
\end{tabular}

\section*{LBAS08}


Proximity sensor option
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|l|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching (NO, Normally Open) & \[
\begin{aligned}
& \text { ON when leaving } \\
& \text { (NC, Normally Closed) } \\
& \hline
\end{aligned}
\] & & \\
\hline \multicolumn{2}{|r|}{Assy} & Proximity sensor option & KFU-M2205-10 & KFU-M2205-00 & & \\
\hline \multirow{5}{*}{\[
\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}}
\]} & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline & (2) & Sensor Bracket & \multicolumn{2}{|l|}{KFU-M22FF-00} & 1 & \\
\hline & (3) & Bracket screw & \multicolumn{2}{|l|}{90990-66J004} & 1 & M3 \(\times 0.5\) Length 8 \\
\hline & (4) & Bracket bolt & \multicolumn{2}{|l|}{91312-03005} & 2 & M \(3 \times 0.5\) Length 5 \\
\hline & (5) & Bracket nut & \multicolumn{2}{|l|}{95302-03700} & 2 & M3 \\
\hline \multicolumn{7}{|l|}{Target plate option} \\
\hline \multicolumn{2}{|r|}{Class} & Name & \multicolumn{2}{|l|}{Number} & Qty & Remarks \\
\hline \multicolumn{2}{|r|}{Assy} & Target plate option & \multicolumn{2}{|l|}{KFV-M2206-00} & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { b흘 } \\
& \text { 흗 } \\
& \hline
\end{aligned}
\]} & (6) & Switch target plate & \multicolumn{2}{|l|}{KFV-M22G5-00} & 1 & \\
\hline & (7) & Target plate bolt & \multicolumn{2}{|l|}{91312-03005} & 2 & M \(3 \times 0.5\) Length 5 \\
\hline
\end{tabular}

\section*{Grease Gun Nozzle (LBAS Model)}

Specially designed for LBAS model for lubrication on ball screw and linear guide.
* It can be used by attaching to a commercially available general grease gun.

\section*{- Lubrication Kit}

Grease nozzle and nozzle tip
Part number KFU-M3861-00

\section*{- Nozzle tip}


\section*{- Grease nozzle}

Part number KFU-M2942-00
\begin{tabular}{|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{Specification} \\
\hline Manufacturer & \multicolumn{2}{|l|}{Panasonic Industrial Device SUNX, Co., Ltd.} \\
\hline Model & GX-F8A & GX-F8B \\
\hline Output method & \multicolumn{2}{|l|}{NPN type} \\
\hline Output action & ON when approaching & ON when leaving \\
\hline Power voltage & \multicolumn{2}{|l|}{DC12 to 24V} \\
\hline Load current & \multicolumn{2}{|l|}{100 mA or less} \\
\hline Consumption current & \multicolumn{2}{|l|}{15 mA or less} \\
\hline
\end{tabular}
Note 1. Installation is users' responsibility
Note 2. Mounting hardware included
Note 3. Sensor cable is 5 m . Adjust as needed. Note 4. To install the sensor option, side cover with T groove is needed.

\section*{LGXS05}


Proximity sensor option
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|r|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching (NO, Normally Open) & ON when leaving (NC, Normally Closed) & & \\
\hline \multicolumn{2}{|r|}{Assy} & Proximity sensor option & KES-M2205-10 & KES-M2205-00 & & \\
\hline \multirow[t]{3}{*}{} & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline & (2) & Bracket screw & \multicolumn{2}{|r|}{90990-66J025} & 1 & M3 \(\times 0.5\) Length 10 \\
\hline & (3) & Bracket nut & \multicolumn{2}{|r|}{95302-03600} & 2 & M3 \\
\hline
\end{tabular}

Target plate option
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Class} & Name & Number & Qty & Remarks \\
\hline \multicolumn{2}{|l|}{Assy} & Target plate option & KES-M2206-00 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 鬎 } \\
& \text { 敛 }
\end{aligned}
\]} & (4) & Switch target plate & KES-M22G5-00 & 1 & \\
\hline & (5) & Target plate bolt & 91312-03006 & 2 & M \(3 \times 0.5\) Length 6 \\
\hline
\end{tabular}

\begin{tabular}{l}
\multicolumn{7}{l}{ Proximity sensor option } \\
\hline \multirow{2}{*}{ Class } \\
\end{tabular}

\section*{LGXS07}


Proximity sensor option
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|r|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching (NO, Normally Open) & ON when leaving (NC, Normally Closed) & & \\
\hline \multicolumn{2}{|r|}{Assy} & Proximity sensor option & KES-M2205-10 & KES-M2205-00 & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l} 
듷 \\
흘 \\
ㅡㅡㅇ \\
\hline
\end{tabular}} & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline & (2) & Bracket screw & \multicolumn{2}{|r|}{90990-66J025} & 1 & \(\mathrm{M} 3 \times 0.5\) Length 10 \\
\hline & (3) & Bracket nut & \multicolumn{2}{|r|}{95302-03600} & 2 & M3 \\
\hline \multicolumn{7}{|l|}{Target plate option} \\
\hline \multicolumn{2}{|l|}{Class} & Name & \multicolumn{2}{|r|}{Number} & Qty & Remarks \\
\hline \multicolumn{2}{|r|}{Assy} & Target plate option & \multicolumn{2}{|r|}{KES-M2206-00} & & \\
\hline \multirow[t]{2}{*}{} & (4) & Switch target plate & \multicolumn{2}{|r|}{KES-M22G5-00} & 1 & \\
\hline & (5) & Target plate bolt & \multicolumn{2}{|r|}{91312-03006} & 2 & M3 \(\times 0.5\) Length 6 \\
\hline
\end{tabular}

External Sensor Installation Guide (Left side shown) (Advanced LGXS Model)

\title{
Robonity series External Sensor Installation Guide (Left side shown)
}


\section*{LGXS10}


Proximity sensor option
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|c|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching
(NO, Normally Open) & ON when leaving (NC, Normally Closed) & & \\
\hline \multicolumn{2}{|r|}{Assy} & Proximity sensor option & KEV-M2205-10 & KEV-M2205-00 & & \\
\hline \multirow[t]{5}{*}{} & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline & (2) & Sensor Bracket & \multicolumn{2}{|c|}{KEV-M22FF-00} & 1 & \\
\hline & (3) & Bracket screw & \multicolumn{2}{|c|}{90990-66J004} & 1 & M \(3 \times 0.5\) Length 8 \\
\hline & (4) & Bracket bolt & \multicolumn{2}{|c|}{91312-05008} & 2 & M \(5 \times 0.8\) Length 8 \\
\hline & (5) & Bracket nut & \multicolumn{2}{|c|}{95302-05700} & 2 & M5 \\
\hline
\end{tabular}

Target plate option
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Class}} & Name & Number & Qty & Remarks \\
\hline & & Target plate option & KEV-M2206-00 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 틀 } \\
& \text { 흘 } \\
& \hline
\end{aligned}
\]} & (6) & Switch target plate & KEV-M22G5-00 & 1 & \\
\hline & (7) & Target plate bolt & 91312-05008 & 2 & M5 \(\times 0.8\) Length 8 \\
\hline
\end{tabular}

LGXS12

\begin{tabular}{l}
\multicolumn{7}{c}{ Proximity sensor option } \\
\hline \multirow{2}{*}{ Cl|ass } \\
\end{tabular}

Proximity sensor option
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|l|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching (NO, Normally Open) & ON when leaving (NC, Normally Closed) & & \\
\hline \multicolumn{2}{|l|}{Assy} & Proximity sensor option & KEX-M2205-10 & KEX-M2205-00 & & \\
\hline \multirow[t]{5}{*}{} & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline & (2) & Sensor Bracket & \multicolumn{2}{|l|}{KEX-M22FF-00} & 1 & \\
\hline & (3) & Bracket screw & \multicolumn{2}{|l|}{90990-66J004} & 1 & M3 \(\times 0.5\) Length 8 \\
\hline & (4) & Bracket bolt & \multicolumn{2}{|l|}{91312-05008} & 2 & M5 \(\times 0.8\) Length 8 \\
\hline & (5) & Bracket nut & \multicolumn{2}{|l|}{95302-05700} & 2 & M5 \\
\hline
\end{tabular}

Target plate option
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Class} & Name & Number & Qty & Remarks \\
\hline \multicolumn{2}{|l|}{Assy} & Target plate option & KEV-M2206-00 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { 를 } \\
& \text { n } \\
& \hline
\end{aligned}
\]} & (6) & Switch target plate & KEV-M22G5-00 & 1 & \\
\hline & (7) & Target plate bolt & 91312-05008 & 2 & M5 \(\times 0.8\) Length 8 \\
\hline
\end{tabular}

\section*{LGXS20}


Proximity sensor option
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Class}} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|r|}{Number} & \multirow[b]{2}{*}{Qty} & \multirow[b]{2}{*}{Remarks} \\
\hline & & & ON when approaching (NO, Normally Open) & ON when leaving (NC, Normally Closed) & & \\
\hline \multicolumn{2}{|l|}{Assy} & Proximity sensor option & KEY-M2205-10 & KEY-M2205-00 & & \\
\hline \multirow[t]{5}{*}{H
0
0
0
0
0
0
0} & (1) & Proximity sensor & KES-M4855-00 & KP6-M4855-01 & 1 & \\
\hline & (2) & Sensor Bracket & \multicolumn{2}{|c|}{KEY-M22FF-00} & 1 & \\
\hline & (3) & Bracket screw & \multicolumn{2}{|r|}{90990-66J004} & 1 & M3 \(\times 0.5\) Length 8 \\
\hline & (4) & Bracket bolt & \multicolumn{2}{|c|}{91312-05008} & 2 & M \(5 \times 0.8\) Length 8 \\
\hline & (5) & Bracket nut & \multicolumn{2}{|r|}{95302-05700} & 2 & M5 \\
\hline
\end{tabular}

\section*{Target plate option}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Class} & Name & Number & Qty & Remarks \\
\hline \multicolumn{2}{|l|}{Assy} & Target plate option & KEV-M2206-00 & & \\
\hline \multirow[t]{2}{*}{} & (6) & Switch target plate & KEV-M22G5-00 & 1 & \\
\hline & (7) & Target plate bolt & 91312-05008 & 2 & M5 \(\times 0.8\) Length 8 \\
\hline
\end{tabular}

Robonity series Reference guide for right angle motor mount (right side shown)


Note. For the availability of shim plate, see the adaptable servo motor table (P.210).


Note. For the availability of shim plate, see the adaptable servo motor table (P.212).


Note. For the availability of shim plate, see the adaptable servo motor table (P.216).

Note 1. Use by attaching the conversion adapter to the main unit. Refer to the manual for the attachment method.

Note 2. A motor is not included in the conversion adapter. Remove a motor from the main unit, and install the conversion adapter.
Note 3. Right installation and left installation are possible.


\section*{LGXS16}


Note. For the availability of shim plate, see the adaptable servo motor table (P.220).

\section*{LGXS20}


Note. For the availability of shim plate, see the adaptable servo motor table (P.222).
\begin{tabular}{l|c|c|c}
\hline \multicolumn{1}{c|}{ Model } & Product model & Part No. & Weight \\
\hline LGXS05, LGXS05L, LGXS07 & GX-BEND-40 & KES-M221M-00 & 0.4 kg \\
\hline LGXS10, LGXS12 & GX-BEND-60 & KEV-M221M-00 & 1.2 kg \\
\hline LGXS16, LGXS20 & GX-BEND-80 & KEX-M221M-00 & 2.7 kg \\
\hline
\end{tabular}

\section*{Inertia Moment}

\section*{LBASO4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [kg.m \({ }^{2} \times 10^{-4}\) ] & \multicolumn{16}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 \\
\hline LBAS04-6 & 0.060 & 0.063 & 0.067 & 0.071 & 0.075 & 0.079 & 0.083 & 0.087 & 0.090 & 0.094 & 0.098 & 0.102 & 0.106 & 0.110 & 0.114 & 0.117 \\
\hline LBAS04-12 & 0.069 & 0.072 & 0.076 & 0.080 & 0.084 & 0.088 & 0.092 & 0.096 & 0.099 & 0.103 & 0.107 & 0.111 & 0.115 & 0.119 & 0.123 & 0.126 \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}

\section*{LBASO4}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LBAS04-6} & \multicolumn{2}{|l|}{LBAS04-12} \\
\hline & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 2.1 & 2.1 & 4.2 & 3.6 \\
\hline 1 & 1.91 & 2.1 & 3.84 & 2.4 \\
\hline 2 & 1.7 & 1.64 & 2.99 & 1.8 \\
\hline 3 & 1.53 & 1.34 & 2.45 & \\
\hline 4 & 1.4 & 1.14 & 2.07 & \\
\hline 5 & 1.28 & 0.99 & 1.8 & \\
\hline 6 & 1.18 & & 1.58 & \\
\hline 7 & 1.1 & & 1.42 & \\
\hline 8 & 1.02 & & 1.28 & \\
\hline 9 & 0.96 & & 1.17 & \\
\hline 10 & 0.9 & & 1.08 & \\
\hline 11 & 0.85 & & 1 & \\
\hline 12 & 0.81 & & 0.93 & \\
\hline 13 & 0.77 & & & \\
\hline 14 & 0.73 & & & \\
\hline 15 & 0.7 & & & \\
\hline 16 & 0.67 & & & \\
\hline 17 & 0.64 & & & \\
\hline 18 & 0.61 & & & \\
\hline 19 & 0.59 & & & \\
\hline 20 & 0.57 & & & \\
\hline
\end{tabular}

\section*{Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LBAS04-6}


\section*{LBAS04-12}


\section*{Inertia Moment}

\section*{LBAS05}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [ \(\left.\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\right]\) & \multicolumn{16}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 \\
\hline LBAS05-5 & 0.085 & 0.093 & 0.101 & 0.109 & 0.117 & 0.125 & 0.133 & 0.141 & 0.149 & 0.157 & 0.165 & 0.173 & 0.181 & 0.189 & 0.197 & 0.205 \\
\hline LBAS05-10 & 0.097 & 0.105 & 0.113 & 0.121 & 0.129 & 0.137 & 0.145 & 0.153 & 0.161 & 0.169 & 0.177 & 0.185 & 0.193 & 0.201 & 0.209 & 0.217 \\
\hline LBAS05-20 & 0.145 & 0.153 & 0.161 & 0.169 & 0.177 & 0.185 & 0.193 & 0.201 & 0.209 & 0.217 & 0.224 & 0.232 & 0.240 & 0.248 & 0.256 & 0.264 \\
\hline
\end{tabular}

\section*{\(\square\) Acceleration/Deceleration}

\section*{LBAS05}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LBAS05-5} & \multicolumn{2}{|r|}{LBAS05-10} & \multicolumn{2}{|c|}{LBAS05-20} \\
\hline & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 3.04 & 3.34 & 4.64 & 4.86 & 7.44 & 7.44 \\
\hline 1 & 2.97 & 3.18 & 4.44 & 4.56 & 7.44 & 6.99 \\
\hline 2 & 2.91 & 3.03 & 4.25 & 4.3 & 7.44 & 5.65 \\
\hline 3 & 2.85 & 2.88 & 4.07 & 4.06 & 7.44 & 3.42 \\
\hline 4 & 2.79 & 2.73 & 3.9 & 3.85 & 7.44 & \\
\hline 5 & 2.73 & 2.58 & 3.73 & 3.66 & 7.44 & \\
\hline 6 & 2.67 & 2.43 & 3.57 & 3.49 & 6.64 & \\
\hline 7 & 2.61 & 2.28 & 3.41 & & 6 & \\
\hline 8 & 2.55 & 2.13 & 3.27 & & 5.47 & \\
\hline 9 & 2.49 & 1.98 & 3.12 & & 5.02 & \\
\hline 10 & 2.43 & 1.83 & 2.99 & & 4.65 & \\
\hline 11 & 2.37 & 1.68 & 2.86 & & 4.32 & \\
\hline 12 & 2.31 & 1.53 & 2.74 & & 4.04 & \\
\hline
\end{tabular}

Payload - Acceleration/Deceleration Graph (Estimate)

\section*{LBAS05-5}


Vertical


\section*{Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LBAS05-10}
Horizontal/
Wall hanging


Vertical


\section*{LBAS05-20}

Horizontal/ Wall hanging

Vertical


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [kg \(\cdot \mathrm{m}^{2} \times 10^{-4}\) ] & \multicolumn{22}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 \\
\hline LBAS08-5 & 0.160 & 0.168 & 0.176 & 0.184 & 0.192 & 0.200 & 0.208 & 0.216 & 0.224 & 0.232 & 0.240 & 0.248 & 0.256 & 0.263 & 0.271 & 0.279 & 0.287 & 0.295 & 0.303 & 0.311 & 0.319 & 0.327 \\
\hline LBAS08-10 & 0.190 & 0.198 & 0.206 & 0.214 & 0.222 & 0.230 & 0.238 & 0.246 & 0.254 & 0.261 & 0.269 & 0.277 & 0.285 & 0.293 & 0.301 & 0.309 & 0.317 & 0.325 & 0.333 & 0.341 & 0.349 & 0.357 \\
\hline LBAS08-20 & 0.309 & 0.317 & 0.325 & 0.333 & 0.341 & 0.349 & 0.357 & 0.365 & 0.373 & 0.381 & 0.389 & 0.397 & 0.405 & 0.413 & 0.421 & 0.429 & 0.437 & 0.445 & 0.453 & 0.461 & 0.469 & 0.477 \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}

\section*{LBAS08}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|l|}{LBAS08-5} & \multicolumn{2}{|l|}{LBAS08-10} & \multicolumn{2}{|l|}{LBAS08-20} & \multirow[b]{2}{*}{Model} & \multicolumn{2}{|l|}{LBAS08-5} & \multicolumn{2}{|l|}{LBAS08-10} & \multicolumn{2}{|l|}{LBAS08-20} \\
\hline & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration
\(\left[\mathrm{m} / \mathrm{s}^{2}\right]\)} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 1.65 & 1.65 & 6.09 & 4.79 & 8.51 & 8.5 & 78 & 0.77 & & 1.5 & & & \\
\hline 1 & 1.63 & 1.62 & 5.97 & 4.54 & 8.2 & 7.39 & 79 & 0.76 & & 1.5 & & & \\
\hline 2 & 1.62 & 1.59 & 5.86 & 4.31 & 7.9 & 6.42 & 80 & 0.76 & & 1.5 & & & \\
\hline 3 & 1.6 & 1.57 & 5.74 & 4.09 & 7.61 & 5.59 & 81 & 0.75 & & & & & \\
\hline 4 & 1.59 & 1.54 & 5.63 & 3.88 & 7.33 & 4.89 & 82 & 0.74 & & & & & \\
\hline 5 & 1.58 & 1.51 & 5.52 & 3.68 & 7.05 & 4.33 & 83 & 0.73 & & & & & \\
\hline 6 & 1.56 & 1.49 & 5.42 & 3.5 & 6.77 & 3.91 & 84 & 0.72 & & & & & \\
\hline 7 & 1.55 & 1.46 & 5.31 & 3.32 & 6.51 & 3.62 & 85 & 0.71 & & & & & \\
\hline 8 & 1.54 & 1.44 & 5.21 & 3.16 & 6.24 & 3.46 & 86 & 0.71 & & & & & \\
\hline 9 & 1.52 & 1.41 & 5.1 & 3.01 & 5.99 & & 87 & 0.7 & & & & & \\
\hline 10 & 1.51 & 1.38 & 5 & 2.87 & 5.74 & & 88 & 0.69 & & & & & \\
\hline 11 & 1.5 & 1.36 & 4.9 & 2.74 & 5.5 & & 89 & 0.68 & & & & & \\
\hline 12 & 1.49 & 1.33 & 4.8 & 2.62 & 5.26 & & 90 & 0.67 & & & & & \\
\hline 13 & 1.47 & 1.3 & 4.7 & 2.52 & 5.03 & & 91 & 0.67 & & & & & \\
\hline 14 & 1.46 & 1.28 & 4.61 & 2.42 & 4.8 & & 92 & 0.66 & & & & & \\
\hline 15 & 1.45 & 1.25 & 4.51 & 2.34 & 4.58 & & 93 & 0.65 & & & & & \\
\hline 16 & 1.43 & 1.23 & 4.42 & 2.27 & 4.37 & & 94 & 0.64 & & & & & \\
\hline 17 & 1.42 & 1.2 & 4.33 & 2.21 & 4.16 & & 95 & 0.63 & & & & & \\
\hline 18 & 1.41 & 1.17 & 4.24 & 2.16 & 3.96 & & 96 & 0.63 & & & & & \\
\hline 19 & 1.4 & 1.15 & 4.15 & 2.13 & 3.76 & & 97 & 0.62 & & & & & \\
\hline 20 & 1.38 & 1.12 & 4.06 & 2.1 & 3.57 & & 98 & 0.61 & & & & & \\
\hline 21 & 1.37 & 1.09 & 3.98 & & 3.38 & & 99 & 0.6 & & & & & \\
\hline 22 & 1.36 & 1.07 & 3.89 & & 3.21 & & 100 & 0.6 & & & & & \\
\hline 23 & 1.35 & 1.04 & 3.81 & & 3.03 & & & & & & & & \\
\hline 24 & 1.34 & 1.02 & 3.73 & & 2.87 & & & & & & & & \\
\hline 25 & 1.32 & 0.99 & 3.65 & & 2.71 & & & & & & & & \\
\hline 26 & 1.31 & 0.96 & 3.57 & & 2.55 & & & & & & & & \\
\hline 27 & 1.3 & 0.94 & 3.49 & & 2.4 & & & & & & & & \\
\hline 28 & 1.29 & 0.91 & 3.42 & & 2.26 & & & & & & & & \\
\hline 29 & 1.28 & 0.88 & 3.34 & & 2.13 & & & & & & & & \\
\hline 30 & 1.26 & 0.86 & 3.27 & & 1.99 & & & & & & & & \\
\hline 31 & 1.25 & & 3.2 & & 1.87 & & & & & & & & \\
\hline 32 & 1.24 & & 3.13 & & 1.75 & & & & & & & & \\
\hline 33 & 1.23 & & 3.06 & & 1.64 & & & & & & & & \\
\hline 34 & 1.22 & & 2.99 & & 1.53 & & & & & & & & \\
\hline 35 & 1.21 & & 2.93 & & 1.43 & & & & & & & & \\
\hline 36 & 1.19 & & 2.86 & & 1.34 & & & & & & & & \\
\hline 37 & 1.18 & & 2.8 & & 1.25 & & & & & & & & \\
\hline 38 & 1.17 & & 2.74 & & 1.16 & & & & & & & & \\
\hline 39 & 1.16 & & 2.68 & & 1.09 & & & & & & & & \\
\hline 40 & 1.15 & & 2.62 & & 1.02 & & & & & & & & \\
\hline 41 & 1.14 & & 2.57 & & & & & & & & & & \\
\hline 42 & 1.13 & & 2.51 & & & & & & & & & & \\
\hline 43 & 1.12 & & 2.46 & & & & & & & & & & \\
\hline 44 & 1.11 & & 2.41 & & & & & & & & & & \\
\hline 45 & 1.09 & & 2.36 & & & & & & & & & & \\
\hline 46 & 1.08 & & 2.31 & & & & & & & & & & \\
\hline 47 & 1.07 & & 2.26 & & & & & & & & & & \\
\hline 48 & 1.06 & & 2.21 & & & & & & & & & & \\
\hline 49 & 1.05 & & 2.17 & & & & & & & & & & \\
\hline 50 & 1.04 & & 2.12 & & & & & & & & & & \\
\hline 51 & 1.03 & & 2.08 & & & & & & & & & & \\
\hline 52 & 1.02 & & 2.04 & & & & & & & & & & \\
\hline 53 & 1.01 & & 2 & & & & & & & & & & \\
\hline 54 & 1 & & 1.96 & & & & & & & & & & \\
\hline 55 & 0.99 & & 1.93 & & & & & & & & & & \\
\hline 56 & 0.98 & & 1.89 & & & & & & & & & & \\
\hline 57 & 0.97 & & 1.86 & & & & & & & & & & \\
\hline 58 & 0.96 & & 1.83 & & & & & & & & & & \\
\hline 59 & 0.95 & & 1.8 & & & & & & & & & & \\
\hline 60 & 0.94 & & 1.77 & & & & & & & & & & \\
\hline 61 & 0.93 & & 1.74 & & & & & & & & & & \\
\hline 62 & 0.92 & & 1.72 & & & & & & & & & & \\
\hline 63 & 0.91 & & 1.69 & & & & & & & & & & \\
\hline 64 & 0.9 & & 1.67 & & & & & & & & & & \\
\hline 65 & 0.89 & & 1.65 & & & & & & & & & & \\
\hline 66 & 0.88 & & 1.63 & & & & & & & & & & \\
\hline 67 & 0.87 & & 1.61 & & & & & & & & & & \\
\hline 68 & 0.86 & & 1.59 & & & & & & & & & & \\
\hline 69 & 0.85 & & 1.57 & & & & & & & & & & \\
\hline 70 & 0.84 & & 1.56 & & & & & & & & & & \\
\hline 71 & 0.84 & & 1.55 & & & & & & & & & & \\
\hline 72 & 0.83 & & 1.54 & & & & & & & & & & \\
\hline 73 & 0.82 & & 1.53 & & & & & & & & & & \\
\hline 74 & 0.81 & & 1.52 & & & & & & & & & & \\
\hline 75 & 0.8 & & 1.51 & & & & & & & & & & \\
\hline 76 & 0.79 & & 1.51 & & & & & & & & & & \\
\hline 77 & 0.78 & & 1.5 & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Payload－Acceleration／Deceleration Graph（Estimate）}

\section*{LBAS08－5}


Vertical


\section*{LBAS08－10}


LBAS08－20
Horizontal／
Wall hanging


Vertical


\section*{Inertia Moment}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [ \(\left.\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\right]\) & \multicolumn{16}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 \\
\hline LGXS05-5 & 0.139 & 0.147 & 0.155 & 0.163 & 0.171 & 0.179 & 0.187 & 0.195 & 0.203 & 0.211 & 0.219 & 0.227 & 0.235 & 0.243 & 0.251 & 0.259 \\
\hline LGXS05-10 & 0.146 & 0.154 & 0.162 & 0.170 & 0.178 & 0.186 & 0.194 & 0.202 & 0.210 & 0.218 & 0.226 & 0.234 & 0.242 & 0.250 & 0.258 & 0.266 \\
\hline LGXS05-20 & 0.177 & 0.185 & 0.193 & 0.201 & 0.209 & 0.217 & 0.225 & 0.233 & 0.241 & 0.249 & 0.257 & 0.265 & 0.273 & 0.281 & 0.289 & 0.297 \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}

\section*{LGXS05}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LGXS05-5} & \multicolumn{2}{|c|}{LGXS05-10} & \multicolumn{2}{|c|}{LGXS05-20} \\
\hline & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 2.1 & 2.1 & 4.2 & 3.6 & 5.3 & 5.3 \\
\hline 1 & 1.91 & 2.1 & 3.84 & 2.4 & 5.3 & 5.3 \\
\hline 2 & 1.7 & 1.64 & 2.99 & 1.8 & 3.98 & 3.98 \\
\hline 3 & 1.53 & 1.34 & 2.45 & 1.44 & 3.19 & \\
\hline 4 & 1.4 & 1.14 & 2.07 & 1.2 & 2.66 & \\
\hline 5 & 1.28 & 0.99 & 1.8 & & 2.28 & \\
\hline 6 & 1.18 & 0.87 & 1.58 & & & \\
\hline 7 & 1.1 & 0.78 & 1.42 & & & \\
\hline 8 & 1.02 & 0.7 & 1.28 & & & \\
\hline 9 & 0.96 & & & & & \\
\hline 10 & 0.9 & & & & & \\
\hline 11 & 0.85 & & & & & \\
\hline 12 & 0.81 & & & & & \\
\hline 13 & 0.77 & & & & & \\
\hline
\end{tabular}

\section*{Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS05-5}


LGXS05-10


LGXS05-20


\section*{Acceleration/Deceleration}

High agility model
LGXS05
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Model } & LGXS05-5 & \multicolumn{2}{|c|}{ LGXS05-10 } & \multicolumn{2}{c|}{ LGXS05-20 } \\
& Vertical & \begin{tabular}{c} 
Horizontal/ \\
Wall hanging
\end{tabular} & Vertical & \begin{tabular}{c} 
Horizontal/ \\
Wall hanging
\end{tabular} & Vertical \\
\hline \begin{tabular}{c} 
Payload \\
{\([\mathrm{kg}]\)}
\end{tabular} & \begin{tabular}{c} 
Acceleration/ \\
Deceleration \\
{\(\left[\mathrm{m} / \mathrm{s}^{2}\right]\)}
\end{tabular} & \begin{tabular}{c} 
Acceleration/Deceleration \\
{\(\left[\mathrm{m} / \mathrm{s}^{2}\right]\)}
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Acceleration/Deceleration \\
{\(\left[\mathrm{m} / \mathrm{s}^{2}\right]\)}
\end{tabular}} \\
\hline 0 & 7.17 & 11.77 & 11.77 & 11.77 & 11.77 \\
\hline 1 & 6.99 & 11.77 & 11.77 & 11.77 & 11.77 \\
\hline 2 & 6.82 & 11.77 & 11.58 & 11.77 & \\
\hline 3 & 6.66 & 10.91 & \multicolumn{3}{c}{} \\
\hline
\end{tabular}

\section*{- Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS05-5}

\section*{Vertical}


\section*{LGXS05-10}


LGXS05-20
Horizontal/
Wall hanging

Vertical


Inertia Moment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\left[\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\right]\) & \multicolumn{16}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 \\
\hline LGXS05L-5 & 0.144 & 0.152 & 0.160 & 0.168 & 0.176 & 0.184 & 0.192 & 0.200 & 0.208 & 0.216 & 0.224 & 0.232 & 0.240 & 0.248 & 0.256 & 0.264 \\
\hline LGXS05L-10 & 0.153 & 0.161 & 0.169 & 0.177 & 0.185 & 0.193 & 0.201 & 0.209 & 0.217 & 0.225 & 0.233 & 0.241 & 0.249 & 0.257 & 0.265 & 0.273 \\
\hline LGXS05L-20 & 0.192 & 0.200 & 0.208 & 0.216 & 0.224 & 0.232 & 0.240 & 0.248 & 0.256 & 0.264 & 0.271 & 0.279 & 0.287 & 0.295 & 0.303 & 0.311 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{- Acceleration/Deceleration} \\
\hline \multicolumn{7}{|l|}{LGXS05L} & \multirow[b]{3}{*}{Model} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{LGXS05L-5}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{LGXS05L-10}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{LGXS05L-20}} \\
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|r|}{LGXS05L-5} & \multicolumn{2}{|l|}{LGXS05L-10} & \multicolumn{2}{|l|}{LGXS05L-20} & & & & & & & \\
\hline & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 3.04 & 3.34 & 4.26 & 4.86 & 5.07 & 5.07 & 19 & 1.88 & & 1.89 & & & \\
\hline 1 & 2.97 & 3.18 & 4.08 & 4.56 & 4.86 & 4.86 & 20 & 1.82 & & 1.83 & & & \\
\hline 2 & 2.91 & 3.03 & 3.9 & 4.3 & 4.66 & 4.66 & 21 & 1.76 & & 1.77 & & & \\
\hline 3 & 2.85 & 2.88 & 3.74 & 4.06 & 4.46 & 4.46 & 22 & 1.7 & & 1.72 & & & \\
\hline 4 & 2.79 & 2.73 & 3.58 & 3.85 & 4.25 & & 23 & 1.64 & & 1.67 & & & \\
\hline 5 & 2.73 & 2.58 & 3.42 & 3.66 & 4.05 & & 24 & 1.58 & & 1.63 & & & \\
\hline 6 & 2.67 & 2.43 & 3.28 & 3.49 & 3.85 & & 25 & 1.52 & & & & & \\
\hline 7 & 2.61 & 2.28 & 3.13 & & 3.65 & & 26 & 1.45 & & & & & \\
\hline 8 & 2.55 & 2.13 & 3 & & 3.44 & & 27 & 1.39 & & & & & \\
\hline 9 & 2.49 & 1.98 & 2.87 & & 3.24 & & 28 & 1.33 & & & & & \\
\hline 10 & 2.43 & 1.83 & 2.74 & & 3.04 & & 29 & 1.27 & & & & & \\
\hline 11 & 2.37 & 1.68 & 2.62 & & 2.83 & & 30 & 1.21 & & & & & \\
\hline 12 & 2.31 & 1.53 & 2.51 & & 2.63 & & 31 & 1.15 & & & & & \\
\hline 13 & 2.24 & & 2.41 & & & & 32 & 1.09 & & & & & \\
\hline 14 & 2.18 & & 2.3 & & & & & & & & & & \\
\hline 15 & 2.12 & & 2.21 & & & & & & & & & & \\
\hline 16 & 2.06 & & 2.12 & & & & & & & & & & \\
\hline 17 & 2 & & 2.04 & & & & & & & & & & \\
\hline 18 & 1.94 & & 1.96 & & & & & & & & & & \\
\hline
\end{tabular}

\section*{- Payload - Acceleration/Deceleration Graph (Estimate)}

LGXS05L-5


LGXS05L-10


\section*{LGXS05L-20}
\begin{tabular}{c}
\begin{tabular}{c} 
Horizontal/ \\
Wall hanging
\end{tabular} \\
\\
\\
\hline
\end{tabular}
\(\square\) Acceleration/Deceleration

\section*{High agility model}

LGXS05L
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & LGXS05L-5 & \multicolumn{2}{|c|}{LGXS05L-10} & \multicolumn{2}{|c|}{LGXS05L-20} \\
\hline & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & Acceleration/ Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ] & \multicolumn{2}{|l|}{Acceleration/Deceleration [m/s \({ }^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 6.65 & 14.72 & 12.68 & 14.72 & 14.72 \\
\hline 1 & 6.50 & 13.50 & 11.65 & 14.72 & 14.72 \\
\hline 2 & 6.35 & 12.46 & 10.78 & 14.72 & \\
\hline 3 & 6.22 & 11.58 & & 12.93 & \\
\hline 4 & 6.08 & 10.81 & & 11.16 & \\
\hline 5 & & 10.13 & & 9.81 & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 6 \\
\hline 7 \\
\hline 8 \\
\hline 9 \\
\hline 10 \\
\hline
\end{tabular}

\section*{\(\square\) Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS05L-5}

\section*{Vertical}


\section*{LGXS05L-10}


LGXS05L-20
Horizontal/
Wall hanging

Vertical


\section*{Inertia Moment}

\section*{LGXS07}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [kg.m \({ }^{2} \times 10^{-4}\) ] & \multicolumn{22}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 \\
\hline LGXS07-5 & 0.623 & 0.643 & 0.662 & 0.682 & 0.701 & 0.721 & 0.740 & 0.760 & 0.779 & 0.799 & 0.818 & 0.838 & 0.857 & 0.877 & 0.896 & 0.916 & 0.935 & 0.955 & 0.974 & 0.994 & 1.013 & 1.033 \\
\hline LGXS07-10 & 0.644 & 0.663 & 0.683 & 0.702 & 0.722 & 0.741 & 0.761 & 0.780 & 0.800 & 0.819 & 0.839 & 0.858 & 0.878 & 0.897 & 0.917 & 0.936 & 0.956 & 0.975 & 0.995 & 1.014 & 1.034 & 1.053 \\
\hline LGXS07-20 & 0.728 & 0.747 & 0.767 & 0.787 & 0.806 & 0.826 & 0.845 & 0.865 & 0.884 & 0.904 & 0.923 & 0.943 & 0.962 & 0.982 & 1.001 & 1.021 & 1.040 & 1.060 & 1.079 & 1.099 & 1.118 & 1.138 \\
\hline LGXS07-30 & 0.885 & 0.905 & 0.924 & 0.944 & 0.963 & 0.983 & 1.002 & 1.022 & 1.041 & 1.061 & 1.080 & 1.100 & 1.119 & 1.139 & 1.158 & 1.178 & 1.197 & 1.217 & 1.236 & 1.256 & 1.275 & 1.295 \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}

LGXS07


Acceleration/Deceleration and Inertia Moment (Advanced model)
Payload - Acceleration/Deceleration Graph (Estimate)

\section*{LGXS07-5}


\section*{LGXS07-10}



Vertical


LGXS07-20


LGXS07-30
Horizontal/

Vertical


\section*{Acceleration/Deceleration}

High agility model


\section*{\(\square\) Payload - Acceleration/Deceleration Graph (Estimate)}

LGXS07-5
Vertical


LGXS07-10


\section*{Inertia Moment}

\section*{LGXS10}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [ \(\left.\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\right]\) & \multicolumn{25}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 \\
\hline LGXS10-5 & - & 0.686 & 0.706 & 0.726 & 0.745 & 0.765 & 0.784 & 0.804 & 0.823 & 0.843 & 0.862 & 0.882 & 0.901 & 0.921 & 0.940 & 0.960 & 0.979 & 0.999 & 1.018 & 1.038 & 1.057 & 1.077 & 1.096 & 1.116 & 1.135 \\
\hline LGXS10-10 & - & 0.707 & 0.726 & 0.746 & 0.765 & 0.785 & 0.804 & 0.824 & 0.843 & 0.863 & 0.882 & 0.902 & 0.921 & 0.941 & 0.960 & 0.980 & 0.999 & 1.019 & 1.038 & 1.058 & 1.077 & 1.097 & 1.116 & 1.136 & 1.155 \\
\hline LGXS10-20 & - & 0.789 & 0.809 & 0.828 & 0.848 & 0.867 & 0.887 & 0.906 & 0.926 & 0.945 & 0.965 & 0.984 & 1.004 & 1.023 & 1.043 & 1.062 & 1.082 & 1.101 & 1.121 & 1.140 & 1.160 & 1.179 & 1.199 & 1.218 & 1.238 \\
\hline LGXS10-30 & - & 0.944 & 0.963 & 0.983 & 1.002 & 1.022 & 1.041 & 1.061 & 1.080 & 1.100 & 1.119 & 1.139 & 1.158 & 1.178 & 1.197 & 1.217 & 1.236 & 1.256 & 1.275 & 1.295 & 1.314 & 1.334 & 1.353 & 1.373 & 1.392 \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}


\section*{Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS10-5}



Vertical


LGXS10-10

Horizontal/
Wall hanging


Vertical


LGXS10-20


Vertical


\section*{LGXS10-30}
\begin{tabular}{c}
\begin{tabular}{c} 
Horizontal/ \\
Wall hanging
\end{tabular} \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}

\section*{High agility model}

\section*{LGXS10}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & LGXS10-5 & \multicolumn{2}{|l|}{LGXS10-10} & \multicolumn{2}{|l|}{LGXS10-20} & \multicolumn{2}{|l|}{LGXS10-30} \\
\hline & Vertical & Horizontall
Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontall Wall hanging & Vertical \\
\hline Payload [kg] & Acceleration/ Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 5.53 & 11.71 & 10.84 & 19.62 & 19.62 & 19.62 & 19.62 \\
\hline 1 & 5.51 & 11.47 & 10.63 & 19.62 & 18.69 & 19.62 & 19.62 \\
\hline 2 & 5.48 & 11.25 & 10.44 & 18.66 & 17.55 & 19.62 & 19.62 \\
\hline 3 & 5.46 & 11.03 & 10.26 & 17.52 & 16.54 & 19.55 & \\
\hline 4 & 5.43 & 10.82 & 10.08 & 16.52 & 15.65 & 17.74 & \\
\hline 5 & 5.41 & 10.62 & 9.90 & 15.62 & & 16.24 & \\
\hline 6 & 5.38 & 10.43 & 9.74 & 14.81 & & 14.96 & \\
\hline 7 & 5.36 & 10.24 & 9.57 & 14.09 & & 13.88 & \\
\hline 8 & 5.33 & 10.06 & 9.42 & 13.43 & & 12.94 & \\
\hline 9 & 5.31 & 9.89 & & 12.83 & & 12.12 & \\
\hline 10 & 5.28 & 9.72 & & 12.28 & & 11.40 & \\
\hline
\end{tabular}
- Payload - Acceleration/Deceleration Graph (Estimate)

\section*{LGXS10-5}

Vertical


LGXS10-10


\section*{Payload－Acceleration／Deceleration Graph（Estimate）}

LGXS10－20
Horizontal／
Wall hanging


Vertical


LGXS10－30


\section*{Inertia Moment}

\section*{LGXS12}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [ \(\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\) ] & \multicolumn{25}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 \\
\hline LGXS12-5 & - & 0.702 & 0.721 & 0.741 & 0.761 & 0.780 & 0.800 & 0.819 & 0.839 & 0.858 & 0.878 & 0.897 & 0.917 & 0.936 & 0.956 & 0.975 & 0.995 & 1.014 & 1.034 & 1.053 & 1.073 & 1.092 & 1.112 & 1.131 & 1.151 \\
\hline LGXS12-10 & - & 0.733 & 0.753 & 0.772 & 0.792 & 0.811 & 0.831 & 0.850 & 0.870 & 0.889 & 0.909 & 0.928 & 0.948 & 0.967 & 0.987 & 1.006 & 1.026 & 1.045 & 1.065 & 1.085 & 1.104 & 1.124 & 1.143 & 1.163 & 1.182 \\
\hline LGXS12-20 & - & 0.862 & 0.881 & 0.901 & 0.920 & 0.940 & 0.959 & 0.979 & 0.998 & 1.018 & 1.037 & 1.057 & 1.076 & 1.096 & 1.115 & 1.135 & 1.154 & 1.174 & 1.193 & 1.213 & 1.232 & 1.252 & 1.271 & 1.291 & 1.310 \\
\hline LGXS12-30 & - & 1.092 & 1.111 & 1.131 & 1.150 & 1.170 & 1.189 & 1.209 & 1.228 & 1.248 & 1.267 & 1.287 & 1.306 & 1.326 & 1.345 & 1.365 & 1.384 & 1.404 & 1.423 & 1.443 & 1.462 & 1.482 & 1.501 & 1.521 & 1.54 \\
\hline
\end{tabular}


LGXS12-5

\section*{Horizontal/ Wall hanging}

Vertical


LGXS12-10


LGXS12-20
Vertical

LGXS12-30
Horizontal/

Vertical



Acceleration/Deceleration

\section*{High agility model}

LGXS12


\section*{- Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS12-5}


\section*{LGXS12-10}


\section*{Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS12-20}

Horizontal/
Wall hanging


Vertical


LGXS12-30

Vertical

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{30}{|l|}{Inertia Moment} \\
\hline \multicolumn{30}{|l|}{LGXS16} \\
\hline [ \(\left.\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\right]\) & \multicolumn{29}{|c|}{Effective stroke [mm]} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline LGXS16-10 & - & 2.433 & 2.495 & 2.557 & 2.618 & 2.680 & 2.742 & 2.803 & 2.865 & 2.927 & 2.988 & 3.050 & 3.112 & 3.173 & 3.235 & 3.297 & 3.358 & 3.420 & 3.482 & 3.543 & 3.605 & 3.667 & 3.728 & 3.790 & 3.851 & 3.913 & 3.975 & 4.036 & 4.098 \\
\hline LGXS16-20 & - & 2.653 & 2.715 & 2.777 & 2.838 & 2.900 & 2.961 & 3.023 & 3.085 & 3.146 & 3.208 & 3.270 & 3.331 & 3.393 & 3.455 & 3.516 & 3.578 & 3.640 & 3.701 & 3.763 & 3.825 & 3.886 & 3.948 & 4.010 & 4.071 & 4.133 & 4.195 & 4.256 & 4.318 \\
\hline LGXS16-40 & - & 3.624 & 3.685 & 3.747 & 3.809 & 3.870 & 3.932 & 3.994 & 4.055 & 4.117 & 4.179 & 4.240 & 4.302 & 4.364 & 4.425 & 4.487 & 4.548 & 4.610 & 4.672 & 4.733 & 4.795 & 4.857 & 4.918 & 4.980 & 5.042 & 5.103 & 5.165 & 5.227 & 5.288 \\
\hline
\end{tabular}

\section*{Acceleration/Deceleration}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LGXS16-10} & \multicolumn{2}{|l|}{LGXS16-20} & \multicolumn{2}{|l|}{LGXS16-40} \\
\hline & Horizontall Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline Payload [kg] & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 0 & 5.07 & 3.8 & 7.6 & 7.99 & 9.6 & 9.6 \\
\hline 1 & 5.04 & 3.74 & 7.48 & 7.73 & 9.6 & 9.02 \\
\hline 2 & 5.01 & 3.69 & 7.36 & 7.47 & 9.6 & 8.45 \\
\hline 3 & 4.99 & 3.64 & 7.25 & 7.22 & 9.6 & 7.87 \\
\hline 4 & 4.96 & 3.59 & 7.14 & 6.97 & 9.6 & 7.3 \\
\hline 5 & 4.94 & 3.54 & 7.03 & 6.72 & 9.6 & 6.74 \\
\hline 6 & 4.91 & 3.49 & 6.93 & 6.47 & 9.6 & 6.17 \\
\hline 7 & 4.89 & 3.44 & 6.83 & 6.22 & 9.6 & 5.61 \\
\hline 8 & 4.86 & 3.39 & 6.73 & 5.97 & 9.6 & 5.04 \\
\hline 9 & 4.84 & 3.34 & 6.64 & 5.73 & 9.6 & 4.48 \\
\hline 10 & 4.81 & 3.29 & 6.55 & 5.48 & 9.6 & 3.92 \\
\hline 11 & 4.79 & 3.24 & 6.46 & 5.24 & 9.18 & 3.36 \\
\hline 12 & 4.76 & 3.19 & 6.37 & 5 & 8.8 & 2.81 \\
\hline 13 & 4.74 & 3.14 & 6.29 & 4.76 & 8.45 & \\
\hline 14 & 4.71 & 3.09 & 6.2 & 4.53 & 8.13 & \\
\hline 15 & 4.68 & 3.04 & 6.12 & 4.29 & 7.83 & \\
\hline 16 & 4.66 & 2.99 & 6.05 & 4.05 & 7.55 & \\
\hline 17 & 4.63 & 2.94 & 5.97 & 3.82 & 7.3 & \\
\hline 18 & 4.61 & 2.89 & 5.9 & 3.59 & 7.05 & \\
\hline 19 & 4.58 & 2.83 & 5.82 & 3.36 & 6.83 & \\
\hline 20 & 4.56 & 2.78 & 5.75 & 3.13 & 6.62 & \\
\hline 21 & 4.53 & 2.73 & 5.68 & 2.9 & 6.42 & \\
\hline 22 & 4.51 & 2.68 & 5.62 & 2.68 & 6.23 & \\
\hline 23 & 4.48 & 2.63 & 5.55 & 2.45 & 6.05 & \\
\hline 24 & 4.46 & 2.58 & 5.49 & 2.23 & 5.88 & \\
\hline 25 & 4.43 & 2.53 & 5.42 & 2.01 & 5.73 & \\
\hline 26 & 4.41 & 2.48 & 5.36 & 1.79 & 5.58 & \\
\hline 27 & 4.38 & 2.43 & 5.3 & 1.57 & 5.43 & \\
\hline 28 & 4.36 & 2.38 & 5.24 & 1.35 & 5.3 & \\
\hline 29 & 4.33 & 2.33 & 5.19 & & 5.17 & \\
\hline 30 & 4.3 & 2.28 & 5.13 & & 5.05 & \\
\hline 31 & 4.28 & 2.23 & 5.08 & & 4.93 & \\
\hline 32 & 4.25 & 2.18 & 5.02 & & 4.82 & \\
\hline 33 & 4.23 & 2.13 & 4.97 & & 4.71 & \\
\hline 34 & 4.2 & 2.08 & 4.92 & & 4.61 & \\
\hline 35 & 4.18 & 2.03 & 4.87 & & 4.51 & \\
\hline 36 & 4.15 & 1.98 & 4.82 & & 4.42 & \\
\hline 37 & 4.13 & 1.93 & 4.77 & & 4.33 & \\
\hline 38 & 4.1 & 1.87 & 4.72 & & 4.24 & \\
\hline 39 & 4.08 & 1.82 & 4.67 & & 4.16 & \\
\hline 40 & 4.05 & 1.77 & 4.63 & & 4.08 & \\
\hline 41 & 4.03 & 1.72 & 4.58 & & 4 & \\
\hline 42 & 4 & 1.67 & 4.54 & & 3.93 & \\
\hline 43 & 3.97 & 1.62 & 4.5 & & 3.86 & \\
\hline 44 & 3.95 & 1.57 & 4.46 & & 3.79 & \\
\hline 45 & 3.92 & 1.52 & 4.41 & & 3.72 & \\
\hline 46 & 3.9 & 1.47 & 4.37 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LGXS16-10} & \multicolumn{2}{|l|}{LGXS16-20} & \multicolumn{2}{|l|}{LGXS16-40} \\
\hline & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical & Horizontal/ Wall hanging & Vertical \\
\hline \begin{tabular}{l}
Payload
\([\mathrm{kg}]\) \\
[kg]
\end{tabular} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Acceleration } / \text { Deceleration } \\
{\left[\mathrm{m} / \mathrm{s}^{2}\right]}
\end{gathered}
\]} & \multicolumn{2}{|l|}{Acceleration/Deceleration [ \(\mathrm{m} / \mathrm{s}^{2}\) ]} \\
\hline 78 & 3.09 & & 3.38 & & & \\
\hline 79 & 3.06 & & 3.35 & & & \\
\hline 80 & 3.04 & & 3.33 & & & \\
\hline 81 & 3.01 & & 3.31 & & & \\
\hline 82 & 2.99 & & 3.28 & & & \\
\hline 83 & 2.96 & & 3.26 & & & \\
\hline 84 & 2.94 & & 3.24 & & & \\
\hline 85 & 2.91 & & 3.22 & & & \\
\hline 86 & 2.88 & & 3.19 & & & \\
\hline 87 & 2.86 & & 3.17 & & & \\
\hline 88 & 2.83 & & 3.15 & & & \\
\hline 89 & 2.81 & & 3.13 & & & \\
\hline 90 & 2.78 & & 3.11 & & & \\
\hline 91 & 2.76 & & 3.09 & & & \\
\hline 92 & 2.73 & & 3.07 & & & \\
\hline 93 & 2.71 & & 3.05 & & & \\
\hline 94 & 2.68 & & 3.03 & & & \\
\hline 95 & 2.66 & & 3.01 & & & \\
\hline
\end{tabular}

\section*{Payload - Acceleration/Deceleration Graph (Estimate)}

\section*{LGXS16-10}

Horizontal/
Wall hanging



LGXS16-20


LGXS16-40 Horizontal/
Wall hanging wang


Acceleration/Deceleration and Inertia Moment (Advanced model)

LGXS16-40

Vertical


\section*{LGXS16-20}

Horizontal/
Wall hanging


Vertical

\section*{LGXS16-10}



\section*{Payload - Acceleration/Deceleration Graph (Estimate)}


\section*{Inertia Moment}

LGXS20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ［ \(\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}\) & \multicolumn{29}{|c|}{Effective stroke［mm］} \\
\hline Model & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline LGXS20－10 & － & 2.524 & 2.585 & 2.647 & 2.709 & 2.770 & 2.832 & 2.894 & 2.955 & 3.017 & 3.079 & 3.140 & 3.202 & 3.264 & 3.325 & 3.387 & 3.448 & 3.510 & 3.572 & 3.633 & 3.695 & 3.757 & 3.818 & 3.880 & 3.942 & 4.003 & 4.065 & 4.127 & 4.188 \\
\hline LGXS20－20 & － & 2.863 & 2.924 & 2.986 & 3.048 & 3.109 & 3.171 & 3.232 & 3.294 & 3.356 & 3.417 & 3.479 & 3.541 & 3.602 & 3.664 & 3.726 & 3.787 & 3.849 & 3.911 & 3.972 & 4.034 & 4.096 & 4.157 & 4.219 & 4.281 & 4.342 & 4.404 & 4.466 & 4.527 \\
\hline LGXS20－40 & － & 4.309 & 4.371 & 4.433 & 4.494 & 4.556 & 4.618 & 4.679 & 4.741 & 4.803 & 4.864 & 4.926 & 4.988 & 5.049 & 5.111 & 5.173 & 5.234 & 5.296 & 5.357 & 5.419 & 5.481 & 5.542 & 5.604 & 5.666 & 5.727 & 5.789 & 5.851 & 5.912 & 5.974 \\
\hline
\end{tabular}

\section*{Acceleration／Deceleration}

\section*{LGXS20}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LGXS20－10} & \multicolumn{2}{|c|}{LGXS20－20} & \multicolumn{2}{|c|}{LGXS20－40} \\
\hline & Horizontal／ Wall hanging & Vertical & Horizontal／ Wall hanging & Vertical & Horizontal／ Wall hanging & Vertical \\
\hline Payload ［kg］ & \multicolumn{2}{|l|}{Acceleration／Deceleration ［ \(\mathrm{m} / \mathrm{s}^{2}\) ］} & \multicolumn{2}{|l|}{Acceleration／Deceleration
\(\left[\mathrm{m} / \mathrm{s}^{2}\right]\)} & \multicolumn{2}{|l|}{Acceleration／Deceleration ［ \(\mathrm{m} / \mathrm{s}^{2}\) ］} \\
\hline 0 & 2.5 & 3.8 & 7.8 & 9.95 & 9.61 & 9.61 \\
\hline 1 & 2.5 & 3.74 & 7.7 & 9.67 & 9.61 & 9.12 \\
\hline 2 & 2.5 & 3.69 & 7.61 & 9.4 & 9.61 & 8.64 \\
\hline 3 & 2.5 & 3.64 & 7.52 & 9.13 & 9.61 & 8.16 \\
\hline 4 & 2.5 & 3.59 & 7.43 & 8.86 & 9.61 & 7.68 \\
\hline 5 & 2.5 & 3.54 & 7.34 & 8.59 & 9.61 & 7.2 \\
\hline 6 & 2.5 & 3.49 & 7.25 & 8.32 & 9.61 & 6.72 \\
\hline 7 & 2.5 & 3.44 & 7.16 & 8.05 & 9.61 & 6.24 \\
\hline 8 & 2.5 & 3.39 & 7.07 & 7.78 & 9.61 & 5.76 \\
\hline 9 & 2.5 & 3.34 & 6.98 & 7.51 & 9.61 & 5.28 \\
\hline 10 & 2.5 & 3.29 & 6.89 & 7.24 & 9.2 & 4.8 \\
\hline 11 & 2.5 & 3.24 & 6.81 & 6.97 & 8.83 & 4.32 \\
\hline 12 & 2.5 & 3.19 & 6.72 & 6.7 & 8.48 & 3.84 \\
\hline 13 & 2.5 & 3.14 & 6.64 & 6.43 & 8.17 & 3.36 \\
\hline 14 & 2.5 & 3.09 & 6.55 & 6.16 & 7.87 & 2.88 \\
\hline 15 & 2.5 & 3.04 & 6.47 & 5.89 & 7.6 & 2.4 \\
\hline 16 & 2.5 & 2.99 & 6.39 & 5.62 & 7.34 & \\
\hline 17 & 2.5 & 2.94 & 6.31 & 5.35 & 7.1 & \\
\hline 18 & 2.5 & 2.89 & 6.23 & 5.08 & 6.88 & \\
\hline 19 & 2.5 & 2.83 & 6.15 & 4.81 & 6.67 & \\
\hline 20 & 2.5 & 2.78 & 6.07 & 4.54 & 6.47 & \\
\hline 21 & 2.5 & 2.73 & 5.99 & 4.27 & 6.28 & \\
\hline 22 & 2.5 & 2.68 & 5.91 & 4 & 6.11 & \\
\hline 23 & 2.5 & 2.63 & 5.83 & 3.73 & 5.94 & \\
\hline 24 & 2.5 & 2.58 & 5.76 & 3.46 & 5.78 & \\
\hline 25 & 2.5 & 2.53 & 5.68 & 3.19 & 5.63 & \\
\hline 26 & 2.5 & 2.48 & 5.6 & 2.92 & 5.49 & \\
\hline 27 & 2.5 & 2.43 & 5.53 & 2.65 & 5.36 & \\
\hline 28 & 2.5 & 2.38 & 5.46 & 2.38 & 5.23 & \\
\hline 29 & 2.5 & 2.33 & 5.38 & 2.11 & 5.11 & \\
\hline 30 & 2.5 & 2.28 & 5.31 & 1.84 & 4.99 & \\
\hline 31 & 2.5 & 2.23 & 5.24 & 1.57 & 4.88 & \\
\hline 32 & 2.5 & 2.18 & 5.17 & 1.3 & 4.77 & \\
\hline 33 & 2.5 & 2.13 & 5.1 & 1.03 & 4.67 & \\
\hline 34 & 2.5 & 2.08 & 5.03 & 0.76 & 4.57 & \\
\hline 35 & 2.5 & 2.03 & 4.96 & 0.5 & 4.48 & \\
\hline 36 & 2.44 & 1.98 & 4.89 & & 4.39 & \\
\hline 37 & 2.38 & 1.93 & 4.82 & & 4.3 & \\
\hline 38 & 2.33 & 1.87 & 4.76 & & 4.22 & \\
\hline 39 & 2.28 & 1.82 & 4.69 & & 4.14 & \\
\hline 40 & 2.23 & 1.77 & 4.63 & & 4.06 & \\
\hline 41 & 2.18 & 1.72 & 4.56 & & 3.99 & \\
\hline 42 & 2.14 & 1.67 & 4.5 & & 3.91 & \\
\hline 43 & 2.09 & 1.62 & 4.43 & & 3.85 & \\
\hline 44 & 2.05 & 1.57 & 4.37 & & 3.78 & \\
\hline 45 & 2.01 & 1.52 & 4.31 & & 3.71 & \\
\hline 46 & 1.97 & 1.47 & 4.25 & & 3.65 & \\
\hline 47 & 1.94 & 1.42 & 4.19 & & 3.59 & \\
\hline 48 & 1.9 & 1.37 & 4.13 & & 3.53 & \\
\hline 49 & 1.87 & 1.32 & 4.07 & & 3.48 & \\
\hline 50 & 1.83 & 1.27 & 4.01 & & 3.42 & \\
\hline 51 & 1.8 & 1.22 & 3.95 & & 3.37 & \\
\hline 52 & 1.77 & 1.17 & 3.9 & & 3.32 & \\
\hline 53 & 1.74 & 1.12 & 3.84 & & 3.27 & \\
\hline 54 & 1.71 & 1.07 & 3.79 & & 3.22 & \\
\hline 55 & 1.68 & 1.02 & 3.73 & & 3.17 & \\
\hline 56 & 1.66 & 0.96 & 3.68 & & 3.13 & \\
\hline 57 & 1.63 & 0.91 & 3.63 & & 3.08 & \\
\hline 58 & 1.61 & 0.86 & 3.57 & & 3.04 & \\
\hline 59 & 1.58 & 0.81 & 3.52 & & 3 & \\
\hline 60 & 1.56 & 0.76 & 3.47 & & 2.96 & \\
\hline 61 & 1.53 & 0.71 & 3.42 & & 2.92 & \\
\hline 62 & 1.51 & 0.66 & 3.37 & & 2.88 & \\
\hline 63 & 1.49 & 0.61 & 3.32 & & 2.84 & \\
\hline 64 & 1.47 & 0.56 & 3.27 & & 2.8 & \\
\hline 65 & 1.45 & 0.51 & 3.23 & & 2.77 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{2}{|c|}{LGXS20－10} & \multicolumn{2}{|l|}{LGXS20－20} & \multicolumn{2}{|l|}{LGXS20－40} \\
\hline & Horizontal／ Wall hanging & Vertical & Horizontal／ Wall hanging & Vertical & Horizontal／ Wall hanging & Vertical \\
\hline Payload ［kg］ & \multicolumn{2}{|l|}{Acceleration／Deceleration ［ \(\mathrm{m} / \mathrm{s}^{2}\) ］} & \multicolumn{2}{|l|}{Acceleration／Deceleration ［ \(\mathrm{m} / \mathrm{s}^{2}\) ］} & \multicolumn{2}{|l|}{Acceleration／Deceleration ［ \(\mathrm{m} / \mathrm{s}^{2}\) ］} \\
\hline 82 & 1.17 & & 2.53 & & & \\
\hline 83 & 1.16 & & 2.5 & & & \\
\hline 84 & 1.14 & & 2.46 & & & \\
\hline 85 & 1.13 & & 2.43 & & & \\
\hline 86 & 1.12 & & 2.4 & & & \\
\hline 87 & 1.11 & & 2.37 & & & \\
\hline 88 & 1.1 & & 2.34 & & & \\
\hline 89 & 1.08 & & 2.31 & & & \\
\hline 90 & 1.07 & & 2.28 & & & \\
\hline 91 & 1.06 & & 2.25 & & & \\
\hline 92 & 1.05 & & 2.22 & & & \\
\hline 93 & 1.04 & & 2.19 & & & \\
\hline 94 & 1.03 & & 2.17 & & & \\
\hline 95 & 1.02 & & 2.14 & & & \\
\hline 96 & 1.01 & & 2.12 & & & \\
\hline 97 & 1 & & 2.09 & & & \\
\hline 98 & 0.99 & & 2.07 & & & \\
\hline 99 & 0.98 & & 2.05 & & & \\
\hline 100 & 0.97 & & 2.02 & & & \\
\hline 101 & 0.96 & & 2 & & & \\
\hline 102 & 0.95 & & 1.98 & & & \\
\hline 103 & 0.94 & & 1.96 & & & \\
\hline 104 & 0.94 & & 1.94 & & & \\
\hline 105 & 0.93 & & 1.92 & & & \\
\hline 106 & 0.92 & & 1.9 & & & \\
\hline 107 & 0.91 & & 1.89 & & & \\
\hline 108 & 0.9 & & 1.87 & & & \\
\hline 109 & 0.9 & & 1.86 & & & \\
\hline 110 & 0.89 & & 1.84 & & & \\
\hline 111 & 0.88 & & 1.83 & & & \\
\hline 112 & 0.87 & & 1.81 & & & \\
\hline 113 & 0.87 & & 1.8 & & & \\
\hline 114 & 0.86 & & 1.79 & & & \\
\hline 115 & 0.85 & & 1.78 & & & \\
\hline 116 & 0.84 & & 1.77 & & & \\
\hline 117 & 0.84 & & 1.76 & & & \\
\hline 118 & 0.83 & & 1.75 & & & \\
\hline 119 & 0.82 & & 1.74 & & & \\
\hline 120 & 0.82 & & 1.73 & & & \\
\hline 121 & 0.81 & & 1.72 & & & \\
\hline 122 & 0.8 & & 1.72 & & & \\
\hline 123 & 0.8 & & 1.71 & & & \\
\hline 124 & 0.79 & & 1.71 & & & \\
\hline 125 & 0.79 & & 1.7 & & & \\
\hline 126 & 0.78 & & 1.7 & & & \\
\hline 127 & 0.77 & & 1.69 & & & \\
\hline 128 & 0.77 & & 1.69 & & & \\
\hline 129 & 0.76 & & 1.69 & & & \\
\hline 130 & 0.76 & & 1.69 & & & \\
\hline
\end{tabular}

Acceleration/Deceleration and Inertia Moment (Advanced model)
Payload - Acceleration/Deceleration Graph (Estimate)
LGXS20-10
Horizontal/
Wall hanging


\section*{LGXS20-20}


LGXS20-40


\section*{CLOSED LOOP STEPPING MOTOR SINGLE-AXIS ROBOTS}

\section*{TRANSERVO SERIES \\ }

\section*{■TRANSERVO SPECIFICATION} SHEET 254
\(\square\) Robot ordering method description …................... 255
- Rod type: Bracket plates …................ 255

■ Rod type:
Grease gun nozzle tube for space-saving models \(\cdots \cdots \cdots \cdot 25\)

\section*{Rod type:}

Running life distance to life time conversion example \(\cdots 255\)

\section*{TRANSERVO}
SS04 ..... 256
ss05 ..... 258
SS05H ..... 260
SG07 ..... 262
SR03 ..... 263
SRD03 ..... 266
SR04 ..... 268
SRD04 ..... 270
SR05 ..... 272
SRD05 ..... 274
STH04 ..... 276
STH06 ..... 278
RF02-N ..... 280
RF02-S ..... 282
RF03-N ..... 284
RF03-S ..... 286
RF04-N ..... 288
RF04-S ..... 290
BD04 ..... 292
BD05 ..... 293
BD07 ..... 294


\section*{TRANSERVO SPECIFICATION SHEET}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{Model} & \multirow[t]{2}{*}{Size (mm) \({ }^{\text {Note } 1}\)} & Lead (mm) & Maximum p & load (kg) \({ }^{\text {Note } 2}\) & Maximum speed & Stroke (mm) & Detailed info \\
\hline & & & Lead (mm) & Horizontal & Vertical & \((\mathrm{mm} / \mathrm{sec})^{\text {Notes }}\) & Stroke (mm) & page \\
\hline \multirow{9}{*}{SS type (Slide type) Straight model/ Space-saving model} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { SS04-S } \\
\text { SS04-R (L) }
\end{gathered}
\]} & \multirow{3}{*}{W49 \(\times\) H59} & 12 & 2 & 1 & 600 & \multirow{3}{*}{50 to 400} & \multirow{3}{*}{P. 256 - P. 257} \\
\hline & & & 6 & 4 & 2 & 300 & & \\
\hline & & & 2 & 6 & 4 & 100 & & \\
\hline & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { SS05-S } \\
\text { SS05-R (L) }
\end{gathered}
\]} & \multirow{3}{*}{W55 × H56} & 20 & 4 & - & 1000 & \multirow{3}{*}{50 to 800} & \multirow{3}{*}{P.258-P.259} \\
\hline & & & 12 & 6 & 1 & 600 & & \\
\hline & & & 6 & 10 & 2 & 300 & & \\
\hline & \multirow{3}{*}{\[
\begin{gathered}
\text { SS05H-S } \\
\text { SS05H-R (L) }
\end{gathered}
\]} & \multirow{3}{*}{W55 \(\times\) H56} & 20 & 6 & - & 1000 & \multirow{3}{*}{50 to 800} & \multirow{3}{*}{P. 260 - P. 261} \\
\hline & & & 12 & 8 & 2 & 600 (Horizontal) 500 (Vertical) & & \\
\hline & & & 6 & 12 & 4 & 300 (Horizontal) 250 (Vertical) & & \\
\hline & \multirow{3}{*}{SG07} & \multirow{3}{*}{W65 × H64} & 20 & 36 & 4 & 1200 & \multirow{3}{*}{50 to 800} & \multirow{3}{*}{P. 262} \\
\hline  & & & 12 & 43 & 12 & 800 & & \\
\hline & & & 6 & 46 & 20 & 350 & & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
SR Type \\
(Rod type) \\
Straight model/ \\
Space-saving model
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SR03-S } \\
\text { SR03-R (L) } \\
\text { SR03-U }
\end{gathered}
\]} & \multirow[b]{2}{*}{W48 \(\times\) H56.5} & 12 & 10 & 4 & 500 & \multirow[b]{2}{*}{50 to 200} & \multirow[b]{2}{*}{P. 263 - P. 265} \\
\hline & & & 6 & 20 & 8 & 250 & & \\
\hline & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { SR04-S } \\
\text { SR04-R (L) }
\end{gathered}
\]} & \multirow{3}{*}{W48 \(\times\) H58} & 12 & 25 & 5 & 500 & \multirow{3}{*}{50 to 300} & \multirow{3}{*}{P.268-P.269} \\
\hline & & & 6 & 40 & 12 & 250 & & \\
\hline & & & 2 & 45 & 25 & 80 & & \\
\hline & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { SR05-S } \\
& \text { SR05-R (L) }
\end{aligned}
\]} & \multirow{3}{*}{W56.4 \(\times\) H71} & 12 & 50 & 10 & 300 & \multirow{3}{*}{50 to 300} & \multirow{3}{*}{P. 272 - P. 273} \\
\hline & & & 6 & 55 & 20 & 150 & & \\
\hline & & & 2 & 60 & 30 & 50 & & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
SR Type \\
(Rod type with support guide) \\
Straight model/ Space-saving model
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { SRD03-S } \\
& \text { SRD03-U }
\end{aligned}
\]} & \multirow[t]{2}{*}{W105 \(\times\) H56.5} & 12 & 10 & 3.5 & 500 & \multirow[t]{2}{*}{50 to 200} & \multirow[t]{2}{*}{P. 266 - P. 267} \\
\hline & & & 6 & 20 & 7.5 & 250 & & \\
\hline & \multirow[t]{3}{*}{SRD04-S SRD04-U} & \multirow{3}{*}{W135 \(\times\) H58} & 12 & 25 & 4 & 500 & \multirow{3}{*}{50 to 300} & \multirow{3}{*}{P. 270 - P. 271} \\
\hline & & & 6 & 40 & 11 & 250 & & \\
\hline & & & 2 & 45 & 24 & 80 & & \\
\hline & \multirow{3}{*}{SRD05-S SRD05-U} & \multirow{3}{*}{W157 \(\times\) H71} & 12 & 50 & 8.5 & 300 & \multirow{3}{*}{50 to 300} & \multirow{3}{*}{P. 274 - P. 275} \\
\hline & & & 6 & 55 & 18.5 & 150 & & \\
\hline & & & 2 & 60 & 28.5 & 50 & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
STH Type \\
(Slide table type) Straight model/ Space-saving model
\end{tabular}} & STH04-S & \(\mathrm{W} 45 \times \mathrm{H} 46\) & 5 & 6 & 2 & 200 & \multirow[t]{2}{*}{50 to 100} & \multirow[t]{2}{*}{P. 276 - P. 277} \\
\hline & STH04-R (L) \({ }^{\text {Note } 4}\) & \(\mathrm{W} 73 \times \mathrm{H} 51\) & 10 & 4 & 1 & 400 & & \\
\hline & STH06 & W61 \(\times\) H65 & 8 & 9 & 2 & 150 & \multirow[t]{2}{*}{50 to 150} & \multirow[t]{2}{*}{P. 278 - P. 279} \\
\hline & STH06-R (L) & W106 \(\times\) H70 & 16 & 6 & 4 & 400 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type & Model & High (mm) & Torque type & Rotational torque
\[
(N \cdot m)
\] & Maximum pushing torque ( \(\mathrm{N} \cdot \mathrm{m}\) ) & Maximum speed \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\) & Rotation range ( \({ }^{\circ}\) ) & Detailed info page \\
\hline \multirow{6}{*}{RF Type (Rotary type) Standard model/ High rigidity model} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RF02-N } \\
& \text { RF02-S }
\end{aligned}
\]} & \multirow[t]{2}{*}{42 (Standard) 49 (High rigidity)} & \(\mathrm{N}:\) Standard & 0.22 & 0.11 & 420 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 310 \text { (RF02-N) } \\
& 360 \text { (RF02-S) }
\end{aligned}
\]} & \multirow[t]{2}{*}{P.280-P.283} \\
\hline & & & H :High torque & 0.32 & 0.16 & 280 & & \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RF03-N } \\
& \text { RF03-S } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{53 (Standard) 62 (High rigidity)} & N :Standard & 0.8 & 0.4 & 420 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 320 \text { (RF03-N) } \\
& 360 \text { (RF03-S) }
\end{aligned}
\]} & \multirow[t]{2}{*}{P. 284 - P. 287} \\
\hline & & & H :High torque & 1.2 & 0.6 & 280 & & \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RF04-N } \\
& \text { RF04-S } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{78 (High rigidity)} & N :Standard & 6.6 & 3.3 & 420 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 320 \text { (RF04-N) } \\
& 360 \text { (RF04-S) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\text { P. } 288 \text { - P. } 291
\]} \\
\hline & & & H :High torque & 10 & 5 & 280 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{Model} & \multirow[t]{2}{*}{Size (mm) \({ }^{\text {Note } 1}\)} & \multirow[t]{2}{*}{Lead} & \multicolumn{2}{|l|}{Maximum payload(kg) \({ }^{\text {Note }} 2\)} & \multirow[t]{2}{*}{Maximum speed \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & \multirow[t]{2}{*}{Stroke (mm)} & \multirow[t]{2}{*}{Detailed info page} \\
\hline & & & & Horizontal & Vertical & & & \\
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
BD Type \\
(Belt type)
\end{tabular}} & BD04 & \(\mathrm{W} 40 \times \mathrm{H} 40\) & 48 & 1 & - & 1100 & 300 to 1000 & P. 292 \\
\hline & BD05 & \(\mathrm{W} 58 \times \mathrm{H} 48\) & 48 & 5 & - & 1400 & 300 to 2000 & P. 293 \\
\hline & BD07 & W70 \(\times\) H60 & 48 & 14 & - & 1500 & 300 to 2000 & P. 294 \\
\hline
\end{tabular}

Note 1. The size shows approximate maximum cross sectional size.
Note 2. The payload may vary depending on the operation speed. For details, refer to the
detailed page of relevant model.
Note 3. The maximum speed may vary depending on the transfer weight or stroke length For details, refer to the detailed page of relevant model

\section*{A Precautions for use}
- Handling

Fully understand the contents stated in the "TRANSERVO User's Manual" and strictly observe the handling precautions during strictly
- Allowable installation ambient temperature [SS/SR type] 0 to \(40^{\circ} \mathrm{C}\)
[STH/RF/BD type] 5 to \(40^{\circ} \mathrm{C}\)

\section*{- SR/SRD/STH type Speed vs. payload table}

\section*{SR03 \\ \begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Caime} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Lead 12}} & \multicolumn{3}{|c|}{Lead 6} \\
\hline & & & & Palod (kol & Speed (mm/s & mms \\
\hline & & 450 & 90 & & & \\
\hline & & 500 & 100 & \(\xrightarrow{\frac{15}{10}}\) & \(\begin{array}{r}237.5 \\ \hline 250\end{array}\) & . 50 \\
\hline \multirow[t]{4}{*}{Vericas} & & Lead 12 & & \multicolumn{3}{|c|}{Lead 6} \\
\hline & Pallad (kgl & Speed (mm/sec) & \% & & Speed (mms & mms \\
\hline & & 300 & 60 & & & 50 \\
\hline & \({ }_{1}\) & \({ }_{500}^{432}\) & \({ }^{86}\) & - \({ }^{2}\) & \({ }_{250}^{200}\) & - \\
\hline
\end{tabular}

\section*{SRD03}


\section*{SR04}


Vericea



\section*{SR05}


\section*{SRD04}


SRD05


\section*{STH04}


\section*{Robot ordering method description}

In the order format for the YAMAHA single-axis robots TRANSERVO series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation.
[Example]
\begin{tabular}{llll} 
- Mechanical & SS05 & & \\
- Lead & \(\triangleright 6 \mathrm{~mm}\) & - Grease & \(\triangleright\) Standard \\
- Model & \(\triangleright\) Straight & - Stroke & \(\triangleright 600 \mathrm{~mm}\) \\
- Brake & \(\triangleright\) Yes & - Cable length \(\triangleright 1 \mathrm{~m}\) \\
- Origin position & \(\triangleright\) Standard & &
\end{tabular}

\section*{- Ordering Method}

SS05-06SB-NN-600-1K-S2NP

\section*{- Controller \(>\) TS-S2}
- Input /Output selection \(\triangleright\) NPN

To find detailed controller information see the controller page.



Rod type: Bracket plates


\section*{SR04/SRD04 bracket plates}

\begin{tabular}{l|l}
\multicolumn{1}{c}{ Feet (horizontal mount) } & \multicolumn{1}{l}{ Flange (vertical mount) } \\
\hline Type & Model No. \\
\hline Feet (2 plates per set) & KCV-M223F-00 \\
\hline Flange (1 piece) & KCV-M224F-00 \\
\hline
\end{tabular}
* Comes with 12 mounting nuts for feet.

SR05/SRD05 bracket plates


\section*{Rod type: Running life distance to life time conversion example}

This is an example of life time converted from the running life distance listed on each model page for the SR type.
\begin{tabular}{l|l}
\hline Model & SR04-02SB, Vertical mount, 25 kg payload \\
\hline Life distance & \(500 \mathrm{~km} \rightarrow\) Life time : Approx. 3 years \\
\hline Operating conditions & \begin{tabular}{l}
100 mm back-and-forth movement, shuttle time \\
16 seconds (duty: 20\%)
\end{tabular} \\
\hline Word conditions & 16 hours per day \\
\hline Work days & 240 days per year \\
\hline Note. Make sure that the rod is not subjected to a radical load.
\end{tabular}

Note. Make sure that the rod is not subjected to a radical load.

This nozzle tube is even usable when there is little space around the grease port.



Note 1. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.
Note 2. The robot cable is flexible and resists bending
Note 3. See P. 634 for DIN rail mounting bracket
Note 4. Select this selection when using the gateway function. For details, see P.96.

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{3}{|c|}{\(42 \square\) Step motor} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{3}{|c|}{20480} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \({ }^{\text {¢ } 8}\)} \\
\hline \multicolumn{2}{|l|}{Maximum motor torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & \multicolumn{3}{|c|}{0.27} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 600 & 300 & 100 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 2 & 4 & 6 \\
\hline & Vertical & 1 & 2 & 4 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 45 & 90 & 150 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 400 ( 50 mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+216} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+261} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W49 × H59} \\
\hline
\end{tabular}



(mm)

Standard: 1 / Option: 3, 5, 10
Note 1. Positioning repeatability in one direction.
Motor installation (Space-saving model)
R type Motor installed on right

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Horizontal installation (Unit: mm )} & \multicolumn{5}{|l|}{Wall installation} & \multicolumn{4}{|l|}{Vertical installation (Unit: mm)} \\
\hline & & A & B & C & & & A & B & C & & & A & C \\
\hline \multirow[t]{2}{*}{} & 1 kg & 807 & 218 & 292 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{0} \\
& \hline \mathbf{y}
\end{aligned}
\]} & 1kg & 274 & 204 & 776 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { N} \\
& \text { I } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r|}
\hline 0.5 \mathrm{~kg} \\
\hline 1 \mathrm{~kg}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline 407 \\
\hline 204
\end{array}
\]} & 408 \\
\hline & 2kg & 667 & 107 & 152 & & 2kg & 133 & 93 & 611 & & & & 204 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
\(\circ\) \\
\(\stackrel{0}{0}\) \\
\hline
\end{tabular}} & 2kg & 687 & 116 & 169 & \multirow[t]{3}{*}{-} & 2kg & 149 & 102 & 656 & \multirow[t]{2}{*}{\(\stackrel{\circ}{\text { ¢ }}\)} & 1 kg & 223 & 223 \\
\hline & 3 kg & 556 & 76 & 112 & & 3 kg & 92 & 62 & 516 & & 2kg & 107 & 107 \\
\hline & 4kg & 567 & 56 & 84 & & 4kg & 63 & 43 & 507 & N & 2kg & 118 & 118 \\
\hline \(\underset{\sim}{0}\) & 4kg & 869 & 61 & 92 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { N } \\
& \mathbf{\widetilde { \pi }} \\
&
\end{aligned}
\]} & 4kg & 72 & 48 & 829 & \(\stackrel{\text { ¢ }}{\text { ¢ }}\) & 4kg & 53 & 53 \\
\hline \(\stackrel{\text { ¢ }}{ }\) & 6 kg & 863 & 40 & 60 & & 6 kg & 39 & 29 & 789 & \multicolumn{4}{|l|}{} \\
\hline \multicolumn{14}{|l|}{Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of \(10,000 \mathrm{~km}\) (Service life is calculated for 400 mm stroke models).} \\
\hline
\end{tabular}
\begin{tabular}{l|c|c}
\hline \multicolumn{2}{l}{ (Unit: \(\mathbf{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 16 & 19 & 17 \\
\hline
\end{tabular}

SS04 Straight model S

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & \multirow[b]{4}{*}{\begin{tabular}{l}
Note 2. Secure the cable with a tie-band 100 mm or less from unit's end face to prevent the cable from being subjected to excessive loads. \\
Note 3. The cable's minimum bend radius is R30. \\
Note 4. These are the weights without a brake. The weights are 0.2 kg heavier when equipped with a brake.
\end{tabular}} \\
\hline L & 266 & 316 & 366 & 416 & 466 & 516 & 566 & 616 & \\
\hline A & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline B & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline C & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & \\
\hline Weight (kg) \({ }^{\text {Note } 4}\) & 1.5 & 1.6 & 1.7 & 1.8 & 2.0 & 2.1 & 2.2 & 2.3 & \\
\hline
\end{tabular}


Ordering method

\section*{SS05}


Note 1 Brake-equipped models can be selected only when the lead is 12 mm or 6 mm .
Note 2. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, efer to the manual.
Note 3. The robot cable is flexible and resists bending
Note 4. See P. 634 for DIN rail mounting bracket
Note 5. Select this selection when using the gateway function. For details, see P.96.


SS05 Straight model (S



1 Ordering method

SSO5H



Note 1．Brake－equipped models can be selected only when the lead is 12 mm or 6 mm
Note 2．If changing from the origin position at the time of purchase，the machine reference amount must be reset．For details， efer to the manual．
Note 3．The robot cable is flexible and resists bending
Note 4．See P． 634 for DIN rail mounting bracket
Note 5．Select this selection when using the gateway function．For details，see P．96．

\section*{Basic specifications}

Motor
\begin{tabular}{l|l} 
Motor & \(42 \square\) Step motor
\end{tabular}
Resolution（Pulse／rotation）
\begin{tabular}{c|c} 
& 42 \(\square\) Step motor \\
\hline & 20480 \\
\hline & Ball screw 012 \\
\hline
\end{tabular}

Deceleration mechanism
Maximum motor torque（ \(\mathrm{N} \cdot \mathrm{m}\) ）
Ball screw lead（mm）
Maximum speed \({ }^{\text {dore } 2}\) Hor
\begin{tabular}{l|c|c|c} 
& \multicolumn{3}{c}{0.47} \\
\hline & 20 & 12 & 6 \\
\hline & 1000 & 600 & 300 \\
\hline & - & 500 & 250 \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline IV \\
\hline NP：NPN \\
\hline PN：PNP \\
\hline CC：CC－Link \\
\hline ON：DeviceNet \({ }^{\text {TM }}\) \\
\hline EP：EtherNet／IPTM \\
\hline PT：PROFINET \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Maximum & orizontal & 1000 & 60 & 30 \\
\hline （mm／sec） & Vertical & & 500 & 250 \\
\hline \multirow[t]{2}{*}{Maximum payload（kg）} & Horizontal & 6 & 8 & 12 \\
\hline & Vertical & － & 2 & 4 \\
\hline \multicolumn{2}{|l|}{Max．pressing force（ N ）} & 36 & 60 & 120 \\
\hline \multicolumn{2}{|l|}{Stroke（mm）} & \multicolumn{3}{|r|}{50 to 800 （ 50 pitch）} \\
\hline \multirow[t]{2}{*}{Overall length （mm）} & Horizontal & \multicolumn{3}{|c|}{Stroke＋286} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke＋306} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross－section（mm）} & \multicolumn{3}{|c|}{W55 × H56} \\
\hline
\end{tabular}
of body cross－section（mm） Cable length（m）
Note 1．Positioning repeatability in one direction
Note 2 When the stroke is longer than 600 mm ，sonance of the bal screw may occur depending on the operation conditions（critica screw may occur depending on the operation conditions（critica
speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．

\section*{Motor installation（Space－saving model）}

\section*{R type Motor installed on right \\ }


Horizontal installation（Unit mm ）Wall installation（Unit： mm ）Vertical installation（Unit： mm

\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & \multicolumn{1}{c}{（Unit：N．m）} \\
\hline MY & MP & MR \\
\hline 32 & 38 & 34 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Operation method \\
\hline TS－S2 & \begin{tabular}{l} 
I／O point trace／ \\
Remote command
\end{tabular} \\
\hline TS－SH & Peis \\
\hline TS－SD & Pulse train control \\
\hline
\end{tabular}

Note．Distance from center of slider upper surface to carrier center－of－gravity at a guide service life of \(10,000 \mathrm{~km}\)（Service life is calculated for 600 mm stroke models）．
SS05H Straight model S



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Effective stroke} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & \multirow[t]{2}{*}{Note} & Stop positions are determined by the mechanical stoppers at both ends. \\
\hline \multicolumn{2}{|r|}{L} & 212.5 & 262.5 & 312.5 & 362.5 & 412.5 & 462.5 & 512.5 & 562.5 & 612.5 & 662.5 & 712.5 & 762.5 & 812.5 & 862.5 & 912.5 & 962.5 & & stoppers at both ends. Secure the cable with a tie-band 80 mm or less \\
\hline & A & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & & from unit's end face to prevent the cable from \\
\hline & B & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & Note 3 & - Theing subjected to excessive loads. minimum bend radius is R30. \\
\hline & C & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & Note 4. & These are the weights without a brake. The weights \\
\hline Weigh & ht (kg) \({ }^{\text {Note } 4}\) & 1.7 & 1.9 & 2.1 & 2.3 & 2.5 & 2.7 & 2.8 & 3.0 & 3.2 & 3.4 & 3.6 & 3.8 & 4.0 & 4.2 & 4.4 & 4.6 & Note 5 & are 0.2 kg heavier when equipped with a brake.
When the stroke is longer than 600 mm , \\
\hline \multirow{6}{*}{Maximum speed for each stroke \({ }^{\text {Note } 5}\) (mm/sec)} & Lead20 & \multicolumn{12}{|c|}{1000} & 933 & 833 & 733 & 633 & & resonance of the ball screw may occur depending \\
\hline & Lead12 (Horizontal) & \multicolumn{12}{|c|}{600} & 560 & 500 & 440 & 380 & & \begin{tabular}{l}
on the operation conditions (critical speed). \\
In this case, reduce the speed setting on the
\end{tabular} \\
\hline & Lead12 (Vertical) & \multicolumn{14}{|c|}{500} & 440 & 380 & & program by referring to the maximum speeds \\
\hline & Lead6 (Horizontal) & \multicolumn{12}{|c|}{300} & 280 & 250 & 220 & 190 & Note 6 & shown in the table at the left. \\
\hline & Lead6 (Vertical) & \multicolumn{14}{|c|}{250} & 220 & 190 & & asymmetrical. Therefore, if the motor mounting \\
\hline & Speed setting & \multicolumn{12}{|c|}{-} & 93\% & 83\% & 73\% & 63\% & & orientation is changed, the cover cannot be attached. \\
\hline
\end{tabular}


SG07 Straight model

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Effective stroke} \\
\hline \multicolumn{2}{|r|}{L} \\
\hline \multicolumn{2}{|r|}{A} \\
\hline \multicolumn{2}{|r|}{B} \\
\hline \multicolumn{2}{|r|}{C} \\
\hline \multicolumn{2}{|r|}{Weight (kg) Note 4} \\
\hline \multirow{7}{*}{Maximum speed for each stroke \({ }^{\text {Note } 5}\) (mm/sec)} & Lead20 (Horizontal) \\
\hline & Lead20 (Vertical) \\
\hline & Lead12 (Horizontal) \\
\hline & Lead12 (Vertical) \\
\hline & Lead6 (Horizontal) \\
\hline & Lead6 (Vertical) \\
\hline & Speed setting \\
\hline
\end{tabular}
 mechanical stoppers at both ends.
Secure the cable with a tie-band 100 mm or les from unit's end face to prevent the cable from eing subjected to excessive loads.

Note 3. The robot cable is flexible and resists bending Note 4. See P. 634 for DIN rail mounting bracket. Note 5. Select this selection when using the gateway
function. For details, see P.96.

\section*{\(\square\) Speed vs. payload}

\section*{Horizontal
25}


Note 1. See P. 255 for grease gun nozzles
Note 2. If changing from the origin position at the time of
purchase, the machine reference amount must be reset. For details, refer to the manual.
Basic specifications
Motor
Resolution (Pulse/rotation)
Repeatability (mm)
Deceleration mechanism
Ball screw lead (mm)
Maximum speed \({ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec})\) Maximum \begin{tabular}{l|l} 
payload (kg) & Vertical
\end{tabular} Max. pressing force ( N )
Stroke (mm)
Rotating backlash ( \({ }^{\circ}\) ) Overall length Horizontal (mm)

Maximum outside dimension
Of body crosss.section (mm)
\(\frac{0}{}\) of body cross-sectio
Cable length (m) \(\quad\) Standard: \(1 /\) Option: 3,5,10 . The maximum speed needs to be changed in
See the "Speed vs. payload" graph shown on the right. For details, see P. 254


\section*{Running life}

5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve.

\begin{tabular}{|c|c|c|c|}
\hline Controller & Operation method & Controller & Operation method \\
\hline TS-S2 & I/O point trace / & TS-SD & Pulse train control \\
\hline TS-SH & Remote command & & \\
\hline
\end{tabular}

SR03 Straight model S




\section*{Motor installation (Space-saving model)}


U type Motor installed on top


TS-SH Remote command



CE compliance Origin on the non-motor side is selectable: Lead 6, 12

Note 1. See P. 255 for grease gun nozzles.
Note 2. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{2}{|c|}{\(42 \square\) Step motor} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{2}{|c|}{20480} \\
\hline \multicolumn{2}{|l|}{Repeatability (mm)} & \multicolumn{2}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{2}{|c|}{Ball screw ¢ \(^{\text {8 }}\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 1}\) (mm/sec)} & 500 & 250 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 10 & 20 \\
\hline & Vertical & 3.5 & 7.5 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 75 & 100 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{2}{|r|}{50 to 200 (50pitch)} \\
\hline \multicolumn{2}{|l|}{Lost motion} & \multicolumn{2}{|c|}{0.1 mm or less} \\
\hline \multicolumn{2}{|l|}{Rotating backlash ( \({ }^{\circ}\) )} & \multicolumn{2}{|c|}{+/-0.05} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{2}{|c|}{Stroke+236.5} \\
\hline & Vertical & \multicolumn{2}{|c|}{Stroke+276.5} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{2}{|c|}{W48 \(\times\) H56.5} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{2}{|l|}{Standard: 1 / Option: 3, 5, 10} \\
\hline
\end{tabular}

Note 1. The maximum speed needs to be changed in
accordance with the payload.
See the "Speed vs. payload" graph shown on the right.
For details, see P. 254.

Note 3. The robot cable is flexible and resists bending Note 4. See P. 634 for DIN rail mounting bracket. Note 5. Select this selection when using the gateway
function. For details, see P. 96 .
 Vertical


\begin{tabular}{|c|c|}
\hline S2 & \\
\hline Robot positioner & Io \\
\hline & NP: P PN \\
\hline & \(\frac{\text { CCi.c.-Link }}{\text { CV. }}\) \\
\hline & ON: Devicenetim \\
\hline & PT: PROFINET \\
\hline & GW: No l1o boar \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline SH & \\
\hline  &  \\
\hline SD & 1 \\
\hline Robotiver & \(\underline{\text { locali }}\) \\
\hline
\end{tabular}

\section*{Running life}

5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve.


Note. See P. 255 for running life distance to life time conversion example.
\begin{tabular}{|c|c|c|c|}
\hline Controller & Operation method & Controller & Operation method \\
\hline TS-S2 & I/O point trace / & TS-SD & Pulse train control \\
\hline TS-SH & Remote command & & \\
\hline
\end{tabular}

SRD03 Straight model S


－Ordering method
\begin{tabular}{|c|}
\hline Model \\
\hline S：Straight model \\
\hline \begin{tabular}{c} 
R：Space－saving model Note \\
（motor installed on righ）
\end{tabular} \\
\hline \begin{tabular}{c} 
L： \\
Space－saving model Note 1 \\
（motor installed on left）
\end{tabular} \\
\hline
\end{tabular} L：Space－saving model Note 1
（motor installed on left）
Note 1．See P． 255 for grease gun nozzles
Note 2．When＂ 2 mm lead＂is selected，the origin position cannot be changed（to non－motor side）．
Note 3．If changing from the origin position at the time of purchase，the machine reference amount must be reset．For details，refer to the manual．

\section*{Basic specifications}

Motor
Mesolution（Pulse／rotation）
Repeatability（mm）
Deceleration mechanism \(\quad\) Ball screw \(\phi 8\) Ball screw \(\phi 10\) Ball screw lead（mm） Ball screw lead（mm）
\begin{tabular}{l|l}
\hline Maximum speed \({ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec})\) \\
\hline Maximum & Horizontal
\end{tabular}
\begin{tabular}{l|r|}
\hline Maximum \\
payload（kg） & Horizonta \\
\cline { 2 - 3 } & Vertica
\end{tabular}
payload（kg）Vertic
Max．pressing force（N）
Stroke（mm）
Lost motion
\begin{tabular}{l} 
Rotating backlash（ \({ }^{\circ}\) ） \\
\hline Overall length Horizontal
\end{tabular}
Overall length Horizontal （mm）Vertical Maximum outside dimension
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\(42 \square\) Step motor} \\
\hline \multicolumn{3}{|c|}{20480} \\
\hline \multicolumn{3}{|c|}{＋／－0．02} \\
\hline \multicolumn{2}{|l|}{Ball screw \({ }^{\text {¢ }} 8\)} & Ball screw \(\mathbf{\phi}^{10}\) \\
\hline 12 & 6 & 2 \\
\hline 500 & 250 & 80 \\
\hline 25 & 40 & 45 \\
\hline 5 & 12 & 25 \\
\hline 150 & 300 & 600 \\
\hline \multicolumn{3}{|r|}{50 to 300 （50pitch）} \\
\hline \multicolumn{3}{|c|}{0.1 mm or less} \\
\hline \multicolumn{3}{|c|}{＋／－1．0} \\
\hline \multicolumn{3}{|c|}{Stroke＋263} \\
\hline \multicolumn{3}{|c|}{Stroke＋303} \\
\hline \multicolumn{3}{|c|}{\(\mathrm{W} 48 \times \mathrm{H} 58\)} \\
\hline
\end{tabular}
\begin{tabular}{l|l} 
Cable length（m） & Standard： \(1 /\) Option：3，5，10 \\
\hline
\end{tabular}
Note 1．The maximum speed needs to be changed in
accordance with the payload．
See the＂Speed vs．payload＂graph shown on the right．
For details，see P．254．Additionally，when the stroke is long，the maximum speed is decreased due to the critical speed of the ball screw．See the maximum speed table shown at the lower portion of the drawing．


Note 4．The robot cable is flexible and resists bending Note 5．See P． 634 for DIN rail mounting bracket Note 6．Select this selection when using the gateway function．For details，see P． 96 ．

Motor installation（Space－saving model）




SR04－S



Note．See P． 255 for running life distance to life time conversion example
\begin{tabular}{|c|c|c|c|}
\hline Controller & Operation method & Controller & Operation method \\
\hline TS－S2 & I／O point trace／ & TS－SD & Pulse train control \\
\hline TS－SH & Remote command & & \\
\hline
\end{tabular}

SR04 Straight model



SR04 Space-saving model (motor installed on right) \(R\)


SR04 Space-saving model (motor installed on left) L


Ordering method

SRD04
Model


Note 1. See P. 255 for grease gun nozzles
Note 2. When " 2 mm lead" is selected, the origin position cannot be changed (to non-motor side).
Note 3 . If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{3}{|c|}{\(42 \square\) Step motor} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{3}{|c|}{20480} \\
\hline \multicolumn{2}{|l|}{Repeatability (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{2}{|l|}{Ball screw \({ }^{\text {¢ } 8}\)} & Ball screw \(\mathbf{\phi}\) 10 \(^{\text {d }}\) \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec})\)} & 500 & 250 & 80 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 25 & 40 & 45 \\
\hline & Vertical & 4 & 11 & 24 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 150 & 300 & 600 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|r|}{50 to 300 (50pitch)} \\
\hline \multicolumn{2}{|l|}{Lost motion} & \multicolumn{3}{|c|}{0.1 mm or less} \\
\hline \multicolumn{2}{|l|}{Rotating backlash ( \({ }^{\circ}\) )} & \multicolumn{3}{|c|}{+/-0.05} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+263} \\
\hline & Vertical & & Stroke+ & \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W48 \(\times\) H58} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 1 / Option: 3, 5, 10} \\
\hline
\end{tabular}

Note 1. The maximum speed needs to be changed in
accordance with the payload.
See the "Speed vs. payload" graph shown on the right. For details, see P. 254
Additionally, when the stroke is long, the maximum
speed is decreased due to the critical speed of the ball
screw.
See the maximum speed table shown at the lower
portion of the drawing.


Note 4. The robot cable is flexible and resists bending Note 5. See P. 634 for DIN rail mounting bracket Note 6. Select this selection when using the gateway function. For details, see P. 96 .


\section*{Vertical}


\section*{Running life}
 example.


5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve


Note. See P. 255 for running life distance to life time conversion
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Controller} & & \\
\hline Controller & Operation method & Controller & Operation method \\
\hline TS-S2 & I/O point trace / & TS-SD & Pulse train control \\
\hline TS-SH & Remote command & & \\
\hline
\end{tabular}

\section*{SRD04 Straight model S}


\section*{SRD04 Space-saving model (motor installed on top) U}


\section*{Ordering method}

\section*{SRO Model}

Note 1 See P 255 for grease gun nozzles
Note 2．When＂ 2 mm lead＂is selected，the origin position cannot be changed（to non－motor side）
Note 3．If changing from the origin position at the time of purchase，the machine reference amount must be reset．For details，refer to the manual．

\section*{Basic specifications}

Motor
Resolution（Pulse／rotation）
Repeatability（mm） Ball screw lead（mm） Maximum speed \({ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{se}\) \begin{tabular}{|l|l|}
\hline Maximum speed \({ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec})\) \\
\hline Maximum & Horizontal
\end{tabular}
\begin{tabular}{l|l|}
\hline Maximum & Horizontal \\
payload（kg） & Vertical
\end{tabular}
payload（kg）
Max．pressing force（N）
Stroke（mm）
Rotating backlash（ \({ }^{\circ}\) ）
Overall length Horizontal （mm）Vertical Maximum outside dimension
of body cross－section（mm）
 0.1 mm or less

Cable length（m）
Standard： 1 ／Option：3，5， 10
accordance with the payload
See the＂Speed vs．payload＂graph shown on the right
For details，see P． 254.


Note 4．The robot cable is flexible and resists bending Note 5．See P． 634 for DIN rail mounting bracket Note 6．Select this selection when using the gateway function．For details，see P． 96 ．


\section*{Running life}

\section*{Motor installation（Space－saving model）}



5000 km on models other than shown below．
Running life of only the model shown below becomes shorter than 5000 km depending on the payload，so check the running life curve

Note．See P． 255 for running life distance to life time conversion example．



SR05 Straight model

\begin{tabular}{c}
（10） 35.5 \\
\hline \(10 \quad 24\)
\end{tabular}


View A
． 17 （Width across flat） （View A




\(\xlongequal{\text { square nut for T－slot（6 pcs．）}}\) Details of T－slot Dimensions of attached nut
\begin{tabular}{c|c|c|c|c|c|c}
\hline Effective stroke & \(\mathbf{5 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 0 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 0 0}\) \\
\hline L1 & 183 & 233 & 283 & 333 & 383 & 433 \\
\hline \(\mathbf{L}\) & 280.5 & 330.5 & 380.5 & 430.5 & 480.5 & 530.5 \\
\hline Weight（kg）\(^{\text {Note 10 }}\) & 2.2 & 2.6 & 3.0 & 3.3 & 3.7 & 4.1 \\
\hline
\end{tabular}

Note 1．It is possible to apply only the axial tad
Use the external guide together so that any radial load is not applied to the rod
Note 2 The orientation of the width across flat part is undefined to the base surface．
Note 3 ．Use the support guide together to maintain the straightness．
Note 3．Use the support guide together to maintain the straightness．
Note 5 ．When the lead is 2 mm ，this dimension is 27 mm ．
Note 6 ．When running the cables，secure cables so that any load is not applied to them． Note 7．Remove the M4 hex．socket head cap set bolts and use them to secure the cables．（Effective screw thread depth 5） Note 8 ．The cable＇s minimum bend radius is R30．
Note 9．Take great care as the outer case of the motor projects from the bottom of the main unit
Note 10．Models with a brake will be 0.2 kg heavier．
Note 11．Distance to mechanical stopper．

SR05 Space-saving model (motor installed on right)


SR05 Space-saving model (motor installed on left)



Note 1. See P. 255 for grease gun nozzles
Note 2. When " 2 mm lead" is selected, the origin position cannot be changed (to non-motor side).
Note 3. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{3}{|c|}{\(56 \square\) Step motor} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{3}{|c|}{20480} \\
\hline \multicolumn{2}{|l|}{Repeatability (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \({ }^{\text {d }} 12\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 1}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 300 & 150 & 50 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 50 & 55 & 60 \\
\hline & Vertical & 8.5 & 18.5 & 28.5 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 250 & 550 & 900 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|c|}{50 to 300 (50pitch)} \\
\hline \multicolumn{2}{|l|}{Lost motion} & \multicolumn{3}{|c|}{0.1 mm or less} \\
\hline \multicolumn{2}{|l|}{Rotating backlash ( \({ }^{\circ}\) )} & \multicolumn{3}{|c|}{+/-0.05} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+276} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+316} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W56.4 \(\times\) H71} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 1 / Option: 3, 5, 10} \\
\hline
\end{tabular}

Note 1. The maximum speed needs to be changed in accordance with the payload.
See the "Speed vs. payload" graph shown on the right. For details, see P. 254.

Note 4. The robot cable is flexible and resists bending Note 5. See P. 634 for DIN rail mounting bracket. Note 6. Select this selection when using the gateway function. For details, see P. 96 .

\section*{Speed vs. payload Horizontal \\  \\ }

Running life

Vertical Lead 2


5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve.


Note. See P. 255 for running life distance to life time conversion example.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Controller} & & \\
\hline Controller & Operation method & Controller & Operation method \\
\hline TS-S2 & I/O point trace / & TS-SD & Pulse train control \\
\hline TS-SH & Remote command & & \\
\hline
\end{tabular}

SRD05 Straight model S


Installed within the \(T\)-slot range of the main unit.
Hex. socket head cap bolt (M4×0.7), Length under head 12
* Four bolts are required for one plate.
\begin{tabular}{c|c|c|c|c|c|c}
\hline Effective stroke & \(\mathbf{5 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 0 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 0 0}\) \\
\hline L1 & 183 & 233 & \(\mathbf{2 8 3}\) & 333 & 383 & 433 \\
\hline \(\mathbf{L}\) & 280.5 & 330.5 & 380.5 & 430.5 & 480.5 & 530.5 \\
\hline Weight (kg) \({ }^{\text {Note } 8}\) & 3.1 & 3.6 & 4.1 & 4.5 & 5.0 & 5.5 \\
\hline
\end{tabular}

Note 1 . It is possible to apply only the axial load.
Use the external guide together so that any radial load is not applied to the rod.
Note 2 .For lead 2 mm specifications, the origin on the non-motor side cannot be set
Note 4 . When running the cables, secure cables so that any load is not applied to them. (Effective screw thread depth 5)
Note 6. The cable's minimum bend radius is R30.
Note 7. Take great care as the outer case of the motor projects from the bottom of the main
Models with a brake will be 0.2 kg heavier.
Note 9.Distance to mechanical stopper.


\section*{STH04}


Note 1. For the space saving models ( R and L ), the specifications with brake are applicable to only 100 mm strokes.
Note 2. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.
Note 3. Space-saving models ( R and L ) with the plate cannot be selected
Note 4. The robot cable is flexible and resists bending
Note 5. See P. 634 for DIN rail mounting bracket.
Note 6. The robot with the brake cannot use the TS-SD.
Note 7. Select this selection when using the gateway function. For details, see P.96.

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{2}{|l|}{\(28 \square\) Step motor} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{2}{|c|}{4096} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{2}{|c|}{+/-0.05} \\
\hline \multirow[t]{2}{*}{Drive method} & Straight & \multicolumn{2}{|c|}{Slide screw} \\
\hline & Space-saving & \multicolumn{2}{|l|}{Slide screw + belt} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 5 & 10 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 200 & 400 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 6 & 4 \\
\hline & Vertical & 2 & 1 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 55 & 30 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{2}{|c|}{50/100} \\
\hline \multirow[t]{2}{*}{Maximum outside dimension of body cross-section (mm)} & Straight & \multicolumn{2}{|c|}{W45 \(\times\) H46} \\
\hline & Space-saving & \multicolumn{2}{|c|}{W74.5 \(\times\) H51} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{2}{|l|}{Standard: 1 / Option: 3, 5, 10} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. The maximum speed needs to be changed in accordance with the payload. \\
See the "Speed vs. payload" graph shown on the right. For details, see P. 254.
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}



Horizontal installation (Unit: mm) Wall installation (Unit: mm ) Vertical installation (Unit:mm)


\section*{SD}

Robot diviver
SD: TS-SD Note 6

Note. Overhang at travelling service life of 3000 km .
(Service life is calculated for 75 mm stroke models.)
\(\square\) Speed vs. payload
Hoirzonal


\begin{tabular}{|c|c|c|}
\hline SH & & \\
\hline Robot positioner & 10 & Batery \\
\hline & NP:NPN & B:WWith batee \\
\hline & Cc: CC-Link & \\
\hline & ON: Devicenetm & (licrementa) \\
\hline &  & \\
\hline & GW: Nollo boardmer & \\
\hline SD & 1 & \\
\hline Robot diver & lo cable & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline Ts-S2 & I/O point tra \\
\hline TS-SH & Remote command \\
\hline TS-SD \({ }^{\text {Note }}\) & Pulse train control \\
\hline \multicolumn{2}{|l|}{Note. The robot with the brak cannot use the TS-SD.} \\
\hline
\end{tabular}

STH04 Straight model S


STH04 Space-saving model (motor installed on right)

 S: Straight model (motor installed on righ (motor installed on left)


SH

\(\square\) Static loading moment


Horizontal installation (Unit: mm ) Wall installation (Unit: mm ) Vertical installation (Unit: mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\begin{array}{r}\circ \\ \hline 8 \\ \text { ¢ } \\ \hline 1\end{array}\)} & 2kg & 3000 & 2123 & 1436 & \multirow[t]{3}{*}{} & 2kg & 1500 & 2091 & 3000 \\
\hline & 4kg & 2493 & 1001 & 680 & & 4kg & 710 & 975 & 2443 \\
\hline & 6 kg & 1571 & 627 & 428 & & 6 kg & 440 & 603 & 1524 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \infty \\
& \hline \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\]} & 3kg & 3000 & 1375 & 932 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \infty \\
& \stackrel{\infty}{0} \\
& \hline
\end{aligned}
\]} & 3kg & 979 & 1347 & 300 \\
\hline & 6 kg & 1571 & 627 & 428 & & 6kg & 440 & 603 & 1524 \\
\hline & 9 kg & 956 & 378 & 260 & & 9kg & 260 & 355 & 91 \\
\hline
\end{tabular}

\begin{tabular}{r|c|c|c}
\multicolumn{2}{c|}{} & \multicolumn{2}{c}{ (Unit: \(\mathbf{N} \cdot \mathrm{m}\) ) } \\
\hline Stroke & MY & MP & MR \\
\hline \(\mathbf{5 0 m m}\) & 77 & 77 & 146 \\
\hline \(\mathbf{1 0 0 m m}\) & 112 & 112 & 177 \\
\hline \(\mathbf{1 5 0 m m}\) & 155 & 155 & 152 \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction
Note 2. The maximum speed needs to be changed in accordance with the payload.
See the "Speed vs. payload" graph shown on the right. For details, see P. 254

Note. Overhang at travelling service life of 3000 km .
(Service life is calculated for 100 mm stroke models.)

\section*{\(\square\) Speed vs. payload}

Horizontal



\section*{Controller}

Controller Operation method
TS-S2 \(\quad\) I/O point trace / \begin{tabular}{l|l} 
TS-SH & Remote command \\
\hline
\end{tabular} \begin{tabular}{l|l}
\hline TS-SD & Note \\
\hline
\end{tabular} Note. The robot with the brake cannot use the TS-SD.

\section*{STH06 Straight mode}


STH06 Space-saving model (motor installed on right)

\begin{tabular}{|c|c|c|c|}
\hline Effective stroke & 50 & 100 & 150 \\
\hline B & 75 & 48 & 65 \\
\hline C & 4 & 8 & 8 \\
\hline D & 80 & 44 & 66 \\
\hline E & 2 & 4 & 4 \\
\hline F & 80 & 88 & 132 \\
\hline G & 143 & 207 & 285 \\
\hline L & 132 & 196 & 274 \\
\hline Weight (kg) \({ }^{\text {Note } 6}\) & 25 & 33 & 426 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Note 1. Return-to-origin position. \\
Note 2. Table movable range during return-to-origin operation. The values in [ ] show those when the return-to-origin direction is changed.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Note 3 . The minimum bending radius of the motor cable is R30.} \\
\hline \multicolumn{4}{|l|}{Note 4. When installing the mechanical main unit using the back facing holes, push the slider toward the origin position on the motor side and insert the hex socket head cap (M6) bolt.} \\
\hline \multicolumn{4}{|l|}{Note 5. The dimensions of the specifications with the brake are common to those shown above.} \\
\hline
\end{tabular}

\section*{STH06 Space-saving model (motor installed on left)}


Cross-sectional
drawing A-A
\(\overline{\text { Detailed drawing of }}\) installation hole

\begin{tabular}{c|c|c|c}
\hline Effective stroke & \(\mathbf{5 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{1 5 0}\) \\
\hline \(\mathbf{B}\) & \(\mathbf{7 5}\) & 48 & 65 \\
\hline C & 4 & 8 & 8 \\
\hline \(\mathbf{D}\) & 80 & 44 & 66 \\
\hline E & 2 & 4 & 4 \\
\hline F & 80 & 88 & 132 \\
\hline G & 143 & 207 & 285 \\
\hline L & 132 & 196 & 274 \\
\hline Weight (kg) \(^{\text {Note 6 }}\) & 2.5 & 3.3 & 4.26 \\
\hline
\end{tabular}
Note 1. Return-to-origin position.
Note 2. Table movable range during return-to-origin
operation. The values in [ ] show those when the
ote 3 . The minimum in direction is changed. ote 3. The m
R30.
Note 4.When installing the mechanical main unit using the back facing hols push the slider toward the origin position on the motor side and insert the hex socket head cap (M6) bolt.
Note 5 . The dimensions of the specifications with the brake are common to those shown above. Note 6 . Models with a brake will be 0.34 kg heavier

OOrdering method


Note 3. Select this selection when using the gateway function. For details, see P.96.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Basic specifications} \\
\hline Motor & \(\square \square\) Step motor \\
\hline Resolution (Pulse/rotation) & 496 \\
\hline Repeatability \({ }^{\text {Note } 1}\left({ }^{\circ}\right.\) ) & + 8 \\
\hline Drive method & Secial nam gear + bet \\
\hline Torque type & Sandard \(\quad\) High torque \\
\hline Maximum speed \({ }^{\text {Note } 2}\) ( \(\% / \mathrm{sec}\) ) & 4 D \\
\hline Rotating torque ( \(\mathrm{N} \cdot \mathrm{m}\) ) & \% 1 3 \\
\hline Max. pushing torque ( \(\mathrm{N} \cdot \mathrm{m}\) ) & 010 \\
\hline Backlash ( \({ }^{\circ}\) ) & + \({ }^{\text {a }}\) \\
\hline Max. moment of inertia \({ }^{\text {Note } 3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right.\) ) & (18) * \\
\hline Cable length (m) & Standard: 1 / Option: 3, 5, 10 \\
\hline Rotation range ( \({ }^{\circ}\) ) & 310 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Allowable load} \\
\hline  &  & \multicolumn{4}{|c|}{} & \multicolumn{2}{|l|}{\%} \\
\hline \multicolumn{2}{|l|}{Allowable radial load ( N )} & \multicolumn{4}{|c|}{Allowable thrust load (N)} & \multicolumn{2}{|l|}{Allowable moment ( \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline Standard model & High rigidity mode & Standard model & High
rigidity model & Standard model & \[
\begin{gathered}
\text { High } \\
\text { rigidity } \\
\text { model }
\end{gathered}
\] & Standard model & High
rigidity model \\
\hline 78 & 86 & \multicolumn{2}{|c|}{74} & 78 & 107 & 2.4 & 2.9 \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed graph (reference).
Note 3. For moment of inertia and effective torque details, see P. 744.

RF02-NN Limit rotation specification - Standard model


\section*{RF02-NH Limit rotation specification - High rigidity model}


Ordering method


RF02-SN Sensor specification - Standard model


RF02-SH Sensor specification - High rigidity model
 interfere with the workpiece or equipment around the table.
*2 The return-to-origin position may differ from that shown in this drawing. To align with the position shown in this drawing, refer to the TS Series User's Manual and change the origin coordinates.


\section*{\begin{tabular}{l|l} 
Weight (kg) & 0.55 \\
\hline
\end{tabular}}

Note 1. This drawing is output under the conditions below.

Note 2. The minimum bending radii of the motor cable and sensor cable are R30
Note 3. The motor cable exit direction is only the left side.


\title{
RF03-
}

Note 1. The robot cable is flexible and resists bending.
Note 2. See P. 634 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.96.


GOrdering method



Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while eferring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed graph (reference).
Note 3. For moment of inertia and effective torque details, see P. 744.


\begin{tabular}{|c|c|}
\hline S2 & \\
\hline Robot positioner & 10 \\
\hline S2: TS-S2 \({ }^{\text {Nosea }}\) & \\
\hline & PN: PNP \\
\hline & DN: DeviceNet \({ }^{\text {TM }}\) \\
\hline &  \\
\hline & GW: No l1O boardme \\
\hline
\end{tabular}

SH


> Note. When purchasing the product, set the controller acceleration while carefully checking the "Moment of inertia vs. Acceleration/Deceleration" and "Effective torque vs. Speed" graphs.

For details, please refer to the TRANSERVO Series User's Manual
RFO3-NN Limit rotation specification - Standard model


\section*{RF03-NH Limit rotation specification - High rigidity model}


\title{
RF03-S
}

\section*{Ordering method}


\section*{Basic specifications}
\begin{tabular}{l|c|c}
\hline Motor & \multicolumn{2}{|c}{\(28 \square\) Step motor } \\
\hline Resolution (Pulse/rotation) & \multicolumn{2}{|c}{4096} \\
\hline Repeatability \({ }^{\text {Note }{ }^{\circ}\left({ }^{\circ}\right)}\) & \multicolumn{2}{|c}{\(+/-0.05\)} \\
\hline Drive method & \multicolumn{2}{|c}{ Special warm gear + belt } \\
\hline Torque type & Standard & High torque \\
\hline Maximum speed \({ }^{\text {Note } \mathbf{~}\left({ }^{\circ} / \mathbf{s e c}\right)}\) & 420 & 280 \\
\hline Rotating torque (N•m) & 0.8 & 1.2 \\
\hline Max. pushing torque (N•m) & 0.4 & 0.6 \\
\hline Backlash \(\left({ }^{\circ}\right)\) & \multicolumn{2}{|c}{\(+/-0.5\)} \\
\hline Max. moment of inertia \({ }^{\text {Note 3 }} \mathbf{( k g \cdot m ^ { 2 } )}\) \\
\hline Cable length \((\mathbf{m})\) & \multicolumn{2}{|c}{0.012} \\
\hline Rotation range \(\left({ }^{\circ}\right)\) & Standard: \(1 /\) Option: \(3,5,10\) \\
\hline & \multicolumn{2}{|c}{360} \\
\hline
\end{tabular}



Note 1. Positioning repeatability in one direction
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed" graph (reference).
Note 3. For moment of inertia and effective torque details, see P.744.


Note. When purchasing the product, set the controller acceleration while carefully checking the "Moment of inertia vs. Acceleration/Deceleration" and "Effective

For details, please refer to the TRANSERVO Series User's Manual

RF03-SN Sensor specification - Standard model


RF03-SH Sensor specification - High rigidity model



Approx. 180
Approx. 180


\title{
RF04-
}

OOrdering method


Note 1. The robot cable is flexible and resists bending.
Note 2. See P. 634 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.96.


\section*{Basic specifications}
\begin{tabular}{|c|c|c|}
\hline Motor & 42 & motor \\
\hline Resolution (Pulse/rotation) & \multicolumn{2}{|c|}{20480} \\
\hline Repeatability \({ }^{\text {Note } 1}\left({ }^{\circ}\right.\) ) & \multicolumn{2}{|c|}{+1.05} \\
\hline Drive method & \multicolumn{2}{|l|}{Secial nam gear + bet} \\
\hline Torque type & Sandard & High torque \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (\%/sec) & 420 & 280 \\
\hline Rotating torque ( \(\mathrm{N} \cdot \mathrm{m}\) ) & 6.6 & 10 \\
\hline Max. pushing torque ( \(\mathrm{N} \cdot \mathrm{m}\) ) & 33 & 5 \\
\hline Backlash ( \({ }^{\circ}\) ) & \multicolumn{2}{|c|}{\(+\infty .5\)} \\
\hline Max. moment of inertia \({ }^{\text {Note } 3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) & 0.04 & 0.1 \\
\hline Cable length ( m ) & Standard: & Pption: 3, 5, 10 \\
\hline Rotation range ( \({ }^{\circ}\) ) & & \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed" graph (reference).
Note 3. For moment of inertia and effective torque details, see P. 744 .
\(\square\) Moment of inertia Acceleration/deceleration



\section*{Effective torque vs. speed}

\[
\begin{aligned}
& \text { Note. When purchasing the product, set the controller acceleration while carefully } \\
& \text { checking the "Moment of inertia vs. Acceleration/Deceleration" and "Effective } \\
& \text { torque vs. Speed" graphs. } \\
& \text { For details, please refer to the TRANSERVO Series User's Manual. }
\end{aligned}
\]


RF04-NH Limit rotation specification - High rigidity model


\title{
RF04－S
}

OOrdering method
Note 1．The robot cable is flexible and resists bending
Note 2．See P． 634 for DIN rail mounting bracket．
Note 3．Select this selection when using the gateway function．For details，see P．96．

\section*{Basic specifications}
\begin{tabular}{|c|c|c|}
\hline Motor & \multicolumn{2}{|l|}{\(42 \square\) Step motor} \\
\hline Resolution（Pulse／rotation） & \multicolumn{2}{|c|}{20480} \\
\hline Repeatability \({ }^{\text {Note } 1}\)（ \({ }^{\circ}\) ） & \multicolumn{2}{|c|}{＋／－0．05} \\
\hline Drive method & \multicolumn{2}{|l|}{Special warm gear＋belt} \\
\hline Torque type & Standard & High torque \\
\hline Maximum speed \({ }^{\text {Note } 2}\)（ \(\%\)／sec） & 420 & 280 \\
\hline Rotating torque（ \(\mathrm{N} \cdot \mathrm{m}\) ） & 6.6 & 10 \\
\hline Max．pushing torque（ \(\mathrm{N} \cdot \mathrm{m}\) ） & 3.3 & 5 \\
\hline Backlash（ \({ }^{\circ}\) ） & \multicolumn{2}{|c|}{＋／－0．5} \\
\hline Max．moment of inertia \({ }^{\text {Note } 3}\left(\mathrm{~kg}^{\text {a }}\right.\) 2 \()\) & 0.04 & 0.1 \\
\hline Cable length（m） & \multicolumn{2}{|l|}{Standard： 1 ／Option：3，5， 10} \\
\hline Rotation range（ \({ }^{\circ}\) ） & \multicolumn{2}{|r|}{360} \\
\hline
\end{tabular}

Note 1．Positioning repeatability in one direction
Note 2．The maximum speed may vary depending on the moment of inertia．Check the maximum speed while referring to the＂Moment of inertia vs．Acceleration／ deceleration＂graph and the＂Effective torque vs． speed＂graph（reference）．
Note 3．For moment of inertia and effective torque details， see P． 744 ．
\(\square\) Moment of inertia Acceleration／deceleration


Allowable load


Note．When purchasing the product，set the controller acceleration while carefully
checking the＂Moment of inertia vs．Acceleration／Deceleration＂and＂Effective
torque vs．Speed＂graphs．
For details，please refer to the TRANSERVO Series User＇s Manual

RF04－SN Sensor specification－Standard model


Manual operation screw \(\infty\) Manual oper
（both sides）


\section*{\begin{tabular}{l|l}
\hline Weight（kg） 2.3 \\
\hline
\end{tabular}}

Note 1．This drawing is output under the conditions below．
Bearing．．．．．．．．．．．．．．．．．．．．．Standard
Note 2．The minimum bending radii of the motor cable and sensor cable are R30


\section*{RF04-SH Sensor specification - High rigidity model}



Note 3. Select this selection when using the gateway function. For details, see P.96.


Horizontal installation (Unit: mm ) Wall installation (Unit: mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 0.5 kg & 8036 & 1950 & 1504 & 0.5 kg & 1614 & 1942 & 8013 \\
\hline 1 kg & 3933 & 968 & 747 & 1kg & 798 & 961 & 3969 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Motor & \(28 \square\) Step motor \\
\hline Resolution (Pulse/rotation) & 496 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & + \({ }^{\text {c }}\) \\
\hline Drive method & Bet \\
\hline Equivalent lead (mm) & \(\bigcirc\) \\
\hline Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 110 \\
\hline Maximum payload (kg) & 1 \\
\hline Stroke (mm) &  \\
\hline Overall length (mm) (Horizontal installation) & Stroke + 195 \\
\hline Maximum outside dimension of body cross-section ( mm ) & W4 \(\times\) H09 \\
\hline Cable length (m) & Standard: 1 / Option: 3, 5, 10 \\
\hline
\end{tabular}
of body cross-section (mm) Standard: 1 / Option: 3, 5, 10
Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed needs to be changed in
accordance with the payload
See the "Speed vs. payload" graph shown on the right.


Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of \(10,000 \mathrm{~km}\) (This does not warrant the service life of the product.). (Service life is calculated for 600 mm stroke models.)

\section*{Basic specifications}


BD04



\section*{Basic specifications}
\begin{tabular}{|c|c|}
\hline Motor & \(42 \square\) Step motor \\
\hline Resolution (Pulse/rotation) & 20480 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.1 \\
\hline Drive method & Belt \\
\hline Equivalent lead (mm) & 48 \\
\hline Maximum speed \({ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec})\) & 1400 \\
\hline Maximum payload (kg) & 5 \\
\hline Stroke (mm) & \(300 / 500 / 600 / 700 / 800 / 900 /\)
1000/1200/1500/1800/2000 \\
\hline Overall length (mm) (Horizontal installation) & Stroke + 241.8 \\
\hline Maximum outside dimension of body cross-section (mm) & W58 × H123 \\
\hline Cable length (m) & Standard: 1 / Option: 3, 5, 10 \\
\hline
\end{tabular}

Note 1. Posioning repeablijil one drection
Note 2. The maximum speed needs to be changed in
accorcance with the lyad
See the "\$eed vslquad" graph shown on the ingt

\section*{\(\square\) Allowable overhang Note}


Horizontal installation (Unit: mm ) Wall installation (Unit: mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 1kg & 9445 & 2274 & 1681 & 1kg & 1784 & 2312 & 9545 \\
\hline 3kg & 2982 & 702 & 553 & 3kg & 573 & 743 & 3082 \\
\hline 5 kg & 1689 & 385 & 325 & 5kg & 331 & 429 & 1789 \\
\hline
\end{tabular}

Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of \(10,000 \mathrm{~km}\) (This does not warrant the service life of the product.). (Service life is calculated for 600 mm stroke models.)


BD05


\footnotetext{
Note 1. Position from both ends to the mechanical stopper. (Movable range during return-to-origin)
}

Note 2. When installing using the main unit installation reference surface, make the mating or positioning height 2 mm or more higher than the reference surface since the R -chamfering is provided on the main unit.
Note 3. The minimum bending radius of the motor cable is R30.

CE compliance
7 Ordering method


Note 1. The robot cable is flexible and resists bending.
Note 2. See P. 634 for DIN rail mounting bracket.


Note 3. Select this selection when using the gateway function. For details, see P.96.

\section*{Basic specifications}
\begin{tabular}{|c|c|}
\hline Motor & \(56 \square\) Step motor \\
\hline Resolution (Pulse/rotation) & 20480 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.1 \\
\hline Drive method & Belt \\
\hline Equivalent lead (mm) & 48 \\
\hline Maximum speed \({ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec})\) & 1500 \\
\hline Maximum payload (kg) & 14 \\
\hline Stroke (mm) & 300/500/600/700/800/900/
1000/1200/1500/1800/2000 \\
\hline Overall length (mm) (Horizontal installation) & Stroke + 285.6 \\
\hline Maximum outside dimension of body cross-section (mm) & W70 \(\times\) H147.5 \\
\hline Cable length (m) & Standard: 1 / Option: 3, 5, 10 \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction
Note 2. The maximum speed needs to be changed in accordance with the payload
See the "Speed vs. payload" graph shown on the right


BD07

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 300 & 500 & 600 & 700 & 800 & 900 & 1000 & 1200 & 1500 & 1800 & 200 & \multirow[b]{5}{*}{\begin{tabular}{l}
Note 1. Position from both ends to the mechanical stopper. (Movable range during return-to-origin) Note 2. When installing using the main unit installation reference surface, make the mating or positioning height 2 mm or more higher than the reference surface since the R -chamfering is provided on the main unit. (Recommended height, 5 mm ) \\
Note 3. The minimum bending radius of the motor cable is R30.
\end{tabular}} \\
\hline L & 585.6 & 785.6 & 885.6 & 985.6 & 1085.6 & 1185.6 & 1285.6 & 1485.6 & 1785.6 & 2085.6 & 2285.6 & \\
\hline M & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 8 & 9 & 10 & \\
\hline N & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 18 & 20 & 22 & \\
\hline Weight (kg) & 4.12 & 4.8 & 5.14 & 5.48 & 5.82 & 6.16 & 6.5 & 7.18 & 8.2 & 9.22 & 9.9 & \\
\hline
\end{tabular}


\section*{SINGLE-AXIS ROBOTS}


\section*{CONTENTS}
\begin{tabular}{|c|c|}
\hline IP-X SPECIFICATION SHEET \(\cdot \mathrm{C} 296\) & GF17XL .................................. 320 \\
\hline \multirow[t]{3}{*}{■ Robot ordering method description ........................... 298} & F20 *................................... 321 \\
\hline & F20N .................................... 323 \\
\hline & \begin{tabular}{l}
N TYPE \\
NUT ROTATION TYPE MODEL
\end{tabular} \\
\hline Robot ordering method
terminology \(\cdots \cdots \cdots \cdots \cdots \cdots . . . . . . . . . . . . . .299\) & N15...................................... 324 \\
\hline T TYPE & N15D .................................. 326 \\
\hline FRAME-LESS STRUCTURE MODEL & N18........................................ 328 \\
\hline T4L ....................................... 300 & N18D ...................................... 330 \\
\hline  & \begin{tabular}{l}
B TYPE \\
TIMING BELT DRIVE MODEL
\end{tabular} \\
\hline T5L....................................... 302 & TIMING BELT DRIVE MODEL \\
\hline  & B10....................................... 332 \\
\hline T6L ................................... 304 &  \\
\hline T9 ........................................ 305 & B14H \(\cdots\).................................... 336 \\
\hline T9H \(\cdot\)..................................... 306 & \begin{tabular}{l}
R TYPE \\
ROTATION AXIS TYPE MODEL
\end{tabular} \\
\hline \begin{tabular}{l}
F TYPE/GF TYPE \\
HIGH RIGIDITY FRAME MODEL
\end{tabular} & R5 *....................................... 338 \\
\hline F8 .......................................... 307 & R10 *.................................. 339 \\
\hline 30 & R20 ..................................... 340 \\
\hline
\end{tabular}
F8LH ..... 310
F10. ..... 311
F10H. ..... 312
F14 ..... 314
F14H ..... 315
GF14XL ..... 316
F17 ..... 317
F17L ..... 319

\section*{FLIP-X SPECIFICATION SHEET}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type & Model & Motor output (W) & Repeatability (sec) & \[
\begin{gathered}
\text { Speed } \\
\text { reduction }
\end{gathered}
\]
ratio & Maximum speed ( \({ }^{\circ} / \mathrm{sec}\) ) & Detailed info page \\
\hline \multirow[t]{3}{*}{\[
\stackrel{\text { Non }}{\stackrel{\circ}{\lambda}}
\]} & R5 & 50 & +/-30 & 1/50 & 360 & P. 338 \\
\hline & R10 & 100 & +/-30 & 1/50 & 360 & P. 339 \\
\hline & R20 & 200 & +/-30 & 1/50 & 360 & P. 340 \\
\hline
\end{tabular}

\section*{A Precautions for use}
- Handling

Fully understand the contents stated in the "FLIP-X Series User's Manual" and strictly observe the
handling precautions during operation.
- Allowable installation ambient temperature

0 to \(45^{\circ} \mathrm{C}\)


\section*{Robot ordering method description}

In the order format for the YAMAHA single-axis robots FLIP-X series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation.
[Example]
- Mechanical \(>\) F8
\begin{tabular}{lll} 
- Lead & \(\triangleright 20 \mathrm{~mm}\) & - Grease \(\quad \triangleright\) Standard \\
- Brake & \(\triangleright\) Yes & - Stroke \(\quad \triangleright 500 \mathrm{~mm}\) \\
- Origin position & \(\square\) Non-motor side & - Cable length \(\triangleright 3.5 \mathrm{~m}\)
\end{tabular}
- Controller \(>\) SR1-X
- Usable for CE \(\quad \perp\) Not required \(\cdot I / O\) selection \(D\) NPN
- Regenerative unit \(\triangleright\) Not required •Battery \(\triangleright\) With battery

\section*{- Ordering method}

\section*{F8-20-BK-Z-500-3L-SR1-X05-N-B}

Mechanical section
Controller section
This page describes using the ordering form for mechanical components. To find detailed controller information see the controller page.


\section*{Mechanical section}

T type / F type (F8 / F8L / F8LH)


F type (Except F8 / F8L / F8LH)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(\square\) \\
(1)Model
\end{tabular}}} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{6}{|l|}{} & \multicolumn{3}{|l|}{} \\
\hline & & (3)Lea & ddesignation & & (4) Brake & (6)Cable & entry location & & & (10) Opt & & & & (11)Stroke & (12) Ca & e length \\
\hline F10 & F20 & 50 & 50 mm & No entry & No brakes & No entry & Standard (S) & Origin position & None & Standard & Grease & None & Standar & & 3L & 3.5 m \\
\hline F10H & F20N & 40 & 40mm & BK & Brakes provided & U & From the top & change & Z & Non-motor side & type & GC & Clean & & 5L & 5 m \\
\hline F14 & & 30 & 30 mm & & & R & From the right & & & & & & & & 10L & 10 m \\
\hline F14H & & 20 & 20 mm & & & L & From the left & & & & & & & & 3K & 3.5 m \\
\hline F17 & & 10 & 10 mm & & & & & & & & & & & & 5K & 5 m \\
\hline F17L & & 5 & 5 mm & & & & & & & & & & & & 10K & 10m \\
\hline
\end{tabular}

\section*{GF type \\ \begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline (1) Model & 2Model & & ake out direction & & Leaddesignation \\
\hline GF14XL & Straight model & & Horizontal installation & & 20.20 mm \\
\hline
\end{tabular}

- N type (Single carriage)


\begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline & \multicolumn{2}{|c|}{} \\
\hline
\end{tabular} \\
\hline
\end{tabular} (12)Cable length

\section*{Robot ordering method terminology}
\begin{tabular}{|c|c|}
\hline (1) Model & Enter the robot unit model. \\
\hline (2) Model & Straight model only (GF type) \\
\hline (3) Lead designation & Select the ball screw lead. \\
\hline (4) Brake & \begin{tabular}{l}
Select Brake or No-brake. \\
Horizontal specs: No-brake \\
Vertical specs : with Brake
\end{tabular} \\
\hline (5) Take out direction & Select what direction to install the robot (horizontal / wall mounted). \\
\hline (6) Cable entry location & Select what direction to extract the robot cable connecting the robot and controller. \\
\hline (7) Cable carrier entry location & Select what direction to install the robot (horizontal / wall mounted) and what direction to extract the robot cable carrier. \\
\hline (8) Cable carrier specification & Select the cable carrier size for the customer wiring. \\
\hline (9) Motor installation direction & Select what direction to install the motor. \\
\hline \multirow{3}{*}{(10) Option} & Origin position change: Origin point position can be changed. \\
\hline & Frame: Hole to secure the frame can be selected. (Spot facing/tapping) \\
\hline & Grease type: Clean grease can be selected. \\
\hline (11) Stroke & Select the stroke for the robot movement range. \\
\hline (12) Cable length & \begin{tabular}{l}
Select the robot cable length to use for connecting the robot to the controller. \\
3L : 3.5m (Standard) \\
5L : 5m \\
10L: 10m \\
1K:1m (You can select a 1 m cable only when you use T4L/T5L. Flexible cable) \\
3K : 3.5m (Flexible cable) \\
\(5 \mathrm{~K}: 5 \mathrm{~m} \quad\) (Flexible cable) \\
10K : 10m (Flexible cable)
\end{tabular} \\
\hline
\end{tabular} in any other way will cause a failure. For requirement of installation in any way other than the above standard installation, please consult YAMAHA as special arrangement will be available.

Select the cable carrier size for the customer wiring.


Select what direction to install the motor.


Note 1．The robot cable is flexible and resists bending．See P． 732 for details on robot cable．
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output（W）} & \multicolumn{3}{|c|}{30} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)（mm）} & \multicolumn{3}{|c|}{＋／－0．02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \(\phi 8\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead（mm）} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed（mm／sec）} & 720 & 360 & 120 \\
\hline \multirow[t]{2}{*}{Maximum payload（kg）} & Horizontal & 4.5 & 6 & 6 \\
\hline & Vertical & 1.2 & 2.4 & 7.2 \\
\hline \multicolumn{2}{|l|}{Rated thrust（N）} & 32 & 64 & 153 \\
\hline \multicolumn{2}{|l|}{Stroke（mm）} & \multicolumn{3}{|l|}{50 to 400 （50mm pitch）} \\
\hline \multirow[t]{2}{*}{Overall length （mm）} & Horizontal & \multicolumn{3}{|c|}{Stroke＋198} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke＋236} \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit（ mm ）} & \multicolumn{3}{|c|}{W45 \(\times\) H53} \\
\hline \multicolumn{2}{|l|}{Cable length（m）} & \multicolumn{3}{|l|}{Standard： 3.5 ／Option：1，5，10} \\
\hline \multicolumn{2}{|l|}{Linear guide type} & \multicolumn{3}{|l|}{2 rows of gothic arch grooves \(\times 1\) rail} \\
\hline \multicolumn{2}{|l|}{Position detector} & \multicolumn{3}{|c|}{Resolvers \({ }^{\text {Note } 2}\)} \\
\hline \multicolumn{2}{|l|}{Resolution（Pulse／rotation）} & \multicolumn{3}{|c|}{16384} \\
\hline
\end{tabular}

 Note．Distance from cen Note．Service life is calculated for 300 mm stroke models．

\section*{ERCD}

Controller

method


T4L



Note 1. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable. Note 2. See P. 634 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.96.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & \multicolumn{3}{|c|}{30} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \(\mathbf{\phi 8}\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 720 & 360 & 120 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 4.5 & 6 & 6 \\
\hline & Vertical & 1.2 & 2.4 & 7.2 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 32 & 64 & 153 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 400 ( 50 mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length ( mm )} & Horizontal & \multicolumn{3}{|c|}{Stroke+198} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+236} \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit ( mm )} & \multicolumn{3}{|c|}{\(\mathrm{W} 45 \times \mathrm{H} 53\)} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 5,10} \\
\hline \multicolumn{2}{|l|}{Linear guide type} & \multicolumn{3}{|l|}{2 rows of gothic arch grooves \(\times 1\) rail} \\
\hline \multicolumn{2}{|l|}{Position detector} & \multicolumn{3}{|c|}{Resolvers \({ }^{\text {Note } 2}\)} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{3}{|c|}{16384} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. Position detectors (resolvers) are common to incremental and
absolute specifications. If the controller has a backup function
then it will be absolute specifications.

\section*{T4LH}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & izontal & installa & & nit:mm) & & Il insta & latio & & t: mm) & & ical ins & lation & Vit.mm) & & & (Unit: \(\mathrm{N} \cdot \mathrm{m}\) ) \\
\hline & & A & B & C & & & A & B & C & & & A & C & MY & MP & MR \\
\hline \(\stackrel{\sim}{\square}\) & 2kg & 341 & 90 & 174 & & 2kg & 140 & 73 & 300 & & & 12 & & 15 & 19 & 18 \\
\hline ¢ & 4.5 kg & 172 & 37 & 72 & ¢ & 4.5 kg & 47 & 22 & 119 & & 1.2 kg & 122 & 121 & & & \\
\hline \(\bigcirc\) & 3kg & 355 & 58 & 134 & \(\bigcirc\) & 3 kg & 105 & 42 & 260 & & & & & Contr & 11 & \\
\hline \[
\stackrel{\square}{\square}
\] & 6 kg & 235 & 27 & 62 & む & 6 kg & 31 & 11 & 135 & ฐ & 2.4 kg & 56 & 57 & Controller & Op & method \\
\hline N & 3 kg & 1105 & 59 & 142 & & 3kg & 113 & 42 & 810 & \% & 3kg & 41 & 42 & SR1-X05 & Prog I/O p & \begin{tabular}{l}
ng / \\
/
\end{tabular} \\
\hline \[
\stackrel{\square}{\Phi}
\] & 6 kg & 520 & 27 & 66 & & 6 kg & 32 & 11 & 305 & \(\pm\) & 7.2 kg & 0 & 0 & RCX320 & Remo & mmand / \\
\hline & Distan life of & ce from
10,000 &  & slider & op to & center o & gravit & of obje & \(t\) bein & & at a & & & \[
\begin{aligned}
& \text { RCX221/222 } \\
& \text { RCX340 }
\end{aligned}
\] & using comm & 32C tion \\
\hline & Servic & life is & alcula & for 30 & & & & & & & & & & TS-X105 & I/O & ce / \\
\hline & & & & & & & & & & & & & & TS-X205 & Rem & mmand \\
\hline & & & & & & & & & & & & & & RDV-X205 & Pulse & control \\
\hline
\end{tabular}


Note 1. The model with a lead of 20 mm cannot select specifications with brake (vertical specifications).
Note 2. The robot cable is flexible and resists bending. See P. 732 for details on robot cable.


T5L



Note 1. Stop positions are determined by the mechanical stoppers at both Note 2. Minim
ote 2. Minimum bend radius of motor cable is R30
Note 3. Weight of models with no brake. The weight of brake-attached models is 0.2 kg heavier than the models with no brake shown in the table.
Note 4. The under-head length of the hex socket-head bolt ( \(M 4 \times 0.7\) ) to be used for the installation work is 15 mm or less.
Note 5. When the stroke is longer than 600 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed).
In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.
to the maximum speeds shown in the table
ote 6. External view of T5LH is identical to T5L.

\section*{\(\square\) Ordering method}

\section*{T5LH}


\section*{TSX}


\section*{}

 PN: PNP
CC: CC-Link \begin{tabular}{l} 
CC: CC-Link \\
\hline DN: Devicenetim \\
\hline EP: EtherNet/ITM \\
\hline PT: PROFINET \\
\hline GW: No I/O board Nole4
\end{tabular} \begin{tabular}{|l|l|}
\hline & \\
\hline \multicolumn{1}{c|}{ I/O selection } & \\
\hline
\end{tabular}

Note 1. The model with a lead of 20 mm cannot select specifications with brake (vertica specifications).
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable

Note 4. Select this selection when using the gateway function. For details, see P. 96

2: AC200V
Usable for CE No entry: Standard Driver: Power capac


05 \begin{tabular}{|l|}
\hline Driver: Power capacity \\
\hline \(05: 100 \mathrm{~W}\) or less \\
\hline
\end{tabular}
\begin{tabular}{l} 
Specifications \\
\hline \multicolumn{3}{c}{ Spation } \\
\hline AC servo motor output (W) \\
\hline Repeatability Note 1 (mm)
\end{tabular}

Postioning repeatabitity in one direction,
. ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
Note 3. Position detectors (resolvers) are common to incremental and absolute specifications. If the controller has a backup function then it will be absolute specifications.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ntal & stall & & Unit.mm) & & insta & ation & & t: mm) & & ical ins & latio & nit:mm) \\
\hline & & A & B & C & & & A & B & C & & & A & C \\
\hline ㄲ & 1 kg & 967 & 324 & 598 & ㄱ & 1 kg & 551 & 304 & 925 & \(\stackrel{\text { ? }}{\square}\) & & & \\
\hline 菏 & 3kg & 429 & 104 & 226 & 뮹 & 3kg & 185 & 89 & 378 & ¢ & 1.2 kg & 240 & 239 \\
\hline \(\stackrel{N}{\square}\) & 2kg & 916 & 159 & 398 & N & 2kg & 347 & 141 & 800 & \(\stackrel{\circ}{\circ}\) & & & \\
\hline  & 5 kg & 436 & 60 & 152 & - & 5kg & 119 & 44 & 355 & ¢ & 2.4 k & 109 & 110 \\
\hline \[
0
\] & 3 kg & 1194 & 105 & 294 & \(\bigcirc\) & 3kg & 259 & 87 & 950 & & & & \\
\hline \(\stackrel{\square}{ \pm}\) & 9kg & 624 & 31 & 89 & ¢ & 9kg & 50 & 15 & 385 & & & & \\
\hline & Distan life of & 0,000 &  &  & & & & & & & ed at a & & \\
\hline
\end{tabular}

T5LH
(Motor cable length)

Note 1. The model with a lead of 20 mm cannot select specifications with brake (vertical specifications).
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 4. Select this selection when using the gateway function. For details, see P.96.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & & 60 & \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \({ }^{\text {d }} 12\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 12 & 6 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 1333 & 800 & 400 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 10 & 12 & 30 \\
\hline & Vertical & & 4 & 8 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 51 & 85 & 170 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 800 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+247.5} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+285.5} \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit ( mm )} & \multicolumn{3}{|c|}{W65×H56} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 5,10} \\
\hline \multicolumn{2}{|l|}{Linear guide type} & \multicolumn{3}{|l|}{2 rows of gothic arch grooves \(\times 1\) rail} \\
\hline \multicolumn{2}{|l|}{Position detector} & \multicolumn{3}{|c|}{Resolvers \({ }^{\text {Note } 3}\)} \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{3}{|c|}{16384} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When the stroke is longer than 600 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{Note 3. Position detectors (resolvers)} & \multicolumn{3}{|l|}{are common to incremental and controller has a backup function ications.} \\
\hline
\end{tabular}



\section*{T6L}
\begin{tabular}{|c|c|c|c|}
\hline RDV-X & 2 & 05 & RBR1 \\
\hline Driver & Power-supply voltage & Driver: Power capacity & Regenerative unit \\
\hline & 2: AC200V & 05: 100W or less & \\
\hline
\end{tabular}


ang \({ }^{\text {Note }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & (Unit: mm) & \multicolumn{3}{|l|}{Wall installation} & \multicolumn{2}{|r|}{(Unit: mm)} & \multicolumn{4}{|l|}{Vertical installation (Unit: mm)} & \multirow[b]{2}{*}{MY} & \multirow[b]{2}{*}{MP} & (Uni \\
\hline & A & B & c & & & A & B & C & & & A & C & & & MR \\
\hline \% \({ }_{0}\) & 864 & 501 & 383 & \% & 5 kg & 348 & 384 & 776 & ~ & 1kg & 600 & 600 & 86 & 133 & 117 \\
\hline
\end{tabular}

Note 1. The model with a lead of 30 mm cannot select specifications with brake (vertical specifications).
Note 2. If selecting 5 mm lead specifications then the origin point cannot be changed to the non-motor side.
Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable
Note 4. See P. 634 for DIN rail mounting bracket
Note 5. Select this selection when using the gateway function. For details, see P.96.
Static loading moment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & A & B & C & & & A & B & C & & & A & C \\
\hline \multirow[t]{2}{*}{} & 5kg & 864 & 501 & 383 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \bar{m} \\
& \text { त्ञ } \\
& \hline
\end{aligned}
\]} & 5kg & 348 & 384 & 776 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \text { © }
\end{aligned}
\]} & 1kg & 600 & 600 \\
\hline & 15kg & 491 & 156 & 140 & & 15kg & 87 & 40 & 306 & & 2kg & 1098 & 1098 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 0 \\
& \mathbf{N} \\
& \mathbf{5} \\
& \mathbf{0} \\
& \hline
\end{aligned}
\]} & 5 kg & 1292 & 505 & 462 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0 \\
& \mathbf{N} \\
& \mathbf{5} \\
& \mathbf{0} \\
& \hline
\end{aligned}
\]} & 5 kg & 416 & 388 & 1186 & \(\xrightarrow{\square}\) & 4kg & 545 & 545 \\
\hline & 15kg & 572 & 158 & 151 & & 15kg & 92 & 42 & 386 & \multirow[b]{2}{*}{\%} & 4kg & 594 & 594 \\
\hline & 30kg & 455 & 73 & 75 & & 30kg & 0 & 0 & 61 & & 8kg & 280 & 280 \\
\hline \multirow[t]{3}{*}{} & 20kg & 617 & 119 & 127 & \multirow[t]{3}{*}{읃} & 10kg & 193 & 132 & 910 & \(\stackrel{\square}{\square}\) & 10kg & 217 & 217 \\
\hline & 40kg & 422 & 53 & 59 & & 20kg & 53 & 0 & 400 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline 0 \\
& \mathbf{\pi} \\
& \hline
\end{aligned}
\]} & 10kg & 221 & 221 \\
\hline & 55kg & 420 & 36 & 40 & & 30kg & 0 & 0 & 109 & & 15kg & 135 & 135 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& n \\
& \stackrel{\rightharpoonup}{\pi}
\end{aligned}
\]} & 50kg & 722 & 42 & 47 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline n \\
& \underset{\pi}{n}
\end{aligned}
\]} & 10kg & 197 & 133 & 2360 & \(\pm\) & 20kg & 92 & 92 \\
\hline & & 657 & 33 & 37 & & & 54 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline SR1-X05 \({ }^{\text {Note }}\) & Programming / I/O point trace / \\
\hline RCX320 & Remote command/ \\
\hline RCX221/222 & Operation \\
\hline RCX340 & using RS-232C communication \\
\hline TS-X105 \({ }^{\text {Note }}\) & I/O point trace / \\
\hline TS-X205 \({ }^{\text {Note }}\) & Remote command \\
\hline RDV-X205-RBR1 & Pulse train control \\
\hline Note. Regenera when the & tive unit is required models used vertically \\
\hline
\end{tabular}

T9
Approx. 250 (Motor cable length) \(165+13\). MWe2): When origini is on moor side
Effective stroke
(94): When origin is on motor side \(94+1-3\) (Note 3): When origin is on non-motor side \(44+/-1\)

(165): When origin is on nor-molor side
C

195 (with brakes) \(\qquad\)

Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 3. \(94+/-4\) when the high lead specification (Lead 30 ) is used.
Note 4. 41.5+/-1 when the high lead specification (Lead 30) is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & \(1100^{\text {Noteg } 9}\) & \(1150^{\text {Notat }}\) & \(1200^{\text {Notes }}\) & \(1250{ }^{\text {N0it9 }}\) \\
\hline \multicolumn{2}{|r|}{L} & 409 & 459 & 509 & 559 & 609 & 659 & 709 & 759 & 809 & 859 & 909 & 959 & 1009 & 1059 & 1109 & 1159 & 1209 & 1259 & 1309 & 1359 & 1409 & 1459 & 1509 \\
\hline \multicolumn{2}{|r|}{A} & 64 & 54 & 44 & 94 & 84 & 74 & 64 & 54 & 44 & 94 & 84 & 74 & 64 & 54 & 44 & 94 & 84 & 74 & 64 & 54 & 44 & 94 & 84 \\
\hline \multicolumn{2}{|r|}{N} & 4 & 5 & 6 & 6 & 7 & 8 & 9 & 10 & 11 & 11 & 12 & 13 & 14 & 15 & 16 & 16 & 17 & 18 & 19 & 20 & 21 & 21 & 22 \\
\hline \multicolumn{2}{|l|}{Weight (kg) \({ }^{\text {Note } 7}\)} & 5.5 & 5.9 & 6.2 & 6.6 & 6.9 & 7.3 & 7.6 & 8.0 & 8.3 & 8.7 & 9.0 & 9.4 & 9.7 & 10.0 & 10.3 & 10.7 & 11.0 & 11.4 & 11.7 & 12.1 & 12.5 & 12.9 & 13.3 \\
\hline \multirow{5}{*}{Maximum speed \(^{\text {Note } 8}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 30 & \multicolumn{12}{|c|}{1800} & \multicolumn{2}{|c|}{1440} & \multicolumn{2}{|c|}{1170} & \multicolumn{2}{|r|}{900} & 810 & & & & \\
\hline & Lead 20 & \multicolumn{12}{|c|}{1200} & \multicolumn{2}{|c|}{960} & \multicolumn{2}{|c|}{780} & \multicolumn{2}{|r|}{600} & 540 & & & & \\
\hline & Lead 10 & \multicolumn{12}{|c|}{600} & \multicolumn{2}{|c|}{480} & \multicolumn{2}{|c|}{390} & \multicolumn{2}{|r|}{300} & 270 & & & & \\
\hline & Lead 5 & \multicolumn{12}{|c|}{300} & \multicolumn{2}{|c|}{240} & \multicolumn{2}{|c|}{195} & \multicolumn{2}{|r|}{150} & 135 & & & & \\
\hline & Speed setting & \multicolumn{12}{|c|}{-} & \multicolumn{2}{|c|}{80\%} & \multicolumn{2}{|c|}{65\%} & \multicolumn{2}{|r|}{50\%} & 45\% & \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

\footnotetext{
Note 8. When the stroke is longer than 700 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to
the maximum speeds shown in the table above.
Note 9. Strokes longer than 1050 mm are special order items. Please contact us for speed setting.
}


\section*{-Ordering method}

\begin{tabular}{|c|c|c|c|}
\hline RDV-X & 2 & 10 & RBR1 \\
\hline Rova & 2 & Power & RERI \\
\hline
\end{tabular}


: AC200V

Note 1. The model with a lead of 30 mm cannot select specifications with brake (vertical specifications).
Note 2. If selecting \(10 \mathrm{~mm} \cdot 5 \mathrm{~mm}\) lead specifications then the origin point cannot be changed to the non-motor side.
Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 4. See P. 634 for DIN rail mounting bracke
\(\square\) Static loading moment

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec})\)} & 1800 & 1200 & 600 & 300 & \multicolumn{5}{|c|}{B} & \multicolumn{5}{|c|}{c} & \multicolumn{4}{|l|}{} & \multicolumn{3}{|l|}{MR} \\
\hline Maximum & Horizontal & 25 & 40 & 80 & 100
30 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Horizontal installa}} & (Unit: mm) & \multicolumn{3}{|l|}{Wall installation} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{(Unit: mm)}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Vertical installation (Unit:m}} & \multicolumn{3}{|l|}{} \\
\hline payload (kg) & Vertical & 113 & 8
170 & 20 & 30 & & & & & \(\frac{\text { C }}{}\) & & insta & A & & & & & & ( & MY & MP & (Unit: N•m) \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{4}{|l|}{150 to \(1250^{\text {Note } 3}\) (50mm pitch)} & \multirow[t]{2}{*}{} & 10kg & 415 & 286 & 183 & \multirow[t]{2}{*}{} & 10kg & 140 & 120 & 323 & \multirow[t]{2}{*}{N} & 4kg & 515 & 515 & 86 & 133 & 117 \\
\hline Overall length (mm) & Horizontal
Vertical & \multicolumn{4}{|c|}{Stroke+273} & & 20kg & 270 & 105 & 93 & & 20kg & 41 & 0 & 123 & & 6 kg & 334 & 334 & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Controller}} \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit ( mm )} & \multicolumn{4}{|c|}{W94 \(\times\) H98} & \multirow[t]{2}{*}{\begin{tabular}{c} 
N \\
\(\stackrel{\rightharpoonup}{0}\) \\
\hline
\end{tabular}} & 10kg & 667 & 244 & 225 & \multirow[t]{3}{*}{} & 10kg & 170 & 128 & 549 & \(\stackrel{ \pm}{ \pm}\) & 8kg & 244 & 244 & & & \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{4}{|l|}{Standard: 3.5 / Option: 5,10} & & 20kg & 330 & 112 & 107 & & 20kg & 46 & 0 & 182 & \multirow[t]{3}{*}{옫} & 10kg & 217 & 217 & Controller & \multicolumn{2}{|l|}{Operation method} \\
\hline Linear guide ty & & \multicolumn{4}{|l|}{4 rows of circular arc grooves \(\times 1\) rail} & ס্ভ & 40 kg & 162 & 42 & 47 & & 40kg & 0 & 0 & 0 & & 15kg & 133 & 133 & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { SR1-X10 Note } \\
& \text { RCX320 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Programming / I/O point trace / Remote command /}} \\
\hline Position detect & & \multicolumn{4}{|c|}{Resolvers Note 4} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0 \\
& \hline \text { 우 } \\
& \text { 제 } \\
& \hline
\end{aligned}
\]} & 30kg & 392 & 75 & 81 & \multirow[t]{2}{*}{} & 20kg & 52 & 0 & 335 & & 20kg & 90 & 90 & & & \\
\hline Resolution (Pu & se/rotation) & \multicolumn{4}{|c|}{16384} & & 50kg & 297 & 40 & 44 & & 25kg & 24 & 0 & 235 & \multirow{2}{*}{\[
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & 15kg & 135 & 135 & & & \\
\hline screw may speed). In th & ccur depending & on the o & eration & nndition & (critical gram & \multirow[t]{3}{*}{п} & 60 kg & 477 & 22 & 37 & \multirow[t]{3}{*}{\[
\begin{aligned}
& n \\
& \stackrel{0}{\check{0}} \\
& \mathbf{0}
\end{aligned}
\]} & 20kg & 54 & 0 & 710 & & 30kg & 49 & 49 & TS-X110 \({ }^{\text {Note }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I/O point trace / Remote command}} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
by referring to the maximum speeds shown in the table below. \\
Note 3. Strokes longer than 1050 mm are available only for high lead (Lead 30). (Special order item)
\end{tabular}}} & & 80kg & 412 & 22 & 25 & & 25kg & 25 & 0 & 505 & \multicolumn{4}{|l|}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TS-X210 Note } \\
& \text { RDV-X210-RBR1 } \\
& \hline
\end{aligned}
\]} & & \\
\hline & & & & & & & 100kg & 362 & 16 & 18 & & 30kg & 0 & 0 & 355 & & & & & & Puls & control \\
\hline \multicolumn{6}{|l|}{Note 4.} & \multicolumn{14}{|l|}{Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).} & \multicolumn{3}{|l|}{Note. When using the unit vertically, a regeneration unit is required.} \\
\hline
\end{tabular}

\section*{T9H}


Note 1. Stop positions are determined by the mechanical stoppers at both ends. Note 5 . When installing the unit, washers, etc., cannot be used in the \(\phi 11\) counter bore hole
Note 2. \(181.5+/-4\) when the high lead specification (Lead 30 ) is used.
Note 3. \(94+/-4\) when the high lead specification (Lead 30) is used.
Note 6. Minimum bend radius of motor cable is R5
\begin{tabular}{ll|l} 
Note 4. \(41.5+/-1\) when the high lead specification (Lead 30) is used. Note 7. Weight of models with no brake. The weight of brake-attached models is 0.5 kg heavier than the models with no brake \\
shown in the table.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & \(1100^{\text {10te9 }}\) & \(1150^{\text {lote } 9}\) & \(1200{ }^{\text {Notes }}\) & \(1250^{\text {Notag }}\) \\
\hline \multicolumn{2}{|r|}{L} & 423 & 473 & 523 & 573 & 623 & 673 & 723 & 773 & 823 & 873 & 923 & 973 & 1023 & 1073 & 1123 & 1173 & 1223 & 1273 & 1323 & 1373 & 1423 & 1473 & 1523 \\
\hline \multicolumn{2}{|r|}{A} & 64 & 54 & 44 & 94 & 84 & 74 & 64 & 54 & 44 & 94 & 84 & 74 & 64 & 54 & 44 & 94 & 84 & 74 & 64 & 54 & 44 & 94 & 84 \\
\hline \multicolumn{2}{|r|}{N} & 4 & 5 & 6 & 6 & 7 & 8 & 9 & 10 & 11 & 11 & 12 & 13 & 14 & 15 & 16 & 16 & 17 & 18 & 19 & 20 & 21 & 21 & 22 \\
\hline \multicolumn{2}{|l|}{Weight (kg) \({ }^{\text {Note 7 }}\)} & 5.8 & 6.2 & 6.5 & 6.9 & 7.3 & 7.7 & 8.0 & 8.4 & 8.8 & 9.1 & 9.5 & 9.9 & 10.2 & 10.6 & 11.0 & 11.4 & 11.7 & 12.1 & 12.5 & 12.9 & 13.3 & 13.7 & 14.1 \\
\hline \multirow{5}{*}{Maximum speed \({ }^{\text {Note } 8}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 30 & \multicolumn{12}{|c|}{1800} & \multicolumn{2}{|r|}{1440} & \multicolumn{2}{|c|}{1170} & \multicolumn{2}{|r|}{900} & 810 & & & & \\
\hline & Lead 20 & \multicolumn{12}{|c|}{1200} & \multicolumn{2}{|r|}{960} & \multicolumn{2}{|c|}{780} & \multicolumn{2}{|r|}{600} & 540 & & & & \\
\hline & Lead 10 & \multicolumn{12}{|c|}{600} & \multicolumn{2}{|c|}{480} & \multicolumn{2}{|c|}{390} & \multicolumn{2}{|r|}{300} & 270 & & & & \\
\hline & Lead 5 & \multicolumn{12}{|c|}{300} & \multicolumn{2}{|c|}{240} & \multicolumn{2}{|l|}{195} & \multicolumn{2}{|r|}{150} & 135 & & & & \\
\hline & Speed setting & \multicolumn{12}{|c|}{-} & \multicolumn{2}{|c|}{80\%} & \multicolumn{2}{|c|}{65\%} & \multicolumn{2}{|c|}{50\%} & 45\% & & & & \\
\hline
\end{tabular}

Note 8. When the stroke is longer than 700 mm , resonan
Note 9. Strokes longer than 1050 mm are special order items. Please contact us for speed setting

\section*{F8}

 TSX
\(\substack{\text { Postionemem } \\ \text { ITX: } \\ \text { ISTX }}\)





Battery
B: With battery \begin{tabular}{l}
\(\begin{array}{l}\text { B: With batter } \\
\text { (Absolute) }\end{array}\) \\
\hline
\end{tabular} (Absolute) (Incremental)


Usable for CE


Battery (Absolute) N: None
(Increment specifications)
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable
Note 3. See P. 634 for DIN rail mounting bracket.
Note 4. Select this selection when using the gateway function. For details, see P. 96 .

ang \({ }^{\text {Note }}\)

Horizontal installation (Unit: mm ) Wall installation (Unit: mm ) Vertical installation (Unit: mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & A & B & C & & & A & B & C \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { N } \\
& \mathbf{N} \\
& \stackrel{\pi}{1}
\end{aligned}
\]} & 5 kg & 197 & 76 & 120 & \multirow[t]{3}{*}{} & 5kg & 104 & 67 & 174 \\
\hline & 10kg & 100 & 32 & 54 & & 10kg & 37 & 23 & 72 \\
\hline & 12kg & 85 & 25 & 43 & & 12kg & 27 & 15 & 55 \\
\hline \multirow{4}{*}{} & 5 kg & 364 & 89 & 188 & \multirow{4}{*}{} & 5 kg & 171 & 81 & 340 \\
\hline & 10kg & 203 & 39 & 87 & & 10kg & 69 & 32 & 172 \\
\hline & 15kg & 139 & 22 & 51 & & 15kg & 33 & 15 & 100 \\
\hline & 20kg & 103 & 14 & 33 & & 20kg & 15 & 6 & 55 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 0 \\
& \mathbf{0} \\
& \mathbf{0}
\end{aligned}
\]} & 10kg & 403 & 43 & 113 & \multirow{4}{*}{\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline 0
\end{aligned}
\]} & 10kg & 94 & 36 & 369 \\
\hline & 20kg & 214 & 16 & 43 & & 20kg & 25 & 9 & 157 \\
\hline & 30kg & 140 & 6 & 20 & & 30kg & 0 & 0 & 14 \\
\hline & 40kg & 113 & 0 & 8 & & 40kg & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & \multicolumn{1}{c}{ (Unit: \(\mathbf{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 70 & 95 & 110 \\
\hline
\end{tabular}

\section*{F8}



F8L

\section*{Ordering method}

Note 1．The model with a lead of 30 mm cannot select specifications with brake（vertical specifications）．
Note 2．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible cable． See P． 732 for details on robot cable


Note 4．Select this selection when using the gateway function．For details，see P．96．



\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Battery } \\
\hline B：With battery \\
（Absolute） \\
\hline
\end{tabular} \begin{tabular}{l}
（Absolute） \\
N ：None \\
\hline
\end{tabular} \begin{tabular}{l}
（A：None \\
（Incrementa） \\
\hline
\end{tabular} \begin{tabular}{|l|l|}
\hline CC：CC－Link \\
\hline DN：DeviceNetTM \\
\hline EP：EtherNet／PTM \\
\hline
\end{tabular} （Incremental）

\section*{\begin{tabular}{|l|l|}
\hline SR1－X & 05 \\
\hline Controller & \begin{tabular}{l} 
Diver．Power capacity \\
\hline
\end{tabular} \\
\hline
\end{tabular} Driver：Power capacity
05： 100 W or less}
\begin{tabular}{l} 
Usable for CE \\
No entry：Standard \\
\hline
\end{tabular}


\begin{tabular}{l} 
Usable for CE \\
\hline No entry：Standard \\
\hline E：CE marking \\
\hline
\end{tabular}
\begin{tabular}{l|}
\multicolumn{1}{c|}{ I／O selection } \\
\hline ：NPN \\
\hline P：PNP \\
\hline CC：CC－Link \\
\hline DN：DeviceNet \({ }^{\text {TM }}\) \\
\hline
\end{tabular}
Battery
Absolute ：None
Increment


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & A & B & C & & & A & B & C \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 謌 }
\end{aligned}
\]} & 5 kg & 112 & 80 & 80 & \％ & 5 kg & 55 & 57 & 77 \\
\hline & 7 kg & 78 & 43 & 49 & 宫 & 7kg & 21 & 19 & 34 \\
\hline \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { N } \\
& \text { ס్ש゙ } \\
& \text { נn }
\end{aligned}
\]} & 5kg & 211 & 108 & 147 & O & 5kg & 119 & 89 & 176 \\
\hline & 10kg & 116 & 45 & 69 & & 10kg & 38 & 26 & 69 \\
\hline & 15kg & 76 & 24 & 39 & \％ & 15kg & 7 & 0 & 16 \\
\hline & 20kg & 58 & 14 & 26 & － & 20kg & 0 & 0 & 0 \\
\hline \multirow[t]{4}{*}{은} & 10kg & 251 & 56 & 122 & 앙 & 10kg & 85 & 39 & 202 \\
\hline & 20kg & 121 & 20 & 46 & ס & 20kg & 7 & 0 & 30 \\
\hline & 30kg & 74 & 8 & 20 & \({ }_{\text {¢ }}\) & 30kg & 0 & 0 & 0 \\
\hline & 40kg & 35 & 0 & 6 & \(\xrightarrow{-}\) & 40kg & 0 & 0 & 0 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { n } \\
& \text { ■ } \\
& \stackrel{0}{5}
\end{aligned}
\]} & 20kg & 249 & 23 & 62 & ¢ & 20kg & 19 & 7 & 140 \\
\hline & 30kg & 170 & 10 & 29 & \％ & 30kg & 0 & 0 & 0 \\
\hline & 40kg & 138 & 4 & 12 & \(\stackrel{\text { ¢ }}{ }\) & 40kg & 0 & 0 & 0 \\
\hline & 50kg & 51 & 0 & 0 & & 50kg & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { 퓨플 }
\end{aligned}
\]} & & A & C \\
\hline & 2kg & 236 & 240 \\
\hline & 4kg & 106 & 110 \\
\hline \multirow[t]{4}{*}{} & 2kg & 310 & 311 \\
\hline & 4kg & 141 & 143 \\
\hline & 6kg & 85 & 86 \\
\hline & 8kg & 57 & 58 \\
\hline \multirow{4}{*}{} & 5 kg & 123 & 124 \\
\hline & 10kg & 47 & 48 \\
\hline & 15kg & 22 & 22 \\
\hline & 16kg & 19 & 19 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\multicolumn{2}{|c}{} & （Unit： \(\mathbf{N} \cdot \mathrm{m}\) ） \\
\hline MY & MP & MR \\
\hline 70 & 95 & 110 \\
\hline
\end{tabular}

\section*{Controller}
\begin{tabular}{l|l}
\hline Controller & Operation method \\
\hline SR1－X05 & \begin{tabular}{l} 
Programming／ \\
l／O point trace／ \\
RCX320
\end{tabular} \\
\begin{tabular}{l} 
Remote command／ \\
RCX221／222 \\
Operation \\
RCX340
\end{tabular} & \begin{tabular}{l} 
using RS－232C \\
communication
\end{tabular} \\
\hline TS－X105 & I／O point trace／ \\
\hline TS－X205 & Remote command \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output（W）} & \multicolumn{4}{|c|}{100} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)（mm）} & \multicolumn{4}{|c|}{＋／－0．01} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{4}{|c|}{Ball screw \＄15} \\
\hline \multicolumn{2}{|l|}{Ball screw lead（mm）} & 30 & 20 & 10 & 5 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\)（ \(\mathrm{mm} / \mathrm{sec}\) ）} & 1800 & 1200 & 600 & 300 \\
\hline \multirow[t]{2}{*}{Maximum payload（kg）} & Horizontal & 7 & 20 & 40 & 50 \\
\hline & Vertical & & 4 & 8 & 16 \\
\hline \multicolumn{2}{|l|}{Rated thrust（N）} & 56 & 84 & 169 & 339 \\
\hline \multicolumn{2}{|l|}{Stroke（mm）} & \multicolumn{4}{|l|}{150 to 1050 （ 50 mm pitch）} \\
\hline \multirow[t]{2}{*}{Overall length （mm）} & Horizontal & \[
\begin{gathered}
\text { Stroke } \\
+300 \\
\hline
\end{gathered}
\] & \multicolumn{3}{|c|}{Stroke＋292} \\
\hline & Vertical & & \multicolumn{3}{|c|}{Stroke＋322} \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit（mm）} & \multicolumn{4}{|c|}{W80 × H65} \\
\hline \multicolumn{2}{|l|}{Cable length（m）} & \multicolumn{4}{|l|}{Standard：3．5／Option：5，10} \\
\hline \multicolumn{2}{|l|}{Linear guide type} & \multicolumn{4}{|l|}{4 rows of circular arc grooves \(\times 1\) rail} \\
\hline \multicolumn{2}{|l|}{Position detector} & \multicolumn{4}{|c|}{Resolvers \({ }^{\text {Note }} 3\)} \\
\hline \multicolumn{2}{|l|}{Resolution（Pulse／rotation）} & \multicolumn{4}{|c|}{16384} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Note 1．Positioning repeatability in one direction． \\
Note 2．When the stroke is longer than 650 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Note 3．Position detectors（resolvers
absolute specifications．If th
then it will be absolute spec} & \multicolumn{4}{|l|}{s）are common to incremental and he controller has a backup function ifications．} \\
\hline
\end{tabular}

F8L Approx． 240 （Motor cable length）204＋／－3：When origin is on motor side Approx． 240 （Motor cable length） Approx． 240 （Motor cable length）
\(\qquad\) \(88+/-3\) ：When origin is on non－motor side



F8L High lead type: Lead 30




\title{
F8LH
}

\section*{Ordering method}

Note 1．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible cable
See P． 732 for details on robot cable．
Note 3．Select this selection when using the gateway function．For details，see P．96．

\section*{F8LH}




\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ I／O selection } \\
\hline NP：NPN \\
\hline PN：PNP \\
\hline CC：CC－Link \\
\hline DN：DeviceNetTM \\
\hline EP：EtherNet／PTM \\
\hline PT：PROFINET \\
\hline
\end{tabular}
Battery \begin{tabular}{l} 
B：With battery \\
Absolute） \\
\hline
\end{tabular} Absolute）
V ：None Incremental） GW：No

\begin{tabular}{|c|c|c|}
\hline RDV－X & 2 & 05 \\
\hline & mpev & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation} & （Unit：mm） & \multicolumn{3}{|l|}{Wall installation} & \multicolumn{2}{|r|}{（Unit：mm）} \\
\hline & & A & B & C & & & A & B & C \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { io } \\
& \mathbf{0} \\
& \mathbf{0} \\
& \mathbf{0}
\end{aligned}
\]} & 10kg & 573 & 256 & 176 & \multirow[t]{3}{*}{} & 10kg & 147 & 215 & 515 \\
\hline & 20kg & 334 & 116 & 81 & & 20kg & 53 & 75 & 255 \\
\hline & 30kg & 279 & 70 & 50 & & 30kg & 20 & 29 & 160 \\
\hline \multirow[t]{3}{*}{} & 20kg & 629 & 137 & 111 & \multirow[t]{3}{*}{} & 20kg & 80 & 99 & 545 \\
\hline & 20kg & 479 & 57 & 47 & & 40kg & 15 & 19 & 270 \\
\hline & 60kg & 382 & 30 & 25 & & 60kg & － & － & － \\
\hline \multirow{4}{*}{} & 20kg & 1094 & 148 & 127 & \multirow{4}{*}{\[
\begin{aligned}
& n \\
& 0 \\
& \underset{\Phi}{\Phi}
\end{aligned}
\]} & 20kg & 96 & 112 & 1005 \\
\hline & 40kg & 851 & 63 & 54 & & 40kg & 22 & 26 & 604 \\
\hline & 60 kg & 714 & 34 & 29 & & 60kg & － & － & － \\
\hline & 80kg & 601 & 20 & 17 & & 80kg & － & － & － \\
\hline
\end{tabular}


Grounding terminal（M4）


Use M5 \(\times .0 .8\) hex socke head bolt with length

Cross－section E－E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effectiv & stroke & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Stop positions are determined by the mechanical stoppers at both ends．} \\
\hline & & 518 & 568 & 618 & 668 & 718 & 768 & 818 & 868 & 918 & 968 & 1018 & 1068 & 1118 & 1168 & 1218 & 1268 & 1318 & 1368 & 1418 & & \\
\hline & & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & \multirow[t]{2}{*}{Note 2.} & \multirow[t]{2}{*}{When installing the robot， do not use washers inside} \\
\hline & & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & & \\
\hline & & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & \multirow[t]{2}{*}{te 3.} & \multirow[t]{3}{*}{the robot body． Minimum bend radius of motor cable is R50．} \\
\hline & & 290 & 340 & 390 & 440 & 490 & 540 & 590 & 640 & 690 & 740 & 790 & 840 & 890 & 940 & 990 & 1040 & 1090 & 1140 & 1190 & & \\
\hline Weigh & （kg） & 4.7 & 5.0 & 5.3 & 5.6 & 5.9 & 6.2 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9.0 & 9.3 & 9.7 & 10.0 & 10.3 & \multirow[t]{2}{*}{Note 4.} & \\
\hline \multirow[t]{3}{*}{Maximum speed \({ }^{\text {Note } 5}\) （ \(\mathrm{mm} / \mathrm{sec}\) ）} & Lead 20 & \multicolumn{10}{|c|}{1200} & 1020 & 900 & 780 & 720 & 660 & 600 & 540 & 480 & 420 & & When using this \(\phi 10\) knock－ pin hole to position the robot \\
\hline & Lead 10 & \multicolumn{10}{|c|}{600} & 510 & 450 & 390 & 360 & 330 & 300 & 270 & 240 & 210 & & \multirow[t]{2}{*}{body，the knockpin must not protrude more than 10 mm inside the robot body．} \\
\hline & Lead 5 & \multicolumn{10}{|c|}{300} & 255 & 225 & 195 & 180 & 165 & 150 & 135 & 120 & 105 & & \\
\hline
\end{tabular}

Note 5 ．When the stroke is longer than 600 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table above．


Note 1. The model with a lead of 30 mm cannot select specifications with brake (vertical specifications).
Note 2. If selecting 5 mm lead specifications then the origin point cannot be changed to the non-motor side. Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.


Note 5. Select this selection when using the gateway function. For details, see P.96.

Allowable overhan
Static loading moment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Horizontal installation} & (Unit: mm) & \multicolumn{3}{|l|}{Wall installation} & \multicolumn{2}{|r|}{(Unit: mm)} & \multicolumn{4}{|l|}{Vertical installation (Unit: mm )} & \multicolumn{3}{|r|}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline & A & B & C & & & A & B & C & & & A & C & MY & MP & MR \\
\hline \% & 491 & 273 & 215 & \[
\overline{\text { pog }}
\] & 5 kg & 206 & 209 & 480 & ㅇ & 1 kg & 600 & 600 & 131 & 131 & 115 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline TSX & &  & \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& \text { Positioner Note } 4 \\
& \hline \text { TSX: TS-X } \\
& \hline
\end{aligned}
\]} & Driver: Power-supply voltage / Power capacity & - Regenerative unit - LCD monitor -
No entry: Nooe
No entry: None & I/O selection NP: NPN \\
\hline & 105: \(100 \mathrm{~V} / 100 \mathrm{~W}\) or less & R: With RGT L: With LCD & PPN: PNP \\
\hline & 205: \(200 \mathrm{~V} / 100 \mathrm{~W}\) or less & & CC: CC-Link \\
\hline & & & DN: DeviceNet \({ }^{\text {TM }}\) \\
\hline & & & EP: EtherNet/IPTM \\
\hline & & & PT: PROFINET \\
\hline & & & GW: No I/O board \({ }^{\text {Nota }}\) \\
\hline SR1-X & \[
05
\] &  & \\
\hline \multirow[t]{6}{*}{Controller} & Driver: Power capacity & Usable for CE -Regenerative unit & I/O selection \\
\hline & 05: 100W or less & No entry: Standard \({ }^{\text {E }}\) No entry: None & N: NPN \\
\hline & & E: CE marking R: With RG1 P. & P: PNP \\
\hline & & & CC: CC-Link \\
\hline & & & DN: Device \(\mathrm{Net}^{\text {TM }}\) \\
\hline & & & PB: PROFIBUS \\
\hline RDV-X & 2 & 05 & RBR1 \\
\hline \multirow[t]{2}{*}{Driver} & Power-supply voltage & Driver: Power capacity & Regenerative unit \\
\hline & 2: AC200V & 05: 100W or less & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & A & B & C \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \mathbf{9} \\
& \mathbf{0} \\
& \mathbf{y}
\end{aligned}
\]} & 5 kg & 491 & 273 & 215 \\
\hline & 15kg & 223 & 61 & 63 \\
\hline \multirow[t]{3}{*}{} & 5 kg & 937 & 282 & 259 \\
\hline & 10kg & 487 & 121 & 116 \\
\hline & 20kg & 236 & 40 & 44 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l} 
읃 \\
- \\
\hline 1
\end{tabular}} & 15kg & 389 & 71 & 74 \\
\hline & 30kg & 179 & 17 & 20 \\
\hline & 40kg & 106 & 0 & 0 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 0 \\
& \stackrel{6}{0} \\
& \underset{\sim}{0}
\end{aligned}
\]} & 30kg & 419 & 19 & 20 \\
\hline & 50kg & 0 & 0 & 0 \\
\hline & 60kg & 0 & 0 & 0 \\
\hline
\end{tabular}



Distance from center of slider top to center of gravity of object being carried at a guide service
life of \(10,000 \mathrm{~km}\).


\title{
F10H
}

Origin on the non-motor side is selectable: Lead 10-20.30

Note 1. The model with a lead of 30 mm cannot select specifications with brake (vertical specifications).
Note 2. If selecting 5 mm lead specifications then the origin point cannot be changed to the non-motor side.
Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.

Note 5 . Select this selection when using the gateway function. For details, see P.96.

\section*{OOrdering method}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Allowable overhang Note} & \multicolumn{3}{|l|}{Static loading moment} \\
\hline \multicolumn{5}{|c|}{} & \multicolumn{5}{|c|}{} & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{Vertical installation (Unit: mm)}} & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )}} \\
\hline \multicolumn{5}{|l|}{Horizontal installation (Unit: mm)} & \multicolumn{5}{|l|}{Wall installation (Unit: mm)} & & & & & & & \\
\hline & & A & B & C & & & A & B & C & & & A & C & MY & MP & MR \\
\hline \multirow[t]{2}{*}{\%} & 10kg & 1181 & 681 & 219 & \multirow[t]{2}{*}{} & 10kg & 193 & 570 & 1062 & \multirow[t]{3}{*}{} & 4kg & 1650 & 1650 & 348 & 348 & 160 \\
\hline & 20kg & 772 & 298 & 99 & & 20kg & 65 & 187 & 549 & & 6 kg & 1104 & 1104 & & & \\
\hline - & 10kg & 1961 & 685 & 232 & \multirow[t]{3}{*}{} & 10kg & 198 & 570 & 1786 & & 8 kg & 832 & 832 & \multicolumn{3}{|l|}{Controller} \\
\hline 쥬제 & 20kg & 949 & 301 & 103 & & 20kg & 65 & 187 & 732 & \multirow[t]{3}{*}{욷} & 10kg & 927 & 927 & \multirow[b]{2}{*}{Controller} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Operation method}} \\
\hline \(\pm\) & 40kg & 432 & 109 & 38 & & 40kg & 0 & 0 & 0 & & 15kg & 614 & 614 & & & \\
\hline 안 & 30kg & 1615 & 239 & 84 & 우 & 20kg & 100 & 283 & 1981 & & 20kg & 458 & 458 & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { SR1-X10 Note } \\
& \text { RCX320 } \\
& \text { RCX221/222 } \\
& \text { RCX340 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Programming / I/O point trace / Remote command Operation using RS-232C communication}} \\
\hline \% & 50kg & 1131 & 112 & 39 & \% & 25kg & 66 & 187 & 1546 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0 \\
& \mathbf{N}_{0} \\
& \mathbf{y}
\end{aligned}
\]} & 15 kg & 752 & 752 & & & \\
\hline \(\pm\) & 80kg & 812 & 40 & 14 & \(\stackrel{1}{4}\) & 30kg & 43 & 123 & 1223 & & 20kg & 560 & 560 & & & \\
\hline \(\stackrel{\square}{6}\) & 60 kg & 3091 & 112 & 39 & \multirow[t]{3}{*}{n} & 20kg & 134 & 379 & 7629 & & 30kg & 369 & 369 & & & \\
\hline \% & 80kg & 2330 & 64 & 23 & & 25kg & 93 & 264 & 5987 & & & & & TS-X110 \({ }^{\text {Note }}\) & I/O po & / \\
\hline \(\pm\) & 100kg & 1733 & 36 & 12 & & 30kg & 66 & 187 & 4841 & & & & & TS-X210 \({ }^{\text {Note }}\) & Remo & mmand \\
\hline \multicolumn{17}{|l|}{\begin{tabular}{l}
Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\). \\
Note. Service life is calculated for 600 mm stroke models. \\
Pulse train control
\end{tabular}} \\
\hline
\end{tabular}

F10H


\footnotetext{
maximum speeds shown in the table above
}

F10H High lead type: Lead 30



Note 1. The model with a lead of 30 mm cannot select specifications with brake (vertical specifications).
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.

Note 4. Select this selection when using the gateway function. For details, see P.96.
\begin{tabular}{|c|c|c|c|c|}
\hline RDV-X & 2 & 05 & RBR1 & \\
\hline & army & Pewe & esenerave & mater \\
\hline
\end{tabular}
2: AC200V
\(\square\) Static loading moment





\title{

}


Battery
 N: None
(Incremental) \begin{tabular}{l} 
DN: DeviceNet/TM \\
EP: EtherNet/PTM \\
\hline PT PROFINET
\end{tabular} \begin{tabular}{|l|}
\hline PT: PROFINET \\
\hline GW: No I/O board \\
\hline Now \\
\hline
\end{tabular}

Note 1. The model with a lead of 30 mm cannot select specifications with brake (vertical specifications).
Note 2. If selecting 5 mm lead specifications then the origin point cannot be changed to the
non-motor side.
Note 3 . The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable
Note 4. See P. 634 for DIN rail mounting bracket
Note 5. Select this selection when using the gateway function. For details, see P.96.


Static loading moment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation} & \multirow[t]{2}{*}{\begin{tabular}{l|c} 
(Unit: mm) \\
\hline
\end{tabular}} & \multicolumn{5}{|l|}{Wall installation (Unit: mm)} & \multicolumn{4}{|l|}{Vertical installation (Unit: mm)} \\
\hline & & A & B & & & & A & B & C & & & A & C \\
\hline \multirow[t]{2}{*}{} & 10kg & 2152 & 1673 & 934 & \multirow[t]{2}{*}{} & 10kg & 975 & 1219 & 1625 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 아 } \\
& \mathbf{~} \\
&
\end{aligned}
\]} & 4kg & 2400 & 2016 \\
\hline & 25kg & 1847 & 691 & 533 & & 25kg & 482 & 426 & 1257 & & 6 kg & 1699 & 1364 \\
\hline 안 & 10kg & 2265 & 1674 & 961 & \multirow[t]{3}{*}{} & 10kg & 999 & 1220 & 1711 & & 8 kg & 1301 & 1051 \\
\hline \% & 20kg & 1402 & 855 & 537 & & 20kg & 515 & 558 & 987 & \multirow[t]{3}{*}{\begin{tabular}{l} 
읃 \\
들 \\
\hline 1
\end{tabular}} & 10kg & 1370 & 1106 \\
\hline \(\pm\) & 40kg & 1047 & 445 & 324 & & 40kg & 263 & 227 & 635 & & 15kg & 906 & 732 \\
\hline 안 & 30kg & 1953 & 583 & 485 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0 \\
& \hline 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\]} & 30kg & 419 & 338 & 1282 & & 20kg & 678 & 548 \\
\hline ¢ & 50kg & 1655 & 365 & 328 & & 50kg & 240 & 162 & 934 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { n } \\
& \text { ర్డ̃ } \\
& \hline
\end{aligned}
\]} & 20kg & 767 & 619 \\
\hline \(\lrcorner\) & 80kg & 1720 & 242 & 238 & & 80kg & 134 & 62 & 756 & & 25kg & 612 & 494 \\
\hline & 60kg & 2443 & 311 & 317 & \multirow[t]{3}{*}{} & 60 kg & 209 & 117 & 1398 & & 30kg & 503 & 407 \\
\hline 퓽 & 80kg & 2193 & 242 & 253 & & 80kg & 135 & 62 & 1120 & & & & \\
\hline \(\lrcorner\) & 100kg & 2000 & 202 & 21 & & 100kg & 90 & 29 & 900 & & & & \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ (Unit: \(\mathbf{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 551 & 552 & 485 \\
\hline
\end{tabular}

\section*{Controller \\ \begin{tabular}{|l|l}
\hline Controller & Operation method \\
\hline
\end{tabular}}
\begin{tabular}{l|l}
\hline SR1-X10 \({ }^{\text {Note }}\) & \(\begin{array}{l}\text { Programming/ } \\
\text { I/O point trace / }\end{array}\) \\
\hline
\end{tabular} \begin{tabular}{l|l} 
RCX320 & l/O point trace/ \\
Remote command
\end{tabular} RCX221/222 \begin{tabular}{l|l} 
Remote con \\
Operation
\end{tabular} \begin{tabular}{l|l} 
RCX221/222 & Operation \\
RCX340 & using RS-232
\end{tabular} \begin{tabular}{l|l} 
RCX340 & \(\begin{array}{l}\text { using RS-232C } \\
\text { communication }\end{array}\) \\
\hline TS-X110 Note & I/O point trace /
\end{tabular} \begin{tabular}{l|l|}
\hline TS-X210 Note & Remote command \\
\hline
\end{tabular} \begin{tabular}{l} 
RDV-X210-RBR1 \\
\hline
\end{tabular} Note. When using the unit vertically, a regeneration unit is required.

\section*{F14H}

Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. \(212.5+--4\) when the high lead specification (Lead 30 ) is used.

\section*{Note 3. 110 \\ Note 3. \(110+/-4\) when the high lead specification (Lead 30 ) is used.}
Note 4. \(32.5+/-1\) when the high lead specification (Lead 30) is used.
Note 5. Minimum bend radius of motor cable is R50.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & \(110{ }^{\text {N }}\) & 50 & \(1200{ }^{\text {No }}\) & \(0^{\text {Note } 8}\) \\
\hline \multicolumn{2}{|r|}{L} & 470 & 520 & 570 & 620 & 670 & 720 & 770 & 820 & 870 & 920 & 970 & 1020 & 1070 & 1120 & 1170 & 1220 & 1270 & 1320 & 1370 & 1420 & 1470 & 1520 & 1570 \\
\hline \multicolumn{2}{|r|}{A} & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline \multicolumn{2}{|r|}{M} & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 \\
\hline \multicolumn{2}{|r|}{N} & 4 & 6 & 6 & 6 & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 \\
\hline \multicolumn{2}{|r|}{K} & 240 & 240 & 240 & 420 & 420 & 420 & 420 & 600 & 600 & 600 & 600 & 780 & 780 & 780 & 960 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1320 \\
\hline \multicolumn{2}{|l|}{Weight (kg) \({ }^{\text {Note } 6}\)} & 7.5 & 8.2 & 8.8 & 9.5 & 10.1 & 10.8 & 11.4 & 12.1 & 12.7 & 13.4 & 13.9 & 14.6 & 15.2 & 15.9 & 16.5 & 17.2 & 17.8 & 18.5 & 19.1 & 19.8 & 20.4 & 21.1 & 21.7 \\
\hline \multirow{5}{*}{Maximum speed \({ }^{\text {Note } 7}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 30 & \multicolumn{12}{|c|}{1800} & \multicolumn{2}{|c|}{1440} & \multicolumn{2}{|c|}{1170} & \multicolumn{2}{|c|}{900} & 810 & \multicolumn{4}{|l|}{} \\
\hline & Lead 20 & \multicolumn{12}{|c|}{1200} & \multicolumn{2}{|c|}{960} & \multicolumn{2}{|r|}{780} & \multicolumn{2}{|c|}{600} & 540 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & Lead 10 & \multicolumn{12}{|c|}{600} & \multicolumn{2}{|c|}{480} & \multicolumn{2}{|r|}{390} & \multicolumn{2}{|c|}{300} & 270 & & & & \\
\hline & Lead 5 & \multicolumn{12}{|c|}{300} & \multicolumn{2}{|c|}{240} & \multicolumn{2}{|r|}{195} & \multicolumn{2}{|c|}{150} & 135 & \multicolumn{4}{|l|}{} \\
\hline & Speed setting & \multicolumn{12}{|c|}{-} & \multicolumn{2}{|l|}{80\%} & \multicolumn{2}{|c|}{65\%} & \multicolumn{2}{|c|}{50\%} & 45\% & \multicolumn{4}{|l|}{} \\
\hline \multicolumn{25}{|l|}{\begin{tabular}{l}
Note 7. When the stroke is longer than 700 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table above. \\
Note 8. Strokes longer than 1050 mm are special order items. Please contact us for speed setting.
\end{tabular}} \\
\hline
\end{tabular}

Note 1．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible cable． See P． 732 for details on robot cable．
Note 2．See P． 634 for DIN rail mounting bracket
Note 3．Select this selection when using the gateway function．For details，see P．96．
［Cautions after purchase］
－When changing the origin position，contact us since the adjustment is needed．
－When changing the cable entry location，contact us since necessary parts may vary depending on the cable entry location．
－Do not install the robot with the horizontal installation specifications in a direction other than the horizontal direction．


Horizontal installation（Unit：mm）
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{l|}{} & A & B & C \\
\hline \multirow{2}{l}{} & \(\mathbf{1 0 k g}\) & 3550 & 1340 & 1210 \\
\cline { 2 - 5 } & & 2050
\end{tabular}
\begin{tabular}{|c|c|}
\hline Specifications & \\
\hline AC servo motor output（W） & 200 \\
\hline Repeatability \({ }^{\text {Note } 1}\)（mm） & ＋／－0．01 \\
\hline Deceleration mechanism & Ball screw \({ }^{\text {¢ }} 15\) \\
\hline Ball screw lead（mm） & 20 \\
\hline Maximum speed（mm／sec） & 1200 \\
\hline Maximum payload（kg） & 45 \\
\hline Rated thrust（N） & 170 \\
\hline Stroke（mm） & 750 to 2000 （50mm pitch） \\
\hline Overall length（mm） & Stroke＋561 \\
\hline Maximum dimensions of cross section of main unit（mm） & W140×H91．5 \\
\hline Cable length（m） & Standard：3．5／Option：5，10 \\
\hline Linear guide type & 4 rows of circular arc grooves \(\times 2\) rail \\
\hline Position detector & Resolvers \({ }^{\text {Note } 2}\) \\
\hline Resolution（Pulse／rotation） & 20480 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l}
\hline \(\mathbf{0}\) & \(\mathbf{2 0 k g}\) & 2075 & 685 & 633 \\
\hline \multirow{2}{\circ}{} & \(\mathbf{4 5 k g}\) & 1280 & 326 & 308 \\
\hline
\end{tabular}
Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．
Note．Service life is calculated for 1000 mm stroke models．


Battery
\begin{tabular}{l} 
Battery \\
B：With battery \\
\hline
\end{tabular}
\begin{tabular}{l} 
B：With battery \\
（Absolute） \\
\hline
\end{tabular} N：None
（ncremental）

\begin{tabular}{|c|c|c|c|}
\hline RDV－X & 2 & 20 & - RBR1 \\
\hline
\end{tabular}

Diver：Power capacity－Regenerative unit
\(\square\) Static loading moment

\begin{tabular}{c|c|c}
\hline MY & MP & MR \\
\hline 551 & 552 & 485 \\
\hline
\end{tabular}

\section*{Controller}

Controller Operation method
SR1－X10 \(\quad\) Programming／ RCX320 Remote command／ RCX221／222 \begin{tabular}{l|l} 
Operation \\
using RS－232C
\end{tabular} RCX340 using RS－232C TS－X110 \(\quad\) I／O point trace／ TS－X210 \(\quad\) Remote command

\section*{GF14XL}


Note 2．When changing the return－to－origin direction，the adjustment is needed．（The standard is the origin on the motor side．）
號
Note
Note 5．The length under head of the hexagonal socket head bolts（ \(M 6 \times 1.0\) ）that are used to install the main body with the spot facing hole installation specifications is 20 mm or more．
It is recommended that It is recommended that the length under head of the hexagonal socket head bolts（ \(M 6 \times 1.0\) ）that are used to install the main body with the tapping hole installation specifications is the thickness of the




\section*{-Ordering method}


Note 1. The model with a lead of 40 mm cannot select specifications with brake (vertical specifications)
Note 2. Upper robot cable (U) on models equipped with brake is a special-order item. Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. see P. 732 for details on robot cable.
Note 4. See P. 634 for DIN rail mounting bracket.
Note 5. The robot with the high lead specifications (lead 40) needs a regenerative unit. Note 6 . Select this selection when using the gateway function. For details, see P. 96



\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & & 400 & \\
\hline Repeatability \({ }^{\text {² }}\) & de (mm) & \multicolumn{3}{|c|}{+/-0.01} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \(\mathbf{\phi 2 0}^{0}\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 40 & 20 & 10 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Notes } 2}(\mathrm{~mm} / \mathrm{sec})\)} & 2400 & 1000 (1200 & \\
\hline \multirow[t]{2}{*}{\({ }_{\text {Maximum }}^{\text {payload (kg) }}\)} & Horizontal & 40 & 80 & 12 \\
\hline & Vertical & & 15 & 35 \\
\hline \multicolumn{2}{|l|}{Rated thrust ( N )} & 169 & 339 & 678 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{200 to \(1450{ }^{\text {Nole } 4}(50 \mathrm{~mm}\) pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & rizontal & Stroke+375 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Stroke+365 Stroke+395}} \\
\hline & Vertical & & & \\
\hline \multicolumn{2}{|l|}{Maximum dimensions of cross section of main unit (mm)} & \multicolumn{3}{|c|}{W168 \(\times\) H100} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 5,10} \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{4 rows of circular arc grooves \(\times 2\) rail}} \\
\hline \multicolumn{2}{|l|}{Position detector} & & & \\
\hline \multicolumn{2}{|l|}{Resolution (Pulse/rotation)} & \multicolumn{3}{|c|}{16384} \\
\hline
\end{tabular}

Static loading moment


Horizontal installation (Unit: mm) Wall installation (Unit: mm ) Vertical installation (Unit: mm )
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{} & A & B & C \\
\hline \% & 10kg & 3540 & 2753 & 1999 \\
\hline \% & 20kg & 2541 & 1357 & 1181 \\
\hline - & 40kg & 2639 & 661 & 736 \\
\hline ก & 30kg & 2647 & 894 & 989 \\
\hline  & 50kg & 1770 & 521 & 588 \\
\hline \(\stackrel{\text { ¢ }}{ }\) & 80kg & 1391 & 312 & 362 \\
\hline 안 & 60kg & 2443 & 430 & 572 \\
\hline \% & 100kg & 2000 & 243 & 326 \\
\hline \(\pm\) & 120kg & 1841 & 197 & 264 \\
\hline
\end{tabular}
\(\qquad\)
 \begin{tabular}{r|r|r|c} 
& \multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{k g}\) & 2022 & 2670 & 3501 \\
\hline \(\mathbf{k g}\) & 1202 & 1283 & 2483 \\
\hline \(\mathbf{k g}\) & 752 & 587 & 2516 \\
\hline \(\mathbf{k g}\) & 987 & 820 & 2578 \\
\(\mathbf{k g}\) & 574 & 447 & 1685 \\
\hline \(\mathbf{k g}\) & 342 & 237 & 1263 \\
\hline \(\mathbf{k g}\) & 535 & 355 & 2443 \\
\(\mathbf{k g}\) & 283 & 169 & 2000 \\
\hline \(\mathbf{k g}\) & 220 & 123 & 1841 \\
\hline
\end{tabular}
Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).
\(\qquad\)
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c|}{ Operation method } \\
\hline SR1-X20 Note & Programming ///O point trace / Remote command / \\
\hline RCX330, RCX221/222, RCX340 & Operation using RS-232C communication \\
\hline TS-X20 Note & I/O point trace /Remote command \\
\hline
\end{tabular}
\begin{tabular}{l|l} 
RCX320, RCX221/222, RCX340 & Operation using RS-232C communication \\
\hline TS-X220 Note & I/O point trace / Remote command
\end{tabular}
\begin{tabular}{l|l}
\(\frac{\text { RDV-X220-RBR1 (Horizontal) }}{\text { RDV-X220-RBR2 (Vertical) }}\) & Pulse train control \\
\hline
\end{tabular}
Note. [The following arrangements rea
\(\cdot\)
Using in the upright position - Using in the upright position. High lead (40) used horizontally.


Note 4 speed), a regeneration unit RG1 is required.
. Longer than 1250 mm stroke can be handled by the high lead
Note 5. Position detectors (resolvers) are common to incremental and
absolute specifications. If the controller has a backup function
then it will be absolute specifications.
F17

Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. When installing the robot, do not use washers inside the robot body.
Note 3. Minimum bend radius of motor cable is R50.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline \multicolumn{2}{|l|}{L} & 575 & 625 & 675 & 725 & 775 & 825 & 875 & 925 & 975 & 1025 & 1075 & 1125 & 1175 & 1225 & 1275 & 1325 & 1375 & 1425 & 1475 & 1525 & 1575 & 1625 & 1675 & 1725 & 1775 & 1825 \\
\hline \multicolumn{2}{|l|}{A} & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 8 & 8 \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & 20 & 20 \\
\hline \multicolumn{2}{|l|}{C} & 240 & 240 & 420 & 420 & 420 & 600 & 600 & 600 & 600 & 780 & 780 & 780 & 780 & 960 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1320 & 1320 & 1320 & 1320 & 1320 \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & 14.7 & 15.5 & 16.4 & 17.2 & 18.0 & 18.8 & 19.7 & 20.5 & 21.3 & 22.1 & 23.0 & 23.8 & 24.6 & 25.4 & 26.3 & 27.1 & 27.9 & 28.7 & 29.6 & 30.4 & 31.2 & 32.0 & 32.8 & 33.6 & 34.4 & 35.2 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Maximum speed } \\
& (\mathrm{mm} / \mathrm{sec})
\end{aligned}
\]} & Lead 40 & \multicolumn{13}{|c|}{2400} & \multicolumn{2}{|r|}{1920} & \multicolumn{2}{|r|}{1680} & \multicolumn{2}{|r|}{1440} & \multicolumn{2}{|r|}{1200} & \multicolumn{2}{|r|}{960} & \multicolumn{2}{|r|}{840} & 720 \\
\hline & Speed setting & \multicolumn{13}{|c|}{-} & \multicolumn{2}{|r|}{80\%} & \multicolumn{2}{|r|}{70\%} & \multicolumn{2}{|l|}{60\%} & \multicolumn{2}{|l|}{50\%} & \multicolumn{2}{|r|}{40\%} & \multicolumn{2}{|r|}{35\%} & 30\% \\
\hline
\end{tabular}


Note 1. Upper robot cable \((U)\) on models equipped with brake is a special-order item Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 3. See P. 634 for DIN rail mounting bracket
Note 4. Acceleration / deceleration is different depending the Positioner or Controller or Driver.
Note 5. Select this selection when using the gateway function. For details, see P.96.


Repeatability \({ }^{\text {Note } 1}(\mathrm{~mm})\) Deceleration mechanism Ball screw lead (mm)
Maximum speed \({ }^{\text {Note } 2}\) (mm/sec) \begin{tabular}{l|l} 
& payload (kg) \\
& Rorizonta \\
&
\end{tabular} Stroke (mm) \begin{tabular}{l} 
Strok \\
\hline Over \\
\hline
\end{tabular}
mm) Horizonta Maximum dimensions of cross Maximum dimensions of
section of main unit ( mm ) Cable length (m)


Position detector
\begin{tabular}{|c} 
\\
\hline
\end{tabular}\(|\)\begin{tabular}{l}
600 \\
\hline+-0.02 \\
\hline Ball screw \(\phi 25\) \\
\hline 50 \\
\hline 2200 \\
\hline 50 \\
\hline 10 \\
\hline 1100 to \(2050(50 \mathrm{~mm}\) pitch \()\) \\
\hline Stroke +475 \\
\hline Stroke +505 \\
\hline W168 \(\times \mathrm{H} 100\)
\end{tabular}

Standard: 3.5 / Option: 5,10
4 rows of circular arc grooves \(\times 2\) rail
Resolvers \(^{\text {Note } 3}\)
16384
16384
Note 1. Positioning repeatability in one direction.
Note 2. When the stroke is longer than 1200 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
Position detectors (resolvers) are common to incremental and ote 3. Position detectors (resolvers) are common to incremental and then it will be absolute specifications.


Horizontal installation (Unit: mm ) Wall installation (Unit: mm ) Vertical installation (Unit: mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & A & B & C & & & A & B & C & & & A & C \\
\hline 웅 & 10kg & 4000 & 2755 & 2608 & \multirow[t]{3}{*}{in
¢
¢} & 10kg & 2720 & 2681 & 4000 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { in } \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\]} & 2kg & 1200 & 1200 \\
\hline \% & 30kg & 3045 & 895 & 1175 & & 30kg & 1185 & 821 & 3045 & & 5 kg & 3000 & 3000 \\
\hline \(\stackrel{\text { - }}{ }\) & 50kg & 2602 & 523 & 715 & & 50kg & 680 & 449 & 2602 & & 10kg & 2650 & 2650 \\
\hline
\end{tabular}

Note. Distance from center of slider life of \(10,000 \mathrm{~km}\).


\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & (Unit: \(\mathbf{N} \cdot \mathrm{m}\) ) \\
\hline MY & MP & MR \\
\hline 1032 & 1034 & 908 \\
\hline
\end{tabular}

\section*{Controller}

Controller Operation method \begin{tabular}{l|l}
\hline SR1-X20-R & \(\begin{array}{l}\text { Programming/ } \\
\text { I/O point trace / }\end{array}\) \\
\hline
\end{tabular} RCX320 Remote command/ RCX221/222 Operation RCX340 using RS-232C TS-X220-R \(\quad\) I/O point trace / \begin{tabular}{c|c} 
TS-X220-R & Remote command \\
\hline
\end{tabular} (Horizontal) RDV-X220-RBR2 Pulse train control (Vertical)

F17L

Note 2. It is not allowed to use a counter bore washer, etc. when installing the main unit. Note 4. Make a separate consultation with us regarding robot cable (brake specifications) U extraction. (External dimensions: overall length +20 mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 & 1500 & 1550 & 1600 & 1650 & 1700 & 1750 & 1800 & 1850 & 1900 & 1950 & 2000 & 2050 \\
\hline L & 1575 & 1625 & 1675 & 1725 & 1775 & 1825 & 1875 & 1925 & 1975 & 2025 & 2075 & 2125 & 2175 & 2225 & 2275 & 2325 & 2375 & 2425 & 2475 & 2525 \\
\hline A & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 \\
\hline M & 6 & 7 & 7 & 7 & 7 & 8 & 8 & 8 & 8 & 9 & 9 & 9 & 9 & 10 & 10 & 10 & 10 & 11 & 11 & 11 \\
\hline N & 16 & 18 & 18 & 18 & 18 & 20 & 20 & 20 & 20 & 22 & 22 & 22 & 22 & 24 & 24 & 24 & 24 & 26 & 26 & 26 \\
\hline K & 1140 & 1140 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 \\
\hline Weight (kg) \({ }^{\text {Note } 3}\) & 34.1 & 34.9 & 35.8 & 36.7 & 37.6 & 38.4 & 39.3 & 40.2 & 41.1 & 42 & 42.9 & 43.8 & 44.7 & 45.6 & 46.5 & 47.3 & 48.2 & 49.1 & 50 & 50.9 \\
\hline Maximum speed \({ }^{\text {Note } 5}\) Lead 50 & \multicolumn{3}{|c|}{2200} & \multicolumn{4}{|c|}{1900} & \multicolumn{4}{|c|}{1500} & \multicolumn{4}{|c|}{1200} & \multicolumn{4}{|c|}{900} & 800 \\
\hline (mm/sec) Speed setting & \multicolumn{3}{|c|}{-} & \multicolumn{4}{|c|}{86\%} & \multicolumn{4}{|c|}{68\%} & \multicolumn{4}{|c|}{54\%} & \multicolumn{4}{|c|}{40\%} & 36\% \\
\hline
\end{tabular}
Note 5. When the stroke exceeds 1200 mm , although depending on the moving range, the ball screw may resonate (critical speed). In that case, make adjustment to lower the speed on the program using the maximum speed given in the above table as a guide.

\section*{OOrdering method}

\begin{tabular}{|c|c|}
\hline Cable entry location & Origin position change \\
\hline No entry: Standard (S) & \begin{tabular}{l}
None: \\
Standard
\end{tabular} \\
\hline U: From the top & Z: Non- \\
\hline R: From the right & motor sid \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Frame & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Grease } \\
& \text { type }
\end{aligned}
\]} \\
\hline No entry: & \\
\hline Standard & None: Standard \\
\hline (Spot facing) & GC: Clean \\
\hline T: Tapping & \\
\hline
\end{tabular}

 See P. 732 for details on robot cable.
Note 2. See P. 634 for DIN rail mounting bracket
Note 3. Select this selection when using the gateway function. For details, see P.96.
Note 4. When operating the robot at a speed that is a maximum speed of \(750 \mathrm{~mm} / \mathrm{sec}\) or less, the regenerative unit is not needed
[Cautions after purchase]
- When changing the origin position, contact us since the adjustment is needed
- When changing the cable entry location, contact us since necessary parts may vary depending on the cable entry location.
- Do not install the robot with the horizontal installation specifications in a direction other than the horizontal direction.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Specifications} & \multicolumn{5}{|c|}{Allowable overhang Note} & \multicolumn{3}{|l|}{Static loading moment} \\
\hline AC servo motor output (W) & 400 & \multicolumn{5}{|c|}{\multirow[b]{4}{*}{COCOCOTCO}} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.01 & & & & & & & & \\
\hline Deceleration mechanism & Ball screw \(\phi 20\) & & & & & & & & \\
\hline Ball screw lead (mm) & 20 & & & & & & & & \\
\hline Maximum speed (mm/sec) & 1200 Note 2 & \multicolumn{5}{|l|}{Horizontal installation (Unit mm)} & \multicolumn{3}{|r|}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline Maximum payload (kg) & 90 & & & A & B & C & MY & MP & MR \\
\hline Rated thrust (N) & 339 & \multirow[t]{3}{*}{\begin{tabular}{l|} 
N \\
¢ \\
¢ \\
d
\end{tabular}} & 30kg & 4050 & 1090 & 1405 & 1032 & 1034 & 908 \\
\hline Stroke (mm) & 850 to 2500 ( 50 mm pitch) & & 50kg & 2755 & 650 & 835 & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Controller}} \\
\hline Overall length (mm) & Stroke+686 & & 90kg & 1610 & 345 & 450 & & & \\
\hline Maximum dimensions of cross section of main unit ( mm ) & W168×H105.5 & \multicolumn{5}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\). \\
Note. Service life is calculated for 1000 mm stroke models.
\end{tabular}}} & \multirow[t]{4}{*}{\begin{tabular}{l|}
\hline \multicolumn{1}{c|}{ Controller } \\
\hline SR1-X20 Note \\
RCX320 \\
RCX221/222 \\
RCX340 \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
Operation method \\
Programming / I/O point trace / Remote command / Operation using RS232C communication
\end{tabular}}} \\
\hline Cable length (m) & Standard: 3.5 / Option: 5,10 & & & & & & & & \\
\hline Linear guide type & 4 rows of circular arc grooves \(\times 2\) rail & & & & & & & & \\
\hline Position detector & Resolvers \({ }^{\text {Note } 3}\) & & & & & & & & \\
\hline Resolution (Pulse/rotation) & 20480 & & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \frac{\mathrm{TS}-\mathrm{X} 220}{} \\
& \hline \text { RDV-X220-RBR1 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{I/O point trace/ Remote command} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. To operate the unit at a speed exceeding \(750 \mathrm{~mm} / \mathrm{sec}\). (Max. speed), a regeneration unit is required. \\
Note 3. Position detectors (resolvers) are common to incremental and absolute specifications. If the controller has a backup function then it will be absolute specifications.
\end{tabular}}} & & & & & & & \multicolumn{2}{|l|}{Pulse train control} \\
\hline & & & & & & & \multicolumn{3}{|l|}{Note. To operate the unit at a speed exceeding \(750 \mathrm{~mm} / \mathrm{sec}\). (Max. speed), a regeneration unit is required.} \\
\hline
\end{tabular}

\section*{GF17XL}


Note 1. The model with a lead of 10 mm cannot select specifications without brake (horizontal specifications).
The model with a lead of 40 mm cannot select specifications with brake (vertical specifications).
Note 2. Upper robot cable ( \(U\) ) on models equipped with brake is a special-order item.
Note 3. The robot cable is standard cable ( \(3 \mathrm{~L} / 5 \mathrm{~L} / 10 \mathrm{~L}\) ), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 4. See P. 634 for DIN rail mounting bracket
Note 5. Acceleration / deceleration is different depending the Positioner or Controller or Driver
Note 6. The robot with the high lead specifications (lead 40) needs a regenerative unit. Note 7. Select this selection when using the gateway function. For details, see P.96.



AC servo motor output (W)
\(\frac{\text { Repeatability }{ }^{\text {Note } 1} \text { (mm) }}{\text { Deceleration mechanism }}\) Deceleration mechanism Ball screw lead (mm)
Maximum speed \({ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec}\) ) \begin{tabular}{l|r|}
\hline Maximum \\
payload (kg) & Horizontal \\
\cline { 2 - 2 } & Vertical
\end{tabular} \begin{tabular}{l|} 
payload (kg) \\
\\
Rated thrust (
\end{tabular} Stroke (mm)
 Overall length \begin{tabular}{c|c|c|c} 
Horizontal & Stroke+427 & Stroke +417 & - \\
\cline { 2 - 4 } & Vertical & Stron
\end{tabular} \begin{tabular}{l|r|}
\hline (mm) & Vertical \\
\cline { 2 - 3 } & Maximum dimensions of cross
\end{tabular} Maximum dimensions of cross
section of main unit ( mm ) section of main unit (
Cable length ( \(m\) ) Linear guide type
\begin{tabular}{l|l} 
Position detector \\
Resolution (Pulse/rotation)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{600} \\
\hline \multicolumn{3}{|c|}{+/-0.01} \\
\hline \multicolumn{3}{|c|}{Ball screw \$20} \\
\hline 40 & 20 & 10 \\
\hline 2400 & 1000 (1200 \(\left.{ }^{\text {Note } 3}\right)\) & 600 \\
\hline 60 & 120 & - \\
\hline - & 25 & 45 \\
\hline 255 & 510 & 1020 \\
\hline \multicolumn{3}{|l|}{200 to \(1450{ }^{\text {Note } 4}\) ( 50 mm pitch)} \\
\hline Stroke+427 & Stroke+417 & - \\
\hline - & \multicolumn{2}{|l|}{Stroke+447} \\
\hline \multicolumn{3}{|c|}{W202 \(\times \mathrm{H} 115\)} \\
\hline \multicolumn{3}{|l|}{Standard: 3.5 Option: 5,10} \\
\hline \multicolumn{3}{|l|}{4 rows of circular arc grooves \(\times 2\) rail} \\
\hline \multicolumn{3}{|c|}{Resolvers \({ }^{\text {Note } 5}\)} \\
\hline \multicolumn{3}{|c|}{16384} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. When the stroke is longer than 800 mm , res

peed). In thiscur case denending on the operation conditions (critical
syeed). In this case, reduce the speed setting on the program Note 3. To operate the unit at a speed exceeding \(1,000 \mathrm{~mm} / \mathrm{sec}\). (Max. speed), a regeneration unit RG1 is required. . Note 5. Position detectors (resolvers) are common to incremental and absoute specifications. specifications.
then it will be absolute sper a



F20


Note 1. Stop positions are determined by the mechanical stoppers at both ends Note 2. When installing the robot, do not use washers inside the robot body. Note 3. Minimum bend radius of motor cable is R50.

Note 4. Weight of models with no brake. The weight of brake-attached models is 1.5 kg heavier than the models with no brake shown in the table.
Note 5. Make a separate consultation with us regarding robot cable (brake specifications) U extraction. (External dimensions: overall length +20 mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effectiv & ve stroke & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 \\
\hline & L & 617 & 667 & 717 & 767 & 817 & 867 & 917 & 967 & 1017 & 1067 & 1117 & 1167 & 1217 & 1267 & 1317 & 1367 & 1417 & 1467 & 1517 & 1567 & 1617 & 1667 \\
\hline & A & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline & M & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 \\
\hline & N & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 \\
\hline & K & 420 & 420 & 420 & 420 & 600 & 600 & 600 & 600 & 780 & 780 & 780 & 780 & 960 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1320 & 1320 & 1320 \\
\hline Weight & (kg) \({ }^{\text {Note } 4}\) & 21.0 & 22.0 & 22.9 & 23.8 & 24.8 & 25.7 & 26.6 & 27.5 & 28.5 & 29.4 & 30.3 & 31.2 & 32.1 & 33.0 & 34.0 & 34.9 & 35.8 & 36.7 & 37.7 & 38.6 & 39.5 & 40.4 \\
\hline \multirow[t]{3}{*}{Maximum speed Note 6 ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 20 & \multicolumn{13}{|c|}{1000 (1200 \({ }^{\text {Note } 7}\) )} & \multicolumn{2}{|c|}{960} & \multicolumn{2}{|c|}{840} & \multicolumn{2}{|c|}{720} & \multicolumn{2}{|c|}{600} & 480 \\
\hline & Lead 10 & \multicolumn{13}{|c|}{600} & \multicolumn{2}{|c|}{480} & \multicolumn{2}{|c|}{420} & \multicolumn{2}{|c|}{360} & \multicolumn{2}{|c|}{300} & 240 \\
\hline & Speed setting & \multicolumn{13}{|c|}{-} & \multicolumn{2}{|c|}{80\%} & \multicolumn{2}{|c|}{70\%} & \multicolumn{2}{|c|}{60\%} & \multicolumn{2}{|c|}{50\%} & 40\% \\
\hline
\end{tabular} ( \(\mathrm{mm} / \mathrm{sec}\) ) Speed setting

\footnotetext{
Note 6. Whex the stroke exceeds 800 mm , although depende.
maximum speed given in the above table as a guide.
Note 7. To operate the unit at a speed exceeding \(1,000 \mathrm{~mm} / \mathrm{sec}\). a regeneration unit RG 1 is required.
}

F20 High lead type: Lead 40


Note 1. Stop positions are determined by the mechanical stoppers at both ends
Note 3. Minimum bend radius of motor cable is R50.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & 1400 & 1450 \\
\hline \multicolumn{2}{|l|}{L} & 627 & 677 & 727 & 777 & 827 & 877 & 927 & 977 & 1027 & 1077 & 1127 & 1177 & 1227 & 1277 & 1327 & 1377 & 1427 & 1477 & 1527 & 1577 & 1627 & 1677 & 1727 & 1777 & 1827 & 1877 \\
\hline \multicolumn{2}{|l|}{A} & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 8 & 8 \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & 20 & 20 \\
\hline \multicolumn{2}{|l|}{K} & 420 & 420 & 420 & 420 & 600 & 600 & 600 & 600 & 780 & 780 & 780 & 780 & 960 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & 21.2 & 22.2 & 23.1 & 24.0 & 25.0 & 25.9 & 26.8 & 27.7 & 28.7 & 29.6 & 30.5 & 31.4 & 32.3 & 33.2 & 34.2 & 35.1 & 36.0 & 36.9 & 37.9 & 38.8 & 39.7 & 40.6 & 41.5 & 42.4 & 43.3 & 44.2 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \begin{array}{l}
\text { Maximum speed }{ }^{\text {Note4 } 4} \\
(\mathrm{~mm} / \mathrm{sec})
\end{array} \\
& \hline
\end{aligned}
\]} & Lead 40 & \multicolumn{13}{|c|}{2400} & \multicolumn{2}{|r|}{1920} & \multicolumn{2}{|l|}{1680} & \multicolumn{2}{|r|}{1440} & \multicolumn{2}{|r|}{1200} & \multicolumn{2}{|c|}{960} & \multicolumn{2}{|r|}{840} & 720 \\
\hline & Speed setting & \multicolumn{13}{|c|}{-} & \multicolumn{2}{|r|}{80\%} & \multicolumn{2}{|r|}{70\%} & \multicolumn{2}{|r|}{60\%} & \multicolumn{2}{|r|}{50\%} & \multicolumn{2}{|c|}{40\%} & \multicolumn{2}{|c|}{35\%} & 30\% \\
\hline
\end{tabular}

Note 4. When the stroke is longer than 800 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to
the maximum speeds shown in the table above.
Note 5. Longer than 1250 mm stroke can be handled by the high lead specification (Lead 40) only.

\section*{OOrdering method}


Specifications
Repeatability \({ }^{\text {Note }}{ }^{1}(\mathrm{~mm})\)
Deceleration mechanism
Ball screw lead (mm)
Maximum speed (mm/sec)
Maximum payload (kg)
Rated thrust (N)
Stroke (mm)
Overall length (mm)
Maximum dimensions of cros
section of main unit (mm)
Cable length (m)
Linear guide type
Position detector
Resolution (Pulse/rotation)
\begin{tabular}{|c|}
\hline 400 \\
\hline +/-0.04 \\
\hline Ball screw \({ }^{\text {2 }} 20\) \\
\hline 20 \\
\hline 1000 (1200 \(\left.{ }^{\text {Note } 2}\right)\) \\
\hline 80 \\
\hline 339 \\
\hline 1150 to 2050 (100mm pitch) \\
\hline Stroke+420 \\
\hline W202 \(\times\) H120 \\
\hline Standard: 3.5 / Option: 5,10 \\
\hline 4 rows of circular arc grooves \(\times 2\) rail \\
\hline Resolvers \({ }^{\text {Note } 3}\) \\
\hline 16384 \\
\hline
\end{tabular}
ote 1. Positioning repeatability in one direction
Note 2. A regenerative unit is needed if using the SR1-X, TS-X at maximum speeds exceeding \(1000 \mathrm{~mm} / \mathrm{sec}\).. If using the RDV-X, then the regenerative unit RBR1 is required regardless of the installation conditions.
Note 3. Position detectors(resolvers) are common to incremental and absolute specifications. If the controller has a backup function then it will be absolute specifications.


Horizontal installation (Unit: mm)
\begin{tabular}{|c|c|c|c|c|}
\hline & & A & B & C \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { No } \\
& \mathbf{0} \\
& \stackrel{0}{0}
\end{aligned}
\]} & 20kg & 3397 & 2332 & 2683 \\
\hline & 40kg & 2795 & 1144 & 1361 \\
\hline & 60kg & 2443 & 749 & 914 \\
\hline & 80kg & 2193 & 551 & 695 \\
\hline
\end{tabular}


Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\)

\section*{Controller}

Controller Operation method SR1-X20 \({ }^{\text {Note }}\) Programming / RCX320 I/O point trace / RCX221/222 \(\begin{aligned} & \text { Remote command } \\ & \text { Operation using RS- }\end{aligned}\) RCX340 232C communication TS-X220 \({ }^{\text {Note }}\) I/O point trace / \begin{tabular}{l|l}
\hline RDV-X220-RBR1 & Pulse train control \\
\hline
\end{tabular} Note. When the unit is operated at a
speed exceeding the maxim
speed of \(1,000 \mathrm{~mm} / \mathrm{sec}\)., a
regeneration unit is required


\section*{OOrdering method}

Note 1．To find information on cable carrier extraction directions see P． 299. Note 2．The robot cable is standard cable（ \(3 \mathrm{~L} / 5 \mathrm{~L} / 10 \mathrm{~L}\) ），but can be changed to flexible cable． See P． 732 for details on robot cable．
Note 3．See P． 634 for DIN rail mounting bracket
Note 4．Select this selection when using the gateway function．For details，see P．96．

TSX 220



I／O selection
 Batery

\begin{tabular}{l|c}
\hline \multicolumn{2}{|c}{ Specifications } \\
\hline AC servo motor output（W） & 400 \\
\hline Repeatability \({ }^{\text {Note } 1}(\mathbf{m m})\) & \(+/-0.01\) \\
\hline Deceleration mechanism & Ball screw \(\phi 15\) \\
\hline Ball screw lead（mm） & 20 \\
\hline Maximum speed \(\left.{ }^{\text {Note } 2} \mathbf{( m m / s e c}\right)\) & 1200 \\
\hline Maximum payload（kg） & 50 \\
\hline Rated thrust（N） & 339 \\
\hline Stroke（mm） & 500 to 2000（100mm pitch） \\
\hline Overall length（mm） & Stroke +330 \\
\hline \begin{tabular}{l} 
Maximum dimensions of cross \\
section of main unit（mm）
\end{tabular} & W145 \(\times\) H120 \\
\hline Cable length（m） & Standard：3．5／Option：5，10 \\
\hline Linear guide type & 4 rows of circular arc grooves \(\times 2\) rail \\
\hline Position detector & Resolvers \({ }^{\text {Note } 3}\) \\
\hline Resolution（Pulse／rotation） & 16384 \\
\hline \begin{tabular}{l} 
Note 1．Positioning repeatability in one direction． \\
Note 2．The maximum speed may not be reached when the moving \\
distance is short．
\end{tabular} \\
\begin{tabular}{l} 
Note 3．Position detectors（resolvers）are common to incremental and \\
absolute specifications．If the controller has a backup function \\
then it will be absolute specifications．
\end{tabular}
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 산 & 10kg & 3048 & 2322 & 1259 & & & 1258 & 1823 & 244 \\
\hline \％ & 30kg & 1489 & 84 & 50 & \％ & 30kg & 428 & 545 & 10 \\
\hline \(\pm\) & 50kg & 1278 & 54 & 344 & & 50kg & 24 & 289 & 749 \\
\hline
\end{tabular}

Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．


Stype Standard cable carrier


\(\square\) Static loading moment

\begin{tabular}{c|c|c|}
\hline \multicolumn{2}{l}{} & \multicolumn{1}{c}{（Unit： \(\mathbf{N} \cdot \mathrm{m}\) ）} \\
\hline MY & MP & MR \\
\hline 691 & 692 & 608 \\
\hline
\end{tabular}

\section*{Controller}

Controller Operation method
SR1－X20－R \(\begin{aligned} & \text { Programming／}\end{aligned}\) \begin{tabular}{l|l} 
SR1－X20－R & I／O point trace／ \\
RCX320 & Remote command／
\end{tabular} \begin{tabular}{l|l} 
RCX320 & \(\begin{array}{l}\text { Remote command } \\
\text { RCX221／222 }\end{array}\) \\
Operation
\end{tabular} \begin{tabular}{l|l} 
RCX221／222 & Operation \\
RCX340 & using RS－232C
\end{tabular} RCX340 \(\begin{aligned} & \text { using RS－232C } \\ & \text { communication }\end{aligned}\) TS－X220－R \(\quad \begin{aligned} & \text { I／O point trace／}\end{aligned}\) \begin{tabular}{l|l}
\(\mathrm{TS}-\mathrm{X} 220-\mathrm{R}\) & Remote command \\
\hline RDV－X220－RBR1 & Pulse train control \\
\hline
\end{tabular}

N15：Horizontal installation／Standard Cable carrier specification RH


Note 1．Stop positions are determined by the mechanical stoppers at both ends．
Note 2．When using \(\phi 7\) holes for installation，do not use a washer，spring washer，etc．in the main unit
Note 3．When shipped from the factory，the horizontal model has the origin on the right side and the wall model has Note 6．Contact us for vertical installatio
the origin on the left side．（This diagram shows the machine whose cable carrier taken out from right．）
號 the models with no brake shown in the table．
might be larger，making and the operating conditions，the cable carrier bending radius

\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline Effective stroke & \(\mathbf{5 0 0}\) & \(\mathbf{6 0 0}\) & \(\mathbf{7 0 0}\) & \(\mathbf{8 0 0}\) & \(\mathbf{9 0 0}\) & \(\mathbf{1 0 0 0}\) & \(\mathbf{1 1 0 0}\) & \(\mathbf{1 2 0 0}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 4 0 0}\) & \(\mathbf{1 5 0 0}\) & \(\mathbf{1 6 0 0}\) & \(\mathbf{1 7 0 0}\) & \(\mathbf{1 8 0 0}\) & \(\mathbf{1 9 0 0}\) & \(\mathbf{2 0 0 0}\) \\
\hline \(\mathbf{L}\) & 830 & 930 & 1030 & 1130 & 1230 & 1330 & 1430 & 1530 & 1630 & 1730 & 1830 & 1930 & 2030 & 2130 & 2230 & 2330 \\
\hline \(\mathbf{A}\) & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 \\
\hline \(\mathbf{B}\) & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 \\
\hline \(\mathbf{C}\) & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 \\
\hline \(\mathbf{D}\) & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 \\
\hline \(\mathbf{E}\) & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 \\
\hline \(\mathbf{F}\) & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 \\
\hline \(\mathbf{G}\) & 620 & 720 & 820 & 920 & 1020 & 1120 & 1220 & 1320 & 1420 & 1520 & 1620 & 1720 & 1820 & 1920 & 2020 & 2120 \\
\hline Weight（kg）\({ }^{\text {Note } 7}\) & 19 & 20 & 22 & 23 & 24 & 26 & 27 & 29 & 30 & 32 & 33 & 35 & 36 & 38 & 39 & 40 \\
\hline
\end{tabular}


N15: Wall installation / Standard Cable carrier specification RW


Cable carrier specification
S：Standara Cable carrier


Note 1．To find controller selection options，see the ordering method on each controller page．
Note 2． 2 units are required when using SR1－X，TS－X or RDV－X．
Note 3．If a flexible cable is needed for the SR1－X，TS－X，or RDV－X，then select \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\) ．On the RCX320／RCX222HP，the standard cable is a flexible cable，so enter 3L／5L／10L when ordering
\begin{tabular}{l|c}
\hline \multicolumn{2}{c}{ Specifications } \\
\hline AC servo motor output（W） & 400 \\
\hline Repeatability \({ }^{\text {Note } 1}(\mathbf{m m})\) & \(+/-0.01\) \\
\hline Deceleration mechanism & Ball screw \(\phi 15\) \\
\hline Ball screw lead（mm） & 20 \\
\hline Maximum speed \({ }^{\text {Note } 2} \mathbf{( m m / s e c )}\) \\
\hline Maximum payload（kg） & 1200 \\
\hline Rated thrust（N） & 50 \\
\hline Stroke（mm） & 339 \\
\hline Overall length（mm） & 250 to 1750（100mm pitch） \\
\hline \begin{tabular}{l} 
Maximum dimensions of cross \\
section of main unit（mm）
\end{tabular} & W145 \(\times\) H120 \\
\hline Cable length（m） & Standard： \(3.5 /\) Option：5，10 \\
\hline Linear guide type & 4 rows of circular arc grooves \(\times 2\) rail \\
\hline Position detector & Resolvers \({ }^{\text {Note } 3}\) \\
\hline Resolution（Pulse／rotation） & 16384 \\
\hline \begin{tabular}{l} 
Note 1．Positioning repeatability in one direction． \\
Note 2．The maximum speed may not be reached when the moving \\
distance is short．
\end{tabular} \\
\begin{tabular}{l} 
Note 3．Position detectors（resolvers）are common to incremental and \\
absolute specifications．If the controller has a backup function \\
then it will be absolute specifications．
\end{tabular}
\end{tabular}


N15D：Horizontal installation／Standard Cable carrier specification


Note 1．Position of table carriage when searched to the origin．
Note 2．Stop positions are determined by the mechanical stoppers at both ends．
ing washer，etc．in the main unit．
．it is not possible to pass 3 or more \(\phi 6 \times 4\) urethane air hoses．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & \\
\hline L & 830 & 930 & 1030 & 1130 & 1230 & 1330 & 1430 & 1530 & 1630 & 1730 & 1830 & 1930 & 2030 & 2130 & 2230 & 2330 \\
\hline A & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 \\
\hline B & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 \\
\hline C & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 \\
\hline D & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 \\
\hline E & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 \\
\hline F & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 \\
\hline G & 620 & 720 & 820 & 920 & 1020 & 1120 & 1220 & 1320 & 1420 & 1520 & 1620 & 1720 & 1820 & 1920 & 2020 & 2120 \\
\hline Weight（kg）\({ }^{\text {Note } 7}\) & 24 & 26 & 27 & 29 & 30 & 32 & 33 & 35 & 36 & 38 & 39 & 40 & 42 & 43 & 45 & 46 \\
\hline
\end{tabular}


N18


OOrdering method

Note 1. To find information on cable carrier extraction directions see P.299. Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 3. See P. 634 for DIN rail mounting bracket.
Note 4. Select this selection when using the gateway function. For details, see P.96.


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Specifications} \\
\hline AC servo motor output (W) & 400 \\
\hline Repeatability \({ }^{\text {Note } 1}(\mathrm{~mm})\) & +/-0.01 \\
\hline Deceleration mechanism & Ball screw \({ }^{\text {d20 }}\) \\
\hline Ball screw lead (mm) & 20 \\
\hline Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 1200 \\
\hline Maximum payload (kg) & 80 \\
\hline Rated thrust (N) & 339 \\
\hline Stroke (mm) & 500 to 2500 (100mm pitch) \\
\hline Overall length (mm) & Stroke+362 \\
\hline Maximum dimensions of cross section of main unit (mm) & W180 \(\times\) H115 \\
\hline Cable length (m) & Standard: 3.5 / Option: 5,10 \\
\hline Linear guide type & 4 rows of circular arc grooves \(\times 2\) rail \\
\hline Position detector & Resolvers \({ }^{\text {Note } 3}\) \\
\hline Resolution (Pulse/rotation) & 16384 \\
\hline \multicolumn{2}{|l|}{Note 1. Repeatability for single oscillation.} \\
\hline \multicolumn{2}{|l|}{Note 2. The maximum speed may not be reached when the moving distance is short.} \\
\hline Note 3. Position detectors (resolvers)
absolute specifications. If the
then it will be absolute speci & s) are common to incremental and e controller has a backup function ifications. \\
\hline
\end{tabular}

\section*{N18-20}

\begin{tabular}{|c|c|c|c|c|c|}
\hline TSX & 220 & R & & & \\
\hline \[
\begin{aligned}
& \text { Postionertwas } \\
& \text { TSX: TS-X }
\end{aligned}
\] & \begin{tabular}{l} 
Driver: Power-supply voltage I \\
Power capacity \\
220: \(200 \mathrm{~V} / 400\) to 600 W \\
\hline
\end{tabular} &  &  & \begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ I/O selection } \\
\hline NP: NPN \\
\hline PN: PNP \\
\hline CC: CC-Link \\
\hline DN: DeviceNet \({ }^{\text {TM }}\) \\
\hline EP: EtherNet/IPTM \\
\hline PT: PROFINET \\
\hline GW: No I/O board \({ }^{\text {Note } 4}\) \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Battery } \\
\hline \begin{tabular}{l} 
B: With battery \\
(Absolute) \\
\hline N: None \\
(Incremental)
\end{tabular} \\
\hline
\end{tabular} \\
\hline SR1-X & 20 & & R & & \\
\hline Controller & \begin{tabular}{l} 
Driver: Power capacity \\
20: 400 to 600 W \\
\hline
\end{tabular} & \[
\begin{aligned}
& \text { - Usable for CE } \\
& \text { (voentry Standard } \\
& \text { E:CE marking }
\end{aligned}
\] & Regenerative unit
R: With \(R G 1\) & \begin{tabular}{|l|}
\hline \multicolumn{1}{l|}{ I/O selection } \\
\hline N: NPN \\
\hline P: PNP \\
\hline CC: CC-Link \\
\hline DN: DeviceNet \({ }^{T M}\) \\
\hline PB: PROFIBUS \\
\hline
\end{tabular} & \begin{tabular}{l} 
Battery \\
\begin{tabular}{l} 
B: \\
(Aithateen \\
(Assolte) \\
N None \\
(incemental
\end{tabular} \\
\hline
\end{tabular} \\
\hline RDV-X & 2 & 20 & & RBR1 & \\
\hline Diver & \[
\begin{aligned}
& \text { Power-supply voltage } \\
& \hline \text { 2: AC200V }
\end{aligned}
\] &  & er capacity & Regenerative unit & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Horizontal installation} & (Unit: mm) & \multicolumn{3}{|l|}{Wall installation} & \multicolumn{2}{|l|}{(Unit: mm)} & & & (Unit: \(\mathrm{N} \cdot \mathrm{m}\) ) \\
\hline & & A & B & C & & & A & B & C & MY & MP & MR \\
\hline 긴 & 30kg & 3045 & 1629 & 1902 & ํ & 30kg & 1928 & 1553 & 3045 & 1161 & 1163 & 1021 \\
\hline
\end{tabular}

\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Operation method \\
\hline SR1-X20-R & \begin{tabular}{l} 
Programming / \\
I/O point trace /
\end{tabular} \\
RCX320 & Remote command / \\
RCX221/222 & Operation \\
RCX340 & \begin{tabular}{l} 
using RS-232C \\
communication
\end{tabular} \\
\hline TS-X220-R & \begin{tabular}{l} 
I/O point trace / \\
Remote command
\end{tabular} \\
\hline RDV-X220-RBR1 & Pulse train control \\
\hline
\end{tabular}

N18: Horizontal installation / Standard Cable carrier specification RH


Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. When using \(\phi 9\) holes for installation, do not use a washer, spring washer, etc. in the main unit.
Note 3. When shipped from the factory, the horizontal model has the origin on the right side and the wall model Note 4. If the model is a standard cable carrier specification, it is not possible to pass 3 or more \(\phi 6 \times 4\) urethane air hoses.

Note 5. When using a \(\phi 10 \mathrm{H} 7\) hole, make sure that the pin does not go into deeper than as shown in the drawing Note 6. Contact us for vertical installation.
Note 7. For the robot with more than 2,100 stroke, a roller is installed to prevent the cable carrier hanging the models with no brake shown in the table
Note 9 . Depending on the stroke and the operating conditions, the cable carrier bending radius might be larger, making it higher than the dimensions shown in the diagram.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline L & 86 & 962 & 062 & 1162 & 1262 & 1362 & 1462 & 1562 & 662 & 1762 & 1862 & 1962 & 202 & 162 & 2262 & 3362 & 2462 & 562 & 2662 & 276 & \multirow[t]{2}{*}{131} \\
\hline A & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & \\
\hline B & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 & 13 & 13 \\
\hline C & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 \\
\hline D & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 & 2550 & 2650 \\
\hline
\end{tabular}

N18: Horizontal installation / Optional Cable carrier specification RH


N18: Wall installation / Standard Cable carrier specification RW


\section*{N18D - 20}

\begin{tabular}{|l|}
\hline \\
\hline \multicolumn{1}{|c|}{ Cable length } \\
\hline \(3 \mathrm{~L}: 3.5 \mathrm{~m}\) \\
\hline \(5 \mathrm{~L}: 5 \mathrm{~m}\) \\
\hline \(10 \mathrm{~L}: 10 \mathrm{~m}\) \\
\hline \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\) \\
(Flexible cable) \({ }^{\text {rose } 3}\) \\
\hline
\end{tabular}


Note 1. To find controller selection options, see the ordering method on each controller page.
Note 2. 2 units are required when using SR1-X, TS-X or RDV-X.
Note 3. If a flexible cable is needed for the SR1-X, TS-X, or RDV-X, then select \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\). On the RCX320/RCX222HP, the standard cable is a flexible cable, so enter 3L/5L/10L when ordering.


N18D: Horizontal installation / Standard Cable carrier specification


Note 1. Position of table carriage when searched to the origin.
Note 2. Stop positions are determined by the mechanical stoppers at both ends.
Note 3. When using \(\phi 9\) holes for installation, do not use a washer, spring washer, etc. in the main unit. Note 4. If the model is a standard cable carrier specification, it is not possible to pass 3 or more \(\phi 6 \times 4\) urethane air hoses.

Note 5. When using a \(\phi 10 \mathrm{H} 7\) hole, make sure that the pin does not go into deeper than as shown in the drawing Note 7. For the robot with more than 2,050 stroke, a roller to prevent the cable carrier from hanging is provided. Note 8. Weight of models with no brake. The weight of brake-attached models is 1 kg heavier than the models with no brake shown in the. arrier bending radius might be larger, making it higher than the dimensions shown in the diagram.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 \\
\hline L & 862 & 962 & 1062 & 1162 & 1262 & 1362 & 1462 & 1562 & 1662 & 1762 & 1862 & 1962 & 2062 & 2162 & 2262 & 2362 & 2462 & 2562 & 2662 & 2762 & 2862 \\
\hline A & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 & 81 & 131 \\
\hline B & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 & 13 & 13 \\
\hline C & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 \\
\hline D & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 & 2550 & 2650 \\
\hline Weight (kg) \({ }^{\text {Note } 8}\) & 35 & 37 & 39 & 41 & 43 & 45 & 47 & 48 & 50 & 52 & 54 & 56 & 58 & 60 & 62 & 64 & 66 & 68 & 70 & 72 & 74 \\
\hline
\end{tabular}


N18D: Wall installation / Optional Cable carrier specification


Note 1. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable.
See P. 732 for details on robot cable.
Note 2. See P. 634 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.96.

\begin{tabular}{|l|}
\multicolumn{1}{c|}{ Battery } \\
\hline B: With battery \\
(Absolute) \\
\hline N None \\
(Incremental) \\
\hline
\end{tabular}



Static loading moment

\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ (Unit: N•m) } \\
\hline MY & MP & MR \\
\hline 188 & 188 & 165 \\
\hline
\end{tabular}

\section*{Controller}

Controller Operation method
SR1-X05 Programming/ \begin{tabular}{l|l} 
RCX320 & Remote comman
\end{tabular} RCX221/222 Operation RCX340 using RS-232C communication
TS-X105 \(\quad\) I/O point trace / \begin{tabular}{l|l}
\hline TS-X205 & Remote command \\
\hline
\end{tabular} \begin{tabular}{l|l}
\hline RDV-X205-RBR1 & Pulse train control \\
\hline
\end{tabular}

B10 R type (Motor rightward, horizontal position)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & 1100 & 1150 & 1200 & 1250 & 1300 & 1350 & \\
\hline L & 460 & 510 & 560 & 610 & 660 & 710 & 760 & 810 & 860 & 910 & 960 & 1010 & 1060 & 1110 & 1160 & 1210 & 1260 & 1310 & 1360 & 1410 & 1460 & 1510 & 1560 & 1610 & 1660 & \\
\hline A & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & \\
\hline B & 240 & 240 & 240 & 420 & 420 & 420 & 600 & 600 & 600 & 600 & 780 & 780 & 780 & 780 & 960 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1320 & 1320 & 1320 & \\
\hline C & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & \\
\hline D & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & \\
\hline M & - & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & \\
\hline N & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & \\
\hline Weight (kg) & 7.4 & 7.8 & 8.2 & 8.6 & 9.0 & 9.4 & 9.8 & 10.1 & 10.5 & 10.9 & 11.3 & 11.7 & 12.1 & 12.5 & 12.9 & 13.3 & 13.7 & 14.1 & 14.5 & 14.9 & 15.3 & 15.7 & 16.1 & 16.5 & 16.9 & \\
\hline Effective stroke & 1400 & 1450 & 1500 & 1550 & 1600 & 1650 & 1700 & 1750 & 1800 & 1850 & 1900 & 1950 & 2000 & 2050 & 2100 & 2150 & 2200 & 2250 & 2300 & 2350 & 2400 & 2450 & 2500 & 2550 & Note & Stop positions are \\
\hline L & 1710 & 1760 & 1810 & 1860 & 1910 & 1960 & 2010 & 2060 & 2110 & 2160 & 2210 & 2260 & 2310 & 2360 & 2410 & 2460 & 2510 & 2560 & 2610 & 2660 & 2710 & 2760 & 2810 & 2860 & & determined by the \\
\hline A & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & & mechanical stoppers at both ends. \\
\hline B & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & Note 2. & Cables can be extracted \\
\hline C & - & 240 & 240 & 240 & 420 & 420 & 420 & 420 & 600 & 600 & 600 & 780 & 780 & 780 & 780 & 960 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1320 & & in upward, downward, \\
\hline D & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & & forward or rearward, \\
\hline M & 7 & 7 & 7 & 7 & 8 & 8 & 8 & 8 & 9 & 9 & 9 & 9 & 10 & 10 & 10 & 10 & 11 & 11 & 11 & 11 & 12 & 12 & 12 & 12 & & directions. (This figure \\
\hline N & 20 & 20 & 20 & 20 & 22 & 22 & 22 & 22 & 24 & 24 & 24 & 24 & 26 & 26 & 26 & 26 & 28 & 28 & 28 & 28 & 30 & 30 & 30 & 30 & & shows the forward \\
\hline Weight (kg) & 17.3 & 17.7 & 18.0 & 18.4 & 18.8 & 19.2 & 19.6 & 20.0 & 20.4 & 20.8 & 21.2 & 21.6 & 22.0 & 22.4 & 22.8 & 23.2 & 23.6 & 24.0 & 24.4 & 24.8 & 25.2 & 25.6 & 25.9 & 26.3 & & direction.) \\
\hline
\end{tabular}

B10 RU type (Motor rightward, upper position)


B10 RD type (Motor rightward, lower position)


B10 LU type (Motor leftward, upper position)


\section*{Ordering method}

Note 1. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable.
See P. 732 for details on robot cable
Note 2. See P. 634 for DIN rail mounting bracket
Note 3. Select this selection when using the gateway function. For details, see P.96.




Battery
Absolute)
N: None
(Incremental)
\begin{tabular}{|c|c|c|c|}
\hline SR1-X & 05 & & \\
\hline Controller & Driver: Power capacity & Usable for CE & I/O selection \\
\hline & 05: 100W or less & No entry: Standard & N: NPN \\
\hline & & E: CE marking & P: PNP \\
\hline & & & CC: CC-Link \\
\hline & & & DN: DeviceNet \({ }^{\text {TM }}\) \\
\hline & & & PB: PROFIBUS \\
\hline RDV-X & 2 & 05 & RBR1 \\
\hline Driver & Power-supply voltage & Driver:Power capacity & Regenerative unit \\
\hline & 2: AC200V & 05: 100 W or less & \\
\hline
\end{tabular}

\section*{\(\square\) Specifications Repeatability \({ }^{\text {Note } 1}(\mathrm{~mm})\)}

Belt (mm)
Maximum speed (mm/sec)
Maximum payload (kg)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Stroke (mm)}} & \\
\hline & \multicolumn{2}{|c|}{Stroke (mm)} & 150 to 3050 (100mm pitch) \\
\hline Overall & Motor & L/R type & Stroke+425.5 \\
\hline length (mm) & installation & Another & Stroke+338 \\
\hline \multicolumn{3}{|l|}{Maximum dimensions of cross section of main unit (mm)} & W146 \(\times\) H94 \\
\hline \multicolumn{3}{|l|}{Cable length (m)} & Standard: 3.5 / Option: 5,10 \\
\hline \multicolumn{3}{|l|}{Linear guide type} & 4 rows of circular arc grooves \(\times 2\) rail \\
\hline \multicolumn{3}{|l|}{Position detector} & Resolvers \({ }^{\text {Note } 2}\) \\
\hline \multicolumn{3}{|l|}{Resolution (Pulse/rotation)} & 16384 \\
\hline
\end{tabular}
Allowable overhang Note

Horizontal installation (Unit: mm) Wall installation (Unit: mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 5 kg & 2159 & 1228 & 943 & 5kg & 1064 & 816 & 1468 \\
\hline 10kg & 1389 & 623 & 548 & 10kg & 564 & 377 & 888 \\
\hline 20kg & 1102 & 320 & 348 & 20kg & 305 & 156 & 615 \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
\begin{tabular}{|c} 
\\
\hline 100 \\
\hline Equivalent to lead 25mm \\
\hline 1875 \\
\hline 20 \\
\hline 150 to \(3050(100 \mathrm{~mm}\) pitch \()\) \\
\hline Stroke +425.5 \\
\hline Stroke +338 \\
\hline W146 \(\times\) H94 \\
\hline Standard: \(3.5 /\) Option: 5,10 \\
\hline 4 rows of circular arc grooves \(\times 2\) rail \\
\hline Resolvers \({ }^{\text {Note } 2}\) \\
\hline 16384 \\
\hline
\end{tabular}

Note
Distance from center of slider top to center of gravity of object
being carried at a guide service life of \(10,000 \mathrm{~km}\).
\(\square\) Static loading moment

\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & \multicolumn{1}{c}{ (Unit: \(\boldsymbol{N} \cdot\) m) } \\
\hline MY & MP & MR \\
\hline 226 & 227 & 199 \\
\hline
\end{tabular}

Controller
Controller Operation method
SR1-X05 Programming/ RCX320 I/O point trace / RCX320 Remote command \begin{tabular}{l|l} 
RCX221/222 & Operation \\
RCX340 & using RS-232C
\end{tabular} TS-X105 TS-X105 I/O point trace / \begin{tabular}{l|l} 
RDV-X205-RBR1 & Pulse train control \\
\hline
\end{tabular}

B14 R type (Motor rightward, horizontal position)










B14 RU type (Motor rightward, upper position)


B14 RD type (Motor rightward, lower position)


B14 LU type (Motor leftward, upper position)


\section*{OOrdering method}

Note 1．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible

Note 3．Select this selection when using the gateway function．For details，see P． 96
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline Ontion & Stoco & －Canemanim \\
\hline Givas Sone Siniad &  &  \\
\hline tyee bc：Cliean & & \\
\hline & &  \\
\hline
\end{tabular}


Motor installation direction L：Motor leftward，horizontal position \begin{tabular}{l} 
R：Motor rightward，horizontal position \\
U：Motor leftward，upper position \\
\hline
\end{tabular} RU：Motor rightward，upper position RD：Motor rightward，lower position
cable．
See P． 732 for details on robot cable．
Note 2．See P． 634 for DIN rail mounting bracket

\section*{\begin{tabular}{l}
\multicolumn{1}{c}{ Specifications } \\
\hline AC servo motor output \((\mathbf{W})\) \\
\hline Repeatability \({ }^{\text {Note }}\)（ \((\mathrm{mm})\)
\end{tabular} \\ Maximum speed（ \(\mathrm{mm} / \mathrm{sec}\) ）} Maximum payload（kg）
 section of main unit（mm）
Cable length（m）
Linear guide type
Position detector D：Motor leftward，lower position

\section*{B14H}

Model

Resolution（Pulse／rotation）


150 to 3050 （ 100 mm pitch）
\begin{tabular}{|c|c|}
\hline Stroke +475.5 \\
\hline Stroke +388 \\
\hline
\end{tabular} W146 \(\times\) H94
Standard：3．5／Option：5，10
4 rows of circular arc grooves \(\times 2\) rail
Resolvers \({ }^{\text {Note } 3}\) 16384


Horizontal installation（Unit： mm ）Wall installation（Unit：mm）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 5 kg & 3000 & 3000 & 1941 & 5kg & 2074 & 2585 & 3000 \\
\hline 10kg & 2742 & 1697 & 1064 & 10kg & 1087 & 1236 & 2071 \\
\hline 20kg & 2158 & 867 & 651 & 20kg & 604 & 561 & 1512 \\
\hline 30kg & 1708 & 590 & 466 & 30kg & 397 & 336 & 1106 \\
\hline
\end{tabular}

Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\)

Note 1．Positioning repeatability in one direction．
．egenerative unit is needed if using the SR1－X，TS－X at maximum
speeds exceeding 1250 mm sec．If using the RDV \(-X\) ，then the regenerative
unit \(R B R 1\) is required regardless of the installation conditions
Note 3．Position detectors（resolvers）are common to incremental and
absolute specifications．If the controller has a backup function
then it will be absolute specifications．
Motor installation The line－up consisting of six models of deferent motor installation position as follows．


Static loading moment

\begin{tabular}{c|c|c}
\hline \multicolumn{2}{l}{} & （Unit： \(\mathbf{N} \cdot \mathrm{m}\) ） \\
\hline MY & MP & MR \\
\hline 610 & 555 & 488 \\
\hline
\end{tabular}

\section*{Controller Operation method}
SR1－X05 \({ }^{\text {Note }}\) 作 \begin{tabular}{l} 
Programming／ \\
I／O point trace／
\end{tabular}
RCX320 Remote command／

B14H R type（Motor rightward，horizontal position）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline L & 538 & 588 & 638 & 688 & 738 & 788 & 838 & 888 & 938 & 988 & 1038 & 1088 & 1138 & 1188 & 1238 & 1288 & 1338 & 1388 & 1438 & 1488 & 1538 & 1588 & 1638 & 1688 & 1738 & 1788 & 1838 & 1888 & 1938 & 1988 \\
\hline M & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & 16 & 16 & 18 & 18 & 18 & 18 & 20 & 20 & 20 & 20 & 22 \\
\hline A & － & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 \\
\hline B & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 8 \\
\hline C & 240 & 240 & 420 & 420 & 420 & 600 & 600 & 600 & 600 & 780 & 780 & 780 & 780 & 960 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline D & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & 240 & 240 & 240 & 240 & 420 & 420 & 420 & 600 & 600 \\
\hline E & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & － & \\
\hline F & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{tabular}



B14H RU type (Motor rightward, upper position)


B14H RD type (Motor rightward, lower position)


B14H LU type (Motor leftward, upper position)



\footnotetext{
\begin{tabular}{l|l}
\hline Weight (kg) & 3.0 \\
\hline
\end{tabular} Note 1.The cable extraction port can be changed.
}


Ordering method

Note 1. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable.
See P. 732 for details on robot cable.
Note 2. See P. 634 for DIN rail mounting bracket
Note 3. Select this selection when using the gateway function. For details, see P.96.


TSX



LCD monitor


\begin{tabular}{|l|c}
\hline \multicolumn{2}{|c}{ Specifications } \\
\hline AC servo motor output (W) & 200 \\
\hline Repeatability ( \({ }^{\circ}\) ) & \(+/-0.0083\) \\
\hline Maximum speed ( \(/ \mathbf{s e c})\) & 360 \\
\hline \begin{tabular}{l} 
Maximum allowable moment \\
inertia (kgm \(\left.\left.{ }^{[k g f c m s}{ }^{2}\right]\right)\)
\end{tabular} & \(1.83[18.7]\) \\
\hline Rated torque (Nm[kgfm]) & \(21.46[2.19]\) \\
\hline Speed reduction ratio & \(1 / 50\) \\
\hline Rotation range ( \({ }^{\circ}\) ) & 360 \\
\hline Cable length (m) & Standard: \(3.5 /\) Option: 5,10 \\
\hline Speed reducer type & Harmonic drive \\
\hline Position detector & - \\
\hline Resolution (Pulse/rotation) & 16384 \\
\hline
\end{tabular}

\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Operation method \\
\hline SR1-X10 & \begin{tabular}{l} 
Programming / \\
I/O point trace /
\end{tabular} \\
RCX320 & Remote command / \\
RCX221/222 & Operation \\
RCXing RS-232C \\
RCX340 & communication \\
\hline TS-X110 & I/O point trace / \\
\hline TS-X210 & Remote command \\
\hline RDV-X210-RBR1 & Pulse train control \\
\hline
\end{tabular}

Note. For calculation (equation) of the inertia moment, please refer to P. 746 .

\section*{R20}



\section*{LINEAR MOTOR SINGLE-AXIS ROBOTS} PHASER SERIES

\section*{CONTENTS}
■ PHASER SPECIFICATION
SHEET ..... 342
\(\square\) Robot ordering methoddescription ........................ 342
■ Robot ordering method
terminology ..... 343
MF TYPE
MF7/MF7D ..... 344
MF15/MF15D ..... 350
MF20/MF20D ..... 354
MF30/MF30D ..... 357
MF75/MF75D ..... 360

\section*{PHASER SPECIFICATION SHEET}


Note 1. The size shows approximate maximum cross sectional size.
Note 2. When using at the maximum speed, the maximum payload becomes the value in ( ).

\section*{A. Precautions for use}

\section*{- Handling}
- Please be sure to read "PHASER Series Instruction Manual" carefully to have full understanding of its contents before using this product and strictly observe each instruction - Dropping or hitting this product may cause it to break. Always handle it carefully.
- Never disassemble this product. Entry of a foreign object will cause deterioration of accuracy.

This product uses a magnetic type linear scale. Do not bring anything that generates a strong magnetic field near the robot itself as it may cause damage to the linear scale.
- Installation place and environment

When installing this product, avoid the place where any of the following conditions applies.
The ambient temperature is outside of the \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) range.
Dielectric powder such as iron powder, dust, moist, salt or organic solvent is produced and flies in the air.
Strong electric field, strong magnetic field, etc. occur.
- The product is affected by vibration or impact.

Dewing occurs, or corrosive gas or combustible gas is generated. - The product is exposed to direct sun or radiant heat.

A noise source exists in the surrounding area.
- Inspection and cleaning cannot be performed.
- Safety precaution
- A high performance rare earth magnets are used in the motor section of this product. For this reason, bringing a magnetic response type device or a medical device such as a
heart pace maker close to the robot may cause it to malfunction. Be careful not to bring such a device close to the robot.

\section*{Robot ordering method description}

In the order format for the YAMAHA linear motor single-axis robots PHASER series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation.
[Example]
- Mechanical \(>\) MF20
- Cable carrier take out direction \(\triangleright\) RH
- Grease \(\quad>\) Standard
- Optional cable carrier for users \(\triangleright S\)
\(\triangleright\) Change (R side)
- Stroke \(\quad \triangleright 550 \mathrm{~mm}\)
- Origin position
- Cable length \(\triangleright 3.5 \mathrm{~m}\)

\section*{- Controller \(>\) SR1-P}
- Regenerative unit \(\downarrow\) Required
- I/O selection \(\quad\) NPN

\section*{- Ordering method}

\title{
MF20-RH-S-Z-550-3L-SR1-P10-R-N
}

\author{
Mechanical section Controller section
}

This page describes using the ordering form for mechanical components.
To find detailed controller information see the controller page.


\section*{Mechanical section}

Single carriage


\begin{tabular}{|c|c|}
\hline （1）Model & \begin{tabular}{l}
Enter the robot unit model． \\
Select from 2 types：incremental specifications and semi－absolute specifications．
\end{tabular} \\
\hline （2）Cable carrier entry location & Select what direction to install the robot（horizontal／wall mounted）and what direction to extract the robot cable carrier． \\
\hline （3）Installing direction & Select what direction to install the robot（horizontal／wall mounted）． \\
\hline （4）Optional cable carrier for users & \begin{tabular}{l}
Please specify if a cable carrier is needed for customer wiring． ［MF type］（For MF20） \\
Cable and pipe guide \(S\) ：\(\phi 8\) flexible cable \(\times 1, \phi 4\) air tube \(\times 1\) M ：\(\phi 8\) flexible cable \(\times 2, \phi 6\) air tube \(\times 2\) L ：\(\phi 8\) flexible cable \(\times 2, \phi 6\) air tube \(\times 3 \quad \square\) Space for optional cable for users
\end{tabular} \\
\hline （5）Origin position change & Origin point position can be changed． \\
\hline （6）Grease type & Clean grease can be selected． \\
\hline （7）Stroke & Select the stroke for the robot operating range． \\
\hline （8）Cable length & \begin{tabular}{l}
Select the length of the robot cable connecting the robot to the controller． \\
3L ：3．5m（Standard） \\
5L ：5m \\
10L ：10m \\
3K ：3．5m（Flexible cable） \\
5K ：5m（Flexible cable） \\
10K ：10m（Flexible cable）
\end{tabular} \\
\hline
\end{tabular}

\title{
MF7／MF7D
}

\section*{Ordering method}

Single carriage model
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MF7 & & & & & & & \\
\hline Model & \multirow[t]{2}{*}{Cable carrier entry location} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Optional cable } \\
\text { carrier for users }{ }^{\text {Note } 2}
\end{gathered}
\]} & \multicolumn{2}{|l|}{Origin position change} & Grease type－ & Stroke \({ }^{\text {Note }} 3\) & \multirow[t]{2}{*}{Cable length Note 4} \\
\hline MF7：Incremental & & & \multirow[b]{3}{*}{Hori－} & No entry：L side & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { No entry: } \\
\text { Standard } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Hori－
\end{tabular} & 100 to 4000 \\
zontal & （100 mm pitch）\()\) \\
\hline
\end{tabular}} & \\
\hline MF7A：Semi－absolute \({ }^{\text {Noid }} 1\) & RH：Horizontal，right & No entry：None & & （Standard） & & & 3L： 3.5 m \\
\hline & LH：Horizontal，left & S：S type & & Z： R side & \multirow[t]{2}{*}{GC：Clean} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 100 \text { to } 2000 \\
& (100 \mathrm{~mm} \text { pitch })
\end{aligned}
\]} & 5L： 5 m \\
\hline & FRH：Horizontal，right & M：M type & \multirow{3}{*}{Wall} & No entry： R side & & & 10L：10m \\
\hline & （Flat） & L：L type & & （Standard） & & & \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\) \\
\hline & \(\underset{\substack{\text { FLH：Horizontal，left } \\ \text {（Flat）}}}{ }\) & & & Z：L side & & & （Flexible cable）\({ }^{\text {Natas }}\) \\
\hline & RW：Wall mount，right & & & & & & \\
\hline & LW：Wall mount，left & & & & & & \\
\hline
\end{tabular}

Note 1．For the details of the semi－absolute model，please refer to P．67．RDV－P has an incremental model only． Note 2．For models with a \(2,100 \mathrm{~mm}\) or longer stroke，optional \(L\) type cable carriers can only be used．Flat type cannot be selected for \(L\) type．
Note 3．Maximum stroke for flat type is 2000 mm
Note 4．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible cable．See P． 732 for details on robot cable．
Note 5．If a flexible cable is needed for the SR1－P，TS－P，or RDV－P，then select \(3 K / 5 K / 10 K\) ．On the RCX221，the standard cable is a flexible cable，so enter 3L／5L／10L when ordering．
Note 6．These controllers can be mounted on DIN rails．See P． 634 for details．
Note 7．Select this selection when using the gateway function．For details，see P．96．
Note．It is possible to provide the model without a cable carrier．To find information on wiring（cable terminals） within the cable carrier see P． 742.

Double carriage model


\section*{Specifications \({ }^{\text {Note }}\)}


Cable carrier entry location


Note．Be sure to install in the direction as specified（in cable carrier take－out direction drawing and various specification drawings）individually． direction drawing and various specification drawings）individually．
Installation in any other way will cause a failure．For requirement of Installation in any other way will cause a failure．For requirement of
installation in any way other than the above standard installation， please consult \(Y A M A H A\) as special arrangement will be available．
Cable carrier entry location

\section*{\(\square\) Allowable overhang Note}



Horizontal installation（Unit：mm）Wall installation（Unit：mm）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 1kg & 3000 & 3000 & 680 & 1kg & 700 & 3000 & 3000 \\
\hline 3kg & 3000 & 1350 & 215 & 3kg & 195 & 1260 & 3000 \\
\hline 5 kg & 2900 & 830 & 125 & 5kg & 90 & 630 & 2480 \\
\hline 7 kg & 2400 & 580 & 85 & 7kg & 50 & 360 & 1680 \\
\hline
\end{tabular}
\begin{tabular}{r|r|c|c} 
5kg & 2900 & 830 & 125 \\
\hline \(\mathbf{7 k g}\) & 2400 & 580 & 85 \\
\hline \(\mathbf{9 k g}\) & 2200 & 460 & 60 \\
\hline \(\mathbf{1 0 k g}\) & 2100 & 410 & 55 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l} 
10kg & 2100 & 410 & 55 \\
\hline
\end{tabular}
Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．


SR1－P 10
Controller Driver：Power capacity
10：200W


RBR1
\(\square\) Static loading moment

\begin{tabular}{c|c|c}
\multicolumn{3}{l}{} \\
\hline MY & MP & MR \\
\hline 156 & 156 & 194 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{2}{c}{ Controller } \\
\hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{c}{ Operating method } \\
\hline SR1－P10 & \begin{tabular}{l} 
Programming／ \\
I／O point trace／ \\
Remote command／ \\
Operation using RS－232C \\
communication
\end{tabular} \\
\hline RCX320 & RCX221 \\
RCX340 & Remote command \\
\hline TS－P110 & TS－P210
\end{tabular}

\section*{\(\square\) Optional cable carrier for users}


Cable and air tube guide \(\mathrm{S}: \phi 8\) flexible cable \(\times 1, \phi 4\) air tube \(\times 1\)


M：\(\phi 8\) flexible cable \(\times 2, \phi 6\) air tube \(\times 2\) L：\(\phi 8\) flexible cable \(\times 2, \phi 6\) air tube \(\times 3\)


1
\(\square\) Space for optional cable for users


MF7 single carriage wall mount model RW


MF7 single carriage horizontal mount model OHHD Optional L-type cable carrier


MF7 single carriage horizontal mount model FRH Flat type


Optional cable carrier M type Optional cable carrier S type



Detail of section D


Cross-section of E-E

\({ }^{\mathrm{E}}>1\)

Note 1. Stop positions are determined by the mechanical stoppers at both ends.
Note 2. The origin is set on the \(L\) side at the time of shipment. It can be changed to the \(R\) side by parameter setting
Note 3.The drawings on this page show the unit with horizontal-right-type cable carrier (RH).
ote 4. Depending on the stroke and the operating conditions, the cable carrier bending radius might be larger, making it higher than the dimensions
shown in the diagram.
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Effective stroke & \(\mathbf{1 0 0}\) & \(\mathbf{2 0 0}\) & \(\mathbf{3 0 0}\) & \(\mathbf{4 0 0}\) & \(\mathbf{5 0 0}\) & \(\mathbf{6 0 0}\) & \(\mathbf{7 0 0}\) & \(\mathbf{8 0 0}\) & \(\mathbf{9 0 0}\) & \(\mathbf{1 0 0 0}\) & \(\mathbf{1 1 0 0}\) & \(\mathbf{1 2 0 0}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 4 0 0}\) & 1500 & \(\mathbf{1 6 0 0}\) & \(\mathbf{1 7 0 0}\) & \(\mathbf{1 8 0 0}\) & \(\mathbf{1 9 0 0}\) & 2000 \\
\hline
\end{tabular}






MF7D double carriage horizontal mount model FH Flat type


\title{
MF15/MF15D
}

\section*{Ordering method}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Single carriage model} \\
\hline MF15 & & & & & \\
\hline &  & -oitig position crave- & Cicosevere- & Stroe & Cable emant \\
\hline MFF6: Seminesobuew &  & \(\underbrace{\text { cosem }}\) &  &  & \\
\hline &  & Wall & & Wall floomm piten) & \\
\hline & &  & & &  \\
\hline
\end{tabular}

Note 1. For the details of the semi-absolute model, please refer to P.67. RDV-P has an incremental model only.
Note 2. For models with a \(2,100 \mathrm{~mm}\) or longer stroke, optional L type cable carriers can only be used.
Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details n robot cable
Note 4. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\). On the RCX221, the standard cable is a flexible cable, so enter 3L/5L/10L when ordering.
Note 6. Select this selection when using the gateway function. For details, see P 96
Note. It is possible to provide the model without a cable carrier. To find information on wiring (cable terminals)
within the cable carrier see P. 742 .
Double carriage model



SR1-P

\section*{10}

Controller Driver: Power capacity

Usable for CE
No entry: Standard
I/O s
NPN
\begin{tabular}{|l|l|}
\hline N: NPN \\
\hline P: PNP \\
\hline C. \\
\hline
\end{tabular} CC: CC-Link
DN: DeviceNet \({ }^{\text {TM }}\) PB: PROFIBUS
RDV.P 2 10

RBR1
 2: AC200V 10: 200W or less

\section*{Specifications \({ }^{\text {Note }}\)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Model} & MF15 & MF15D \\
\hline \multicolumn{2}{|l|}{Driving method} & \multicolumn{2}{|l|}{Steel cored linear motor with falt magnet} \\
\hline \multicolumn{2}{|l|}{Repeatability ( \(\mu \mathrm{m}\) )} & \multicolumn{2}{|c|}{+/-5} \\
\hline \multicolumn{2}{|l|}{Scale ( \(\mu \mathrm{m}\) )} & \multicolumn{2}{|l|}{Magnetic type: resolution of 1} \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & \multicolumn{2}{|c|}{2500} \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & \multicolumn{2}{|c|}{54} \\
\hline \multicolumn{2}{|l|}{Maximum payload \({ }^{\text {Note } 1}(\mathrm{~kg})\)} & \multicolumn{2}{|c|}{30} \\
\hline \multirow[b]{2}{*}{Stroke (mm)} & Horizontal & \[
\begin{gathered}
100 \text { to } 4000 \\
\text { ( } 100 \mathrm{~mm} \text { pitch) }
\end{gathered}
\] & \[
\begin{gathered}
100 \text { to } 3800 \\
\text { (100mm pitch) } \\
\hline
\end{gathered}
\] \\
\hline & Wall mount & \[
\begin{aligned}
& 100 \text { to } 2000 \\
& \text { ( } 100 \mathrm{~mm} \text { pitch) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \text { to } 1800 \\
\text { (100mm pitch) }
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{Linear guide} & \multicolumn{2}{|l|}{4 rows of circular arc grooves \(\times 2\) rail} \\
\hline \multicolumn{2}{|l|}{Maximum cross-section outside dimensions (mm)} & \multicolumn{2}{|l|}{W100 \(\times \mathrm{H} 80\)
(except the cable carrier section)} \\
\hline \multicolumn{2}{|l|}{Total length (mm)} & Stroke+260 & Stroke+460 \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{2}{|l|}{Standard: 3.5 / Option: 5,10} \\
\hline
\end{tabular}

Note. A vertical model (with brake) is not available with the PHASER series.
Note. The basic specifications of semi-absolute model are the same as those of the incremental model.
Note 1. Payload per carrier. When the payload exceeds 15 kg , please consult our sales office or sales representative.
\begin{tabular}{c|c}
\multicolumn{2}{c}{ Note 2. Table of maximum speed } \\
\hline Payload (kg) & \begin{tabular}{c} 
Maximum speed \\
\((\mathrm{mm} / \mathrm{s})\)
\end{tabular} \\
\hline 15 or less & 2500 \\
\hline 20 & 2200 \\
\hline 25 & 1800 \\
\hline 30 & 1500 \\
\hline
\end{tabular}

\(\square\) Allowable overhang Note


Horizontal installation (Unit: mm ) Wall installation (Unit: mm )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 5kg & 3000 & 3000 & 915 & 5kg & 865 & 1880 & 3060 \\
\hline 10kg & 2604 & 1542 & 481 & 10kg & 410 & 905 & 2115 \\
\hline 15kg & 2368 & 1051 & 340 & 15kg & 255 & 575 & 1910 \\
\hline 20kg & 1820 & 600 & 260 & 20kg & 170 & 410 & 1780 \\
\hline 25kg & 1470 & 450 & 175 & 25kg & 120 & 295 & 1660 \\
\hline 30kg & 1250 & 310 & 145 & 30kg & 90 & 215 & 1440 \\
\hline
\end{tabular}
\(\square\) Static loading moment

\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{} & \multicolumn{1}{c}{ (Unit: \(\mathrm{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 290 & 291 & 256 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{2}{c}{ Controller } \\
\hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{c}{ Operating method } \\
\hline SR1-P10 & \begin{tabular}{l} 
Programming / \\
I/O point trace / \\
Remote command /
\end{tabular} \\
\hline RCX320 & Operation using RS-232C \\
RCX221 & I/O point trace / \\
RCX340 & Remote command \\
\hline TS-P110 & TS-P210
\end{tabular}

\section*{Optional cable carrier for users}


Cable and air tube guide S : \(\phi 8\) flexible cable \(\times 1, \phi 4\) air tube \(\times 1\) M: \(\phi 8\) flexible cable \(\times 2, \phi 6\) air tube \(\times 2\) L: \(\phi 8\) flexible cable \(\times 2, \phi 6\) air tube \(\times 3\)

\(\square\) Space for optional cable for users
Note 5. For models with a \(3,000 \mathrm{~mm}\) or longer stroke and an optional L type cable carrier, a Note 6 . roller is installed to prevent the cable carrier from sagging. drawing Otherwise, the motor may break.
Depending on the stroke and the operating
Depining the stroke and the operating conditions, the cable carrier bending \begin{tabular}{l} 
radius might be larger, making it higher than the dimensions shown in the diagram. \\
0230024002500260027002800290030003100320033003400350036003700380039004000 \\
\hline
\end{tabular} 2460256026602760286029603060316032603360346035603660376038603960406041604260 \begin{tabular}{lllllllllllllllllllllll}
12 & 12 & 13 & 13 & 14 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 \\
\hline
\end{tabular}

MF15D double carriage horizontal mount model H


Note 4. For models with a \(2,100 \mathrm{~mm}\) or longer stroke, optional L type cable carriers can only be used.
Note 5. For models with a \(3,000 \mathrm{~mm}\) or longer stroke and an optional \(L\) type cable carrier, a roller is installed to prevent the cable carrier from sagging.
Note 1. Position of the table slider when returned to the origin.
Note 2. Stop positions are determined the manical stoppers at both ends Note 3. Protrusion is the distance the cable carrier extends from the edge of unit

Note 6. When using \(\phi 10\) H7 hole, do not insert the pin more than the depth stated in the drawing. Otherwise, the motor may break. 7. Depending on the stroke and the operating conditions, the cable carrier bending radius might be larger, making it higher
than the dimensions shown in the diagram.

\footnotetext{





}

MF15 single carriage wall mount model RW


Note 1．Stop positions are determined by the mechanical stoppers at both ends．
Note 2．The origin is set on the R side at the time of shipment．It can be changed to the \(L\) side by parameter setting．
Note 3．Protrusion is the distance the cable carrier extends from the edge of unit when an optional \(L\) type cable carrier is used．
Note 5．Depending on the stroke and the operating conditions，the cable carrier bending radius might be larger，making it higher than the dimensions shown
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline Effective stroke & \(\mathbf{1 0 0}\) & \(\mathbf{2 0 0}\) & \(\mathbf{3 0 0}\) & \(\mathbf{4 0 0}\) & \(\mathbf{5 0 0}\) & \(\mathbf{6 0 0}\) & \(\mathbf{7 0 0}\) & \(\mathbf{8 0 0}\) & \(\mathbf{9 0 0}\) & \(\mathbf{1 0 0 0}\) & \(\mathbf{1 1 0 0}\) & \(\mathbf{1 2 0 0}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 4 0 0}\) & \(\mathbf{1 5 0 0}\) & \(\mathbf{1 6 0 0}\) & \(\mathbf{1 7 0 0}\) & \(\mathbf{1 8 0 0}\) & \(\mathbf{1 9 0 0}\) & \(\mathbf{2 0 0 0}\) \\
\hline \(\mathbf{L}\) & 360 & 460 & 560 & 660 & 760 & 860 & 960 & 1060 & 1160 & 1260 & 1360 & 1460 & 1560 & 1660 & 1760 & 1860 & 1960 & 2060 & 2160 & 2260 \\
\hline \(\mathbf{A}\) & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 & 80 & 30 \\
\hline B & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 \\
\hline C & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 \\
\hline D & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 & 1000 & 1100 & 1200 & 1300 & 1400 & 1500 & 1600 & 1700 & 1800 & 1900 & 2000 & 2100 \\
\hline E & 220 & 270 & 320 & 370 & 420 & 470 & 520 & 570 & 620 & 670 & 720 & 770 & 820 & 870 & 920 & 970 & 1020 & 1070 & 1120 & 1170 \\
\hline Weight（kg） & 6.3 & 7.3 & 8.3 & 9.3 & 10.3 & 11.3 & 12.3 & 13.3 & 14.3 & 15.4 & 16.4 & 17.4 & 18.4 & 19.4 & 20.4 & 21.4 & 22.4 & 23.4 & 24.4 & 25.4 \\
\hline
\end{tabular}


MF20／MF20D

\section*{Ordering method}

Single carriage model
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MF20 & & & & & & & \\
\hline \multirow[t]{6}{*}{\begin{tabular}{|c|}
\hline Model \\
\hline MF20：Incremental \\
\hline MF20A：Semi－absolute \\
\hline
\end{tabular}} & Cable carrier & Optional cable & －origin & postion change－ & Grease type－ & Stroke & Cable length \\
\hline & entry location & marierfior users sem & & No entry：Lside & No entry： & 150 to 4050 & woms \\
\hline & \(\frac{\mathrm{RH} \text { H：Horizontal，ight }}{\text { ght }}\) & No entry：None & & （Standara） & Standard & （100mm pitch） & 3L： 3.5 m \\
\hline & LH：Horizonta，left & S：S type & & z ： s side & GC：Clean & & 5L： 5 m \\
\hline & RW：Wall mount，right & M：M type & & No entry：R side & & & 10L： 10 m \\
\hline & LW：Wall mount，left & L：L L type & Wall & z：L Lside & & & 3K／5K／10K （Flexible cable）\({ }^{\text {Now } 4}\) \\
\hline
\end{tabular}

Note 1．For the details of the semi－absolute model，please refer to P．67．RDV－P has an incremental model only．
Note 2 ．For models with a \(2,050 \mathrm{~mm}\) or longer stroke，optional \(L\) type cable carriers can only be used．
Note 3．The robot cable is standard cable（ \(3 \mathrm{~L} / 5 \mathrm{~L} / 10 \mathrm{~L}\) ），but can be changed to flexible cable．See P． 732 for details on robot cable．
Note 4．If a flexible cable is needed for the SR1－P，TS－P，or RDV－P，then select 3K／5K／10K．On the RCX221，the standard cable is a flexible cable，so enter 3L／5L／10L when ordering．
Note 5．These controllers can be mounted on DIN rails．See P． 634 for details．
Note 6．Select this selection when using the gateway function．For details，see P．96．
Note．It is possible to provide the model without a cable carrier．To find information on wiring（cable terminals）within the cable carrier see P． 742 ．
Double carriage model

MF20D
\begin{tabular}{c} 
Model \\
\hline MF20D：Incremental \\
\hline
\end{tabular} MF20D：Incremental


W：Wall mount installation

Optional cable carrier for users Now？ No entry：None
\begin{tabular}{|l|}
\hline S：S type \\
\hline M： M type \\
\hline
\end{tabular}
\begin{tabular}{l} 
M：M type \\
\hline L：L type \\
\hline
\end{tabular}


\section*{Allowable overhang Note}

Note．Distance from center of slider top to center of gravity of object
being carried at a guide service life of \(10,000 \mathrm{~km}\) ．



Note．Specify various controller setting items．

Specifications \({ }^{\text {Note }}\)
\begin{tabular}{l}
\hline \multicolumn{1}{c}{ Model } \\
\hline Driving method \\
\hline Repeatability \((\mu \mathrm{m})\) \\
\hline Scale \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
\begin{tabular}{l} 
Maximum speed \({ }^{\text {Nated }}(\mathrm{mm} / \mathrm{sec})\) \\
\hline Raximum payload \({ }^{\text {Note } 1}(\mathrm{~kg})\) \\
\hline Maximuter
\end{tabular}
Stroke（mm）

\section*{Linear guide}

Maximum cross－section outside dimensions（mm） Total length（mm） Cable length（m）
Note．A vertical model（with brake）is not available with the PHASER series． Note．The basic specifications of semi－absolute model are the same as those of the incremental model．
Note 1．Payload per carrier．When the payload exceeds 20 kg ，please consult our sales office or sales representative
\begin{tabular}{c|c}
\multicolumn{2}{c}{ Note 2．Table of maximum speed } \\
\hline Payload（kg） & \begin{tabular}{c} 
Maximum speed \\
\((\mathrm{mm} / \mathrm{s})\)
\end{tabular} \\
\hline 20 or less & 2500 \\
\hline 25 & 2300 \\
\hline 30 & 2000 \\
\hline 35 & 1800 \\
\hline 40 & 1500 \\
\hline
\end{tabular}

TSP
 R Regenerative unit
\(R:\) With \(R G T\) \begin{tabular}{l} 
LCD monitor \\
\hline No entry：None \\
\hline L：With LCD \\
\hline
\end{tabular}

I／O selection NP：NPN
PN：PNP \begin{tabular}{l} 
PN：PNP \\
\hline CC：CC－Link
\end{tabular} DN：DeviceNet \({ }^{\text {TM }}\) \begin{tabular}{l} 
EP：EtherNet／IPTM \\
\hline GW：No I／O board Noibe \\
\hline
\end{tabular}


\section*{\(\square\) Static loading moment}

\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & \multicolumn{1}{c}{（Unit： N•m）} \\
\hline MY & MP & MR \\
\hline 373 & 373 & 328 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{1}{c}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operating method } \\
\hline SR1－P10－R & \begin{tabular}{l} 
Programming／ \\
I／O point trace／ \\
Remote command／
\end{tabular} \\
\hline RCX320－R & Operation using RS－232C \\
RCX221－R & I／O point trace／ \\
RCX340 & Remote command \\
\hline TS－P110－R & TS－P210－R
\end{tabular}

15202530354045
Payload（kg）
Cable carrier entry location


\section*{\(\square\) Optional cable carrier for users}
S type

MF20 single carriage horizontal mount model RH


MF20 single carriage wall mount model RW


MF20D double carriage horizontal mount model H


MF20D double carriage wall mount model W


\section*{Ordering method}

Single carriage model
Note 1. For the details of the semi-absolute model, please refer to P.67. RDV-P has an incremental model only.
Note 2. For models with a stroke of 2100 or longer ( 2050 or longer for double carriage models), only the optional \(L\) type cable carriers can be used.
Note 3. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 4. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\). On the RCX221HP, the standard cable is a flexible cable, so enter \(3 \mathrm{~L} / 5 \mathrm{~L} / 10 \mathrm{~L}\) when ordering.

\begin{tabular}{|c|c|c|c|}
\hline SR1-P & 20 & R & \\
\hline Controller & Diver Power capacity & sable force-Regeraraive uit & IVo selection \\
\hline & 20:400 to600W &  & \(\frac{\mathrm{N}: \text { PPN }}{\text { P: PNP }}\) \\
\hline & & & \({ }_{\text {cel }}^{\text {ce:CC-Link }}\) \\
\hline & & & PN: DeviceNet \({ }^{\text {PI }}\) \\
\hline RDV-P & 2 & 20 & RBR1 \\
\hline Driver & \[
\begin{aligned}
& \text { I Power-supply voltage } \\
& \text { 2: AC200V }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Driver: Power capacity } \\
& \hline 0 \cdot 40 \cap W / \text { locc }
\end{aligned}
\]
20:400W or less & Regenerative unit \\
\hline
\end{tabular}

Note 5. These controllers can be mounted on DIN rails. See P. 634 for details.
Note 6. Select this selection when using the gateway function. For details, see P.96.
Note. It is possible to provide the model without a cable carrier. To find information on wiring (cable terminals) within the cable carrier see P. 742 .

Double carriage model


\section*{Specifications \({ }^{\text {Note }}\)}
\begin{tabular}{l}
\hline \multicolumn{1}{c}{ Model } \\
\hline Driving method \\
\hline Repeatability ( \(\mu \mathrm{m}\) ) \\
\hline
\end{tabular}
\begin{tabular}{l} 
Repeatabilit \\
\hline Scale ( \(\mu \mathrm{m}\) )
\end{tabular}
Maximum speed \({ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec})\)
Rated thrust ( N )
Rated thrust (N)
Maximum payload \({ }^{\text {Note } 1} \mathbf{1}\) (kg)
Stroke (mm)

\section*{Linear guide}

Maximum cross-section outside dimensions (mm) Total length (mm) Cable length (m)
Note. A vertical model (with brake) is not available with the PHASER series.
ote. The basic specifications of semi-absolute model are the same as those
t of the incremental model
Note 1. Par sales office or sale the payload exceeds 30 kg , please consult Note 2. Table of maximum speed
\begin{tabular}{c|c}
\multicolumn{2}{c}{ Note 2. Table of maximum speed } \\
\hline Payload (kg) & \begin{tabular}{c} 
Maximum speed \\
\((\mathrm{mm} / \mathrm{s})\)
\end{tabular} \\
\hline 30 or less & 2500 \\
\hline 40 & 2200 \\
\hline 50 & 1800 \\
\hline 60 & 1500 \\
\hline
\end{tabular}

\(\square\) Allowable overhang Note


Horizontal installation (Unit: mm) Wall installation (Unit: mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 10kg & 3364 & 2485 & 1284 & 10kg & 1290 & 1320 & 2730 \\
\hline 20kg & 2298 & 1265 & 694 & 20kg & 650 & 610 & 1750 \\
\hline 30kg & 2060 & 859 & 507 & 30kg & 430 & 360 & 1460 \\
\hline 40kg & 1570 & 600 & 310 & 40kg & 205 & 230 & 610 \\
\hline 50kg & 1265 & 400 & 180 & 50kg & 145 & 175 & 470 \\
\hline 60kg & 1070 & 350 & 135 & 60kg & 105 & 140 & 380 \\
\hline
\end{tabular}

Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).

Note. Specify various controller setting items.

\section*{Static loading moment}

\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & \multicolumn{1}{c}{ (Unit: \(\mathbf{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 373 & 373 & 328 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{1}{c}{ Controller } \\
\hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{|c}{ Operating method } \\
\hline SR1-P20-R & \begin{tabular}{l} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation using RS-232C \\
communication
\end{tabular} \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX221HP-R \\
RCX340
\end{tabular} & \begin{tabular}{l} 
I/O point trace / \\
Remote command
\end{tabular} \\
\hline TS-P220-R & \\
\hline RDV-P220-RBR1 & Pulse train control \\
\hline
\end{tabular}

\section*{Cable carrier entry location}

\(\square\) Optional cable carrier for users
S type

MF30 single carriage horizontal mount model RH


MF30 single carriage wall mount model RW


MF30D double carriage horizontal mount model H



\(\xlongequal{\text { Detail of section G }}\)



Note 3. For models with a \(2,050 \mathrm{~mm}\) or longer stroke, optional \(L\) type cable carriers can only be used.
Note 4. For models with a \(3,050 \mathrm{~mm}\) or longer stroke and an optional \(L\) type cable carrier, a roller is installed to prevent the cable carrier from


MF75/MF75D

\section*{Ordering method}

Single carriage model


Note 1. For the details of the semi-absolute model, please refer to P.67. RDV-P has an incremental model only.
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 3. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select \(3 \mathrm{~K} / 5 \mathrm{~K} / 10 \mathrm{~K}\). On the RCX221HP, the standard cable is a flexible cable, so enter 3L/5L/10L when ordering.
Note 4. These controllers can be mounted on DIN rails. See P634 for details
Note 5. Select this selection when using the gateway function. For details, see P.96.
Note. It is possible to provide the model without a cable carrier. To find information on wiring (cable terminals) within the cable carrier see P. 742 .
Double carriage model


SR1-P 20
Controller
Diviver Power capacityy



Note. Specify various controller setting items.

\section*{Specifications \({ }^{\text {Note }}\)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Model} & MF75 & MF75D \\
\hline \multicolumn{2}{|l|}{Driving method} & \multicolumn{2}{|l|}{Steel cored linear motor with falt magnet} \\
\hline \multicolumn{2}{|l|}{Repeatability ( \(\mu \mathrm{m}\) )} & \multicolumn{2}{|c|}{+/-5} \\
\hline \multicolumn{2}{|l|}{Scale ( \(\mu \mathrm{m}\) )} & \multicolumn{2}{|l|}{Magnetic type: resolution of 1} \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) (mm/sec)} & \multicolumn{2}{|c|}{2500} \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & \multicolumn{2}{|c|}{260} \\
\hline \multicolumn{2}{|l|}{Maximum payload \({ }^{\text {Note } 1}(\mathrm{~kg})\)} & \multicolumn{2}{|c|}{160} \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & 1000 to 4000 ( 100 mm pitch) & 680 to 3680 ( 100 mm pitch) \\
\hline \multicolumn{2}{|l|}{Linear guide} & \multicolumn{2}{|l|}{4 rows of circular arc grooves \(\times 2\) rail} \\
\hline \multicolumn{2}{|l|}{Maximum cross-section outside dimensions (mm)} & \multicolumn{2}{|l|}{\(\mathrm{W} 210 \times \mathrm{H} 100\)
(except the cable carrier section)} \\
\hline \multicolumn{2}{|l|}{Total length (mm)} & Stroke+360 & Stroke+680 \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{2}{|l|}{Standard: 3.5 Option: 5,10} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note. A vertical model (with brake) is not available with the PHASER series. Note. The basic specifications of semi-absolute model are the same as those of the incremental model. \\
Note 1. Payload per carrier. When the payload exceeds 75 kg , please consult our sales office or sales representative.
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Note 2. Table of maximum speed} \\
\hline Payload (kg) & \[
\begin{gathered}
\text { Maximum } \\
\text { speed }(\mathrm{mm} / \mathrm{s})
\end{gathered}
\] & \multicolumn{2}{|l|}{\multirow[t]{10}{*}{}} \\
\hline 75 or less & 2500 & & \\
\hline 90 & 2310 & & \\
\hline 100 & 2200 & & \\
\hline 110 & 2090 & & \\
\hline 120 & 2000 & & \\
\hline 130 & 1920 & & \\
\hline 140 & 1840 & & \\
\hline 150 & 1770 & & \\
\hline 160 & 1700 & & \\
\hline
\end{tabular}

\section*{Allowable overhang Note}


Horizontal installation (Unit: mm)
\begin{tabular}{r|r|r|r}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } \\
\hline \(\mathbf{2 0 k g}\) & 3397 & 2841 & 1840 \\
\hline \(\mathbf{4 0 k g}\) & 2795 & 1389 & 964 \\
\hline \(\mathbf{6 0 k g}\) & 2200 & 530 & 450 \\
\hline \(\mathbf{8 0 k g}\) & 1800 & 175 & 150 \\
\hline \(\mathbf{1 0 0 k g}\) & 1500 & 130 & 110 \\
\hline \(\mathbf{1 2 0 k g}\) & 1250 & 100 & 80 \\
\hline \(\mathbf{1 4 0 k g}\) & 1100 & 80 & 65 \\
\hline \(\mathbf{1 6 0 k g}\) & 950 & 60 & 50 \\
\hline
\end{tabular}

Note. Distance from center of
slider top to center of slider top to center of
gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).

Static loading moment

\begin{tabular}{c|c|c}
\multicolumn{2}{r}{} & \multicolumn{1}{c}{ (Unit: \(\mathrm{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 830 & 831 & 730 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{2}{|c}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operating method } \\
\hline SR1-P20-R & \begin{tabular}{l} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation using RS-232C \\
communication
\end{tabular} \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX340
\end{tabular} & \begin{tabular}{l} 
I/O point trace / \\
Remote command
\end{tabular} \\
\hline TS-P220-R & \\
\hline
\end{tabular}

RDV-P225-RBR2 Pulse train control

MF75 single carriage horizontal mount model RH
Note 3. The length under head of M8 hex socket head bolts for installing the robot body must not be longer than 30 mm Note 4. For models with a \(3,000 \mathrm{~mm}\) or longer stroke, a roller is installed to prevent the cable carrier from sagging.
Note 5 . When using \(\phi 10 \mathrm{H7}\) hole, do not insert the pin more than the depth stated in the drawing. Otherwise, the motor may

Note 1. Stop positions are determined by the mechanical stoppers at both ends
Note 2. The origin is set on the \(L\) side (as shown above) at the time of shipment. It can be higher than the dimensions shown in the diagram



MF75D double carriage mount model


\section*{CARTESIAN ROBOTS \\ XY-X \\ SERIES}

\section*{CONTENTS}
Arm \& cable variations ..... 364
 ..... 366- 3-axis spec selection guide-
- Robot ordering methoddescription372
Robot ordering method terminology ..... 373
ARM TYPE
PXYx 2 axes C ..... 374
FXYX 2 axes \(C\) ..... 376
FXYx 2 axes / IO C ..... 378
FXYx 3 axes / ZS C ..... 379
FXYX 3 axes / ZT6L C ..... 380
FXYBx 2 axes C ..... 382
FXYBx 2 axes \(S\) ..... 384
FXYBx 2 axes / 10 C ..... 386
SXYx 2 axes \(C\) ..... 388
SXYx 2 axes \(S\) ..... 390
SXYx 2 axes / IO C ..... 392
SXYx 3 axes / ZF C ..... 394
SXYx 3 axes / ZF S ..... 395
SXYx 3 axes / ZFL20 ..... 396
SXYx 3 axes / ZFH C ..... 397
SXYx 3 axes / ZS C ..... 398
SXYx 3 axes / ZS S ..... 399
SXYx 4 axes / ZRF C ..... 400
SXYx 4 axes / ZRF S ..... 401
SXYx 4 axes / ZRFL20 C ..... 402
SXYx 4 axes / ZRFH C ..... 403
SXYx 4 axes / ZRS C ..... 404
SXYx 4 axes / ZRS S ..... 405
SXYBx 2 axes \(C\) ..... 406
SXYBx 3 axes / ZF C ..... 408
SXYBx 3 axes / ZFL20 C ..... 409
SXYBx 3 axes / ZFH C ..... 410
SXYBx 3 axes / ZS C ..... 411
SXYBx 4 axes / ZRS C ..... 412
NXY 2 axes C ..... 414
NXY 3 axes / ZFL C ..... 416
NXY 3 axes / ZFH C ..... 418
NXY-W 4 axes C ..... 420
NXY-W 6 axes / ZFL C ..... 421
NXY-W 6 axes / ZFH C ..... 422
MXYx 2 axes \(C\) ..... 424
MXYx 2 axes \(S\) ..... 426
MXYx 2 axes / IO C ..... 428
MXYx 3 axes / ZFL20/10 C ..... 429
MXYx 3 axes / ZFH C ..... 430
MXYx 4 axes / ZRFL20/10 C ..... 431
MXYx 4 axes / ZRFH C ..... 432
HXYx 2 axes C ..... 434
HXYx 3 axes / ZL C ..... 436
HXYx 3 axes / ZH C ..... 437
HXYx 4 axes / ZRL C ..... 438
HXYx 4 axes / ZRH C ..... 439
HXYLx 2 axes C ..... 440
GANTRY TYPE
MXYx 2 axes \(C\) ..... 442
MXYx 2 axes / IO C ..... 444
MXYx 3 axes / ZFL20/10 C ..... 445
MXYx 3 axes / ZFH C ..... 446
MXYx 4 axes / ZRFL20/10 C ..... 447
MXYx 4 axes / ZRFH C ..... 448
HXYx 2 axes \(C\) ..... 450
HXYx 3 axes / ZL C ..... 452
HXYx 3 axes / ZH C ..... 453
HXYx 4 axes / ZRL C ..... 454
HXYX 4 axes / ZRH C ..... 455
HXYLx 2 axes C ..... 456
MOVING ARM TYPE
SXYx 2 axes \(S\) ..... 458
SXYx 3 axes / ZF S ..... 460
SXYx 3 axes / ZFL20 S ..... 461
SXYx 3 axes / ZFH S ..... 462
SXYx 3 axes / ZS S ..... 463
MXYx 2 axes \(C\) ..... 464
MXYx 3 axes / ZFL20/10 C ..... 466
MXYx 3 axes / ZFH C ..... 467
HXYx 2 axes C ..... 468
HXYx 3 axes / ZH C ..... 470
POLE TYPE
SXYx 2 axes \(S\) ..... 472
MXYx 2 axes \(C\) ..... 473
MXYx 2 axes \(S\) ..... 474
MXYx 3 axes / ZPMH C ..... 475
HXYx 2 axes C ..... 476
HXYx 2 axes \(S\) ..... 477
HXYx 3 axes / ZPH C ..... 478
HXYx 3 axes / ZPH S ..... 479
XZ TYPE
SXYx 2 axes / ZF C ..... 480
SXYx 2 axes / ZF S ..... 481
SXYx 2 axes / ZFL20 C ..... 482
SXYx 2 axes / ZS C ..... 483
SXYx 2 axes / ZF C ..... 484
SXYBx 2 axes / ZFL20 C ..... 485
MXYx 2 axes / ZFL10 C ..... 486
MXYx 2 axes / ZFH C ..... 487
HXYx 2 axes / ZL C ..... 488
HXYx 2 axes / ZH C ..... 489

\section*{Cable variations}

Two cable types are available；cable carrier type and whipover type．（except PXYX）The cable carrier type is supplied with a user cable as standard so that cable can be added easily．The whipover type is supplied with a user cable and tube as standard set．A cable duct specially designed for clean rooms is also available．（See P． 582 to P． 587 for detailed information on Clean Cartesian robots．）

\section*{Cable carrier（C）}

When adding cables to a cable carrier track， keep the cable occupation rate at \(30 \%\) or less．


Note．User cable 10 cores， 0.3 sq．

\section*{Whipover（S）}

Adding a load on whipover will result in sagging and cut．Sagging may also occur when using long strokes．


Note．User cable： 7 cores， 0.2 sq． Note．User tube： \(2 \phi 4\) air tubes．

\section*{Arm variations}

The first step for selection of Cartesian type robot models is to check for applicable models according to specific use and operation area．


The type with a guide railing at the end of Y －axis for support．


The type with a moving Y－axis arm．


The type with vertically moving Y －axis carriage．


Special model for clean rooms with moving Y －axis carriage installed upward．

(A1)
(A2)
(AB)
(A4)

(61)

(62)

(63)

(64)


(M3)

( 11


© \({ }^{\text {F }}\)

(11)

(13)


\section*{2-axis spec selection guide}

\section*{Setting method}

While checking conditions in order starting from (1), proceed to the right. Select the desired model in (6).
(1)

Select the arm variation
Arm type
The type with moving Y -axis carriage.

Gantry type
The type with a guide railing at the end of Y -axis for
support.
Moving arm type
The type with a moving Y-axis arm.

\section*{Pole type}

The type with vertically moving Y -axis carriage.

\section*{XZ type}

The type with combination of X -axis for horizontal movement and \(Z\)-axis for vertical movement.
(2) Select a line satisfying both the Y -axis stroke and payload and move to the right.
(3) Check the cable types
(4)

Check the \(X\) axis stroke
(5) Select the desired speed
(6) Decide the model

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{(2)} \\
\hline & \multicolumn{10}{|c|}{Y-axis stroke (mm)} \\
\hline & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 \\
\hline Payload (kg) & 4.5 & 4.5 & 3.5 & 2.5 & 2 & 1.5 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & xis s & ke (m & & & & \\
\hline & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multirow{15}{*}{} & \multicolumn{2}{|c|}{12} & 11 & 9 & 7 & & & & & \\
\hline & \multicolumn{2}{|c|}{12} & 11 & 9 & 7 & & & & & \\
\hline & 7 & 6 & \multicolumn{2}{|c|}{5} & 3 & & & & & \\
\hline & 7 & 6 & \multicolumn{2}{|c|}{5} & 3 & & & & & \\
\hline & 7 & 6 & \multicolumn{2}{|c|}{5} & 3 & & & & & \\
\hline & 20 & 17 & 15 & 13 & 11 & 9 & & & & \\
\hline & 20 & 17 & 15 & 13 & 11 & 9 & & & & \\
\hline & 19 & 16 & 14 & 12 & 10 & 8 & & & & \\
\hline & 14 & 12 & 10 & 8 & 7 & & & & & \\
\hline & 25 & 21 & 18 & 16 & 13 & 11 & & & & \\
\hline & \multicolumn{2}{|c|}{30} & 25 & & & 16 & & & & \\
\hline & \multicolumn{2}{|c|}{30} & 25 & & & 16 & & & & \\
\hline & \multicolumn{2}{|c|}{29} & 24 & & & 15 & & & & \\
\hline & \multicolumn{3}{|c|}{40} & 35 & & & & & & \\
\hline & \multicolumn{3}{|c|}{40} & 35 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Z-axis stroke (mm)} \\
\hline & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multirow{11}{*}{} & & 10 & & & & & & & & \\
\hline & & 10 & & & & & & & & \\
\hline & & 8 & & & & & & & & \\
\hline & 3 & & & & & & & & & \\
\hline & 5 & & & & & & & & & \\
\hline & & 10 & & & & & & & & \\
\hline & & 8 & & & & & & & & \\
\hline & & 15 & & & & & & & & \\
\hline & 14 & 13 & 12 & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline (3) \\
\hline Cable type \\
\hline Cable carrier \\
\hline Cable type \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Whipover \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Whipover \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Whipover \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 4 \\
\hline X-axis stroke (mm) \\
\hline 150 to 650 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 5 \\
\hline Maximum speed \\
(X-axis / Y-axis) (mm/sec) \\
\hline \(720 / 720\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ (6) Decide the model } \\
\hline Model \(^{\text {(Note 1) }}\) & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline PXYx-C-A* & P.374 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
(X-axis / Y-axis) (mm/sec)
\end{tabular} \\
\hline \(1200 / 800\) \\
\hline \(1200 / 800\) \\
\hline \(1875 / 1875\) \\
\hline \(1875 / 1875\) \\
\hline \(1875 / 1875\) \\
\hline \(1200 / 1200\) \\
\hline \(1200 / 1200\) \\
\hline \(1200 / 1200\) \\
\hline \(1875 / 1875\) \\
\hline \(1200 / 1200\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Model & Detailed info page \\
\hline FXYx-C-A* & P.376 \\
\hline FXYx-C-A* (I/O) & P. 378 \\
\hline FXYBx-C-A* & P. 382 \\
\hline FXYBx-S-A* & P. 384 \\
\hline FXYBx-C-A* (I/O) & P. 386 \\
\hline SXYx-C-A* & P. 388 \\
\hline SXYx-S-A* & P.390 \\
\hline SXYx-C-A* (I/O) & P.392 \\
\hline SXYBx-C-A* & P.406 \\
\hline NXY-C-A* & P.414 \\
\hline MXYx-C-A* & P. 424 \\
\hline MXYx-S-A* & P. 426 \\
\hline MXYx-C-A* (I/O) & P. 428 \\
\hline HXYx-C-A* & P.434 \\
\hline HXYLx-C-A* & P.440 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Cable type \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X-axis stroke (mm) \\
\hline 250 to 1050 \\
\hline 250 to 1050 \\
\hline 250 to 1250 \\
\hline 1150 to 2050 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
(X-axis / Y-axis) \((\mathrm{mm} / \mathrm{sec})\)
\end{tabular} \\
\hline \(1200 / 1200\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline MXYx-C-G* & P.442 \\
\hline MXYx-C-G* (I/O) & P.444 \\
\hline HXYx-C-G* & P.450 \\
\hline HXYLx-C-G* & P.456 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Cable type \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X-axis stroke (mm) \\
\hline 150 to 850 \\
\hline 250 to 1250 \\
\hline 250 to 1250 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
\((X-a x i s ~ / ~ Y-a x i s) ~(m m / s e c) ~\)
\end{tabular} \\
\hline \(1200 / 1200\) \\
\hline \(1200 / 1200\) \\
\hline \(1200 / 1200\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline SXYx-C-M* & P. 458 \\
\hline \(\mathrm{MXYx}-\mathrm{C}-\mathrm{M}^{*}\) & P.464 \\
\hline \(\mathrm{HXYx}-\mathrm{C}-\mathrm{M}^{*}\) & P.470 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Cable type \\
\hline Whipover \\
\hline Cable carrier \\
\hline Whipover \\
\hline Cable carrier \\
\hline Whipover \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X-axis stroke (mm) \\
\hline 150 to 850 \\
\hline 250 to 1250 \\
\hline 250 to 950 \\
\hline 250 to 1250 \\
\hline 250 to 850 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
(X-axis / Y-axis) \((\mathrm{mm} / \mathrm{sec})\)
\end{tabular} \\
\hline \(1200 / 600\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline SXYx-S-P* & P.472 \\
\hline MXYx-C-P* & P.473 \\
\hline MXYx-S-P* & P. 474 \\
\hline HXYx-C-P* & P. 476 \\
\hline HXYx-S-P* & P. 477 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Cable type \\
\hline Cable carrier \\
\hline Whipover \\
\hline Cable carrier \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X-axis stroke (mm) \\
\hline 150 to 1050 \\
\hline 150 to 850 \\
\hline 150 to 1050 \\
\hline 150 to 1050 \\
\hline 150 to 1050 \\
\hline 150 to 3050 \\
\hline 150 to 3050 \\
\hline 150 to 1050 \\
\hline 150 to 1050 \\
\hline 250 to 1250 \\
\hline 250 to 1250 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
(X-axis / Y-axis) (mm/sec)
\end{tabular} \\
\hline \(1200 / 600\) \\
\hline \(1200 / 600\) \\
\hline \(1200 / 1200\) \\
\hline \(1200 / 1000\) \\
\hline \(1200 / 500\) \\
\hline \(1875 / 600\) \\
\hline \(1875 / 1200\) \\
\hline \(1200 / 600\) \\
\hline \(1200 / 600\) \\
\hline \(1200 / 600\) \\
\hline \(1200 / 300\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Model }
\end{tabular} \(\left.\begin{array}{c}\text { Detailed info } \\
\text { page }\end{array}\right]\). P.480

Note 1. The figure entered at \({ }^{*}\) inside the form, expresses the arm variation. See P. 364 for more information.

\section*{3-axis spec selection guide}

\section*{Setting method}

While checking conditions in order starting from \({ }^{(1) \text {, proceed }}\) to the right. Select the desired model in (6).
(1)

Select the arm variation
\begin{tabular}{|l|l|}
\hline Arm type & Moving arm type \\
\hline The type with moving Y-axis carriage. & The type with a moving Y-axis arm. \\
\hline Gantry type & Pole type \\
\hline \begin{tabular}{l} 
The type with a guide railing at the end of \\
Y-axis for support.
\end{tabular} & \begin{tabular}{l} 
The type with vertically moving Y-axis \\
carriage.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline (1) \\
\hline Arm type \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{(2)} \\
\hline \multicolumn{3}{|r|}{Z-axis} \\
\hline Speed (mm/sec) & Stroke (mm) & Installation method \\
\hline 1000 & 150 & \multirow[b]{2}{*}{Shaft vertical type} \\
\hline 500 & 150 & \\
\hline 800 & 50 to 300 & Clamped base • moving table type (60W) \\
\hline \multirow{6}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (100W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline & 150 & \multirow[t]{3}{*}{Clamped base moving table type (100W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base . moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline 1000 & 150 & \multirow{2}{*}{Shaft vertical type} \\
\hline 500 & 150 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (100W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline 1000 & 150 & Shaft vertical type \\
\hline 500 & 150 & Shaft vertical type \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table • moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{4}{*}{600} & 250 & \multirow[b]{4}{*}{Clamped base moving table type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline \multirow{4}{*}{300} & 250 & \multirow{4}{*}{Clamped table moving base type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline
\end{tabular}

(2)

Check the Z-axis speed, stroke, and installation method
(5) Check the \(X\) axis stroke
\begin{tabular}{|c|c|c|}
\hline (4) & (5) & (6) \\
\hline Cable type & X-axis stroke (mm) & \[
\begin{aligned}
& \text { Maximum speed } \\
& (\mathrm{X} \text {-axis } / \mathrm{Y} \text {-axis }) \\
& (\mathrm{mm} / \mathrm{sec})
\end{aligned}
\] \\
\hline Cable carrier & 150 to 1050 & 1200 / 800 \\
\hline Cable carrier & 150 to 1050 & 1200 / 1200 \\
\hline Whipover & 150 to 850 & 1200 / 1200 \\
\hline Cable carrier & 150 to 1050 & 1200 / 1200 \\
\hline Cable carrier & 150 to 1050 & 1200 / 1200 \\
\hline Cable carrier & 150 to 1050 & \\
\hline Whipover & 150 to 850 & 1200 / 1200 \\
\hline Cable carrier & 150 to 1050 & \(1200 / 1200\) \\
\hline Whipover & 150 to 850 & \\
\hline Cable carrier & 150 to 3050 & 1875 / 1875 \\
\hline Cable carrier & 150 to 3050 & 1875 / 1875 \\
\hline Cable carrier & 150 to 3050 & 1875 / 1875 \\
\hline Cable carrier & 150 to 3050 & 1875 / 1875 \\
\hline Cable carrier & 150 to 3050 & 1875 / 1875 \\
\hline Cable carrier & 500 to 2000 & 1200 / 1200 \\
\hline Cable carrier & 500 to 2000 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{(7) Decide the model} & \\
\hline Model \({ }^{(\text {Note } 1)}\) & Detailed info page & \\
\hline FXYx-C-A*-ZS12 & P.379 & \\
\hline FXYx-C-A*-ZS6 & P.379 & \\
\hline FXYx-C-A*-ZT6L & P. 380 & \\
\hline SXYx-C-A*-ZF & P. 394 & \\
\hline SXYx-S-A*-ZF & P. 395 & \\
\hline SXYx-C-A*-ZFL20 & P. 396 & \\
\hline SXYx-C-A*-ZFH & P. 397 & \\
\hline SXYx-C-A*-ZS12 & P. 398 & \\
\hline SXYx-S-A*-ZS12 & P. 398 & \\
\hline SXYx-C-A*-ZS6 & P. 399 & \\
\hline SXYx-S-A*-ZS6 & P. 399 & \\
\hline SXYBx-C-A*-ZF & P. 408 & \\
\hline SXYBx-C-A*-ZFL20 & P. 409 & \\
\hline SXYBx-C-A*-ZFH & P. 410 & \\
\hline SXYBx-C-A*-ZS12 & P. 4111 & \\
\hline SXYBx-C-A*-ZS6 & P. 411 & \\
\hline NXY-C-A*-ZFL20 & P. 416 & \\
\hline NXY-C-A*-ZFH & P. 418 & \\
\hline MXYx-C-A*-ZFL10 & P. 429 & \\
\hline MXYx-C-A*-ZFL20 & P. 429 & \\
\hline MXYx-C-A*-ZFH & P. 430 & \\
\hline HXYx-C-A*-ZL & P. 436 & \\
\hline HXYX-C-A*-ZH & P. 437 & Note 1.The figure entered at * inside the form, expresses the arm variation. See P. 364 for more information. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{(2)} \\
\hline \multicolumn{3}{|c|}{Z-axis} \\
\hline Speed (mm/sec) & Stroke (mm) & Installation method \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{4}{*}{600} & 250 & \multirow{4}{*}{Clamped base moving table type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline \multirow{4}{*}{300} & 250 & \multirow{4}{*}{Clamped table moving base type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{(3)} \\
\hline & \multicolumn{10}{|c|}{Y-axis stroke (mm)} \\
\hline & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multirow{17}{*}{} & \multicolumn{7}{|c|}{15} & 12 & & \\
\hline & \multicolumn{7}{|c|}{15} & 11 & & \\
\hline & \multicolumn{7}{|c|}{15} & 10 & & \\
\hline & \multicolumn{8}{|c|}{8} & & \\
\hline & \multicolumn{8}{|c|}{8} & & \\
\hline & \multicolumn{8}{|c|}{8} & & \\
\hline & \multicolumn{7}{|c|}{14} & 12 & & \\
\hline & \multicolumn{7}{|c|}{13} & 11 & & \\
\hline & \multicolumn{7}{|c|}{12} & 10 & & \\
\hline & \multicolumn{10}{|c|}{20} \\
\hline & \multicolumn{10}{|c|}{20} \\
\hline & \multicolumn{10}{|c|}{20} \\
\hline & \multicolumn{10}{|c|}{20} \\
\hline & \multicolumn{10}{|c|}{30} \\
\hline & \multicolumn{10}{|c|}{30} \\
\hline & \multicolumn{10}{|c|}{30} \\
\hline & \multicolumn{10}{|c|}{30} \\
\hline
\end{tabular}
Moving arm type
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Z-axis} \\
\hline Speed ( \(\mathrm{mm} / \mathrm{sec}\) ) & Stroke (mm) & Installation method \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped base . moving table type (100W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline 1000 & 150 & \\
\hline 500 & 150 & Shaft vertical type \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped base moving table type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{3}{*}{600} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{4}{*}{300} & 250 & \multirow{4}{*}{Clamped table moving base type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & xis s & ke ( & & & & \\
\hline & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multirow{24}{*}{} & 9 & 8 & 7 & & & & & & & \\
\hline & 8 & 7 & 6 & & & & & & & \\
\hline & 7 & 6 & 5 & & & & & & & \\
\hline & 8 & 8 & 7 & & & & & & & \\
\hline & 8 & 7 & 6 & & & & & & & \\
\hline & 7 & 6 & 5 & & & & & & & \\
\hline & 9 & 8 & 7 & & & & & & & \\
\hline & 8 & 7 & 6 & & & & & & & \\
\hline & 7 & 6 & 5 & & & & & & & \\
\hline & & 3 & & & & & & & & \\
\hline & & 5 & & & & & & & & \\
\hline & & & 12 & & & & & & & \\
\hline & & & 11 & & & & & & & \\
\hline & & & 10 & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & 8 & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & 12 & & & & & & & \\
\hline & & & 11 & & & & & & & \\
\hline & & & 10 & & & & & & & \\
\hline & & \multicolumn{5}{|c|}{18} & & & & \\
\hline & & \multicolumn{3}{|c|}{18} & \multicolumn{2}{|c|}{17} & & & & \\
\hline & & \multicolumn{3}{|c|}{18} & \multicolumn{2}{|c|}{16} & & & & \\
\hline & & \multicolumn{3}{|c|}{18} & \multicolumn{2}{|c|}{15} & & & & \\
\hline
\end{tabular}

\section*{Pole type}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Z-axis} \\
\hline Speed ( \(\mathrm{mm} / \mathrm{sec}\) ) & Stroke (mm) & Installation method \\
\hline \multirow{3}{*}{1200} & 150 & \multirow[t]{3}{*}{Clamped table moving base type (200W)} \\
\hline & 250 & \\
\hline & 350 & \\
\hline \multirow{5}{*}{1200} & 250 & \multirow{5}{*}{Clamped table moving base type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline & 650 & \\
\hline \multirow{5}{*}{1200} & 250 & \multirow{5}{*}{Clamped table moving base type (200W)} \\
\hline & 350 & \\
\hline & 450 & \\
\hline & 550 & \\
\hline & 650 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & xis str & ke (m & & & & \\
\hline & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multirow{13}{*}{} & \multicolumn{6}{|c|}{10} & & & & \\
\hline & \multicolumn{6}{|c|}{9} & & & & \\
\hline & \multicolumn{6}{|c|}{8} & & & & \\
\hline & & \multicolumn{8}{|c|}{15} & \\
\hline & & \multicolumn{7}{|c|}{15} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (4) & (5) & (6) \\
\hline Cable type & X-axis stroke (mm) & Maximum speed (X-axis / Y-axis) ( \(\mathrm{mm} / \mathrm{sec}\) ) \\
\hline Cable carrier & 250 to 1050 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1050 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1050 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline Cable carrier & 250 to 1250 & 1200 / 1200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ 7 Decide the model } \\
\hline Model \(^{(\text {Note 1) }}\) & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline MXYx-C-G*-ZFL10 & P.445 \\
\hline MXYx-C-G*-ZFL20 & P.445 \\
\hline MXYx-C-G*-ZFH & P.446 \\
\hline HXYX-C-G*-ZL & \(\mathbb{P} .452\) \\
\hline HXYx-C-G*-ZH & \(\mathbb{P} .453\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Cable type \\
\hline Whipover \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X-axis stroke (mm) \\
\hline 150 to 850 \\
\hline 250 to 1250 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
\((\mathrm{X}\)-axis / Y-axis) \\
\((\mathrm{mm} / \mathrm{sec})\)
\end{tabular} \\
\hline \(1200 / 1200\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Model \(^{\text {(Note 1) }}\) & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline SXYx-S-M*-ZF & P.460 \\
\hline SXYx-S-M*-ZFL20 & P.461 \\
\hline SXYx-S-M*-ZFH & P.462 \\
\hline SXYx-S-M*-ZS12 & P.463 \\
\hline SXYx-S-M*-ZS6 & P.463 \\
\hline MXYx-C-M*-ZFL10 & P.466 \\
\hline MXYx-C-M*-ZFL20 & P.466 \\
\hline MXYx-C-M*-ZFH & P.467 \\
\hline HXYx-C-M*-ZH & P.470 \\
\hline
\end{tabular}

Note 1.The figure entered at * inside the form, expresses the arm variation. See P. 364 for more information.
\begin{tabular}{|c|}
\hline Cable type \\
\hline Cable carrier \\
\hline Cable carrier \\
\hline Whipover \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X-axis stroke (mm) \\
\hline 250 to 1250 \\
\hline 250 to 1250 \\
\hline 250 to 850 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Maximum speed \\
\((\mathrm{X}-\mathrm{-axis} / \mathrm{Y}\)-axis \()\) \\
\((\mathrm{mm} / \mathrm{sec})\)
\end{tabular} \\
\hline \(1200 / 600\) \\
\(1200 / 600\) \\
\hline \(1200 / 600\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c} 
Detailed info \\
page
\end{tabular} \\
\hline MXYX-C-P2-ZPMH & P.475 \\
\hline HXYX-C-P2-ZPH & P.478 \\
HXYX-S-P1-ZPH & P.479 \\
\hline
\end{tabular}

In the order format for the YAMAHA cartesian robots XY-X series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation.

\section*{[Example]}

\section*{■ 2-axis specifications}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{- Mechanical \(\downarrow\) FXYx (Arm type)} & - Controller \(>\) RCX320 \\
\hline - Cable variations \(\quad \triangleright\) Cable carrier & - X-axis stroke \(\quad \triangleright 450 \mathrm{~mm}\) & \\
\hline - Combination (Arm variations) \(\triangleright\) A1 & - Y-axis stroke \(\quad \triangleright 350 \mathrm{~mm}\) & \\
\hline & - Robot cable length \(\triangleright 3.5 \mathrm{M}\) & \\
\hline
\end{tabular}

\section*{- Ordering method}

\title{
FXYx-C-A1-45-35-3L-RCX320
}

\author{
Mechanical section
}

Controller section
To find detailed controller information see the controller page. \(\quad \mathbf{R C X} 320 \rightarrow\) RFIO, \(\mathbf{R C X 2 2 2} \boldsymbol{R}\)
\begin{tabular}{|l|}
\hline \\
\hline (1) Model \\
\hline PXYX \\
\hline FXYX \\
\hline FXYBX \\
\hline SXYX \\
\hline SXYBX \\
\hline NXY \\
\hline MXYX \\
\hline HXYX \\
\hline HXYLX \\
\hline
\end{tabular}


Note 1. To find detailed information on arm variations (combinations) see P. 364 .

\section*{[Example]}

■ 3 / 4-axis specifications
- Mechanical \(>\) SXYx (Moving arm type)
- Cable variations
\(\triangleright\) Whipover
- Y-axis stroke
- 150mm
- Combination (Arm variations) \(\triangleright\) M3
- Z-axis stroke
\(\triangleright 150 \mathrm{~mm}\)
- X-axis stroke
\(\triangleright 850 \mathrm{~mm}\)
- Robot cable length \(>5 \mathrm{M}\)

\section*{- Ordering method}

\section*{SXYx-S-M3-85-15-ZFH-15-5L-RCX340}

Mechanical section
To find detailed controller information see the controller page.



Arm type Cable carrier


OOrdering method

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 650 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In thiscase, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline \[
\begin{aligned}
& \text { RCX320 } \\
& \text { RCX222 }
\end{aligned}
\] & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}

PXYX 2 axes A1



OArm type Cable carrier
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction & - & - \\
\hline AC servo motor output (W) & 100 & 60 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.01 & +/-0.02 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 12\) \\
\hline Ball screw lead \({ }^{\text {Note } 2}\) (Deceleration ratio) (mm) & 20 & 12 \\
\hline Maximum speed \({ }^{\text {Note } 3}\) (mm/sec) & 1200 & 800 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 550 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 3 . When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX320 & \begin{tabular}{l} 
Programming //IO point trace \(/\) \\
Remote command \(/\) poeration using \\
RS \\
RCX222
\end{tabular} \\
\hline
\end{tabular}

FXYx 2 axes A1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & Note 1. The moving range when returning to origin and the stop position when stopping by \\
\hline \multicolumn{2}{|l|}{L} & 460 & 560 & 660 & 760 & 860 & 960 & 1060 & 1160 & 1260 & 1360 & \begin{tabular}{l}
the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & & & & & & \multirow[b]{3}{*}{Note 3. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & 50\% & 45\% & \\
\hline
\end{tabular}

FXYx 2 axes A2


FXYx 2 axes A4

\begin{tabular}{l|c|c}
\hline \multicolumn{1}{c}{ Specification } & X-axis & Y-axis \\
\hline & - & - \\
\hline Axis construction & 100 & 60 \\
\hline AC servo motor output (W) & \(+/-0.01\) & \(+/-0.02\) \\
\hline Repeatability \({ }^{\text {Note 1 }}\) (mm) & Ball screw \(\phi 15\) & Ball screw \(\phi 12\) \\
\hline Drive system & 20 & 12 \\
\hline Ball screw lead \({ }^{\text {Note 2 }}\) (Deceleration ratio) (mm) & 1200 & 800 \\
\hline Maximum speed \({ }^{\text {ote 3 }}\) (mm/sec) & 150 to 1050 & 150 to 550 \\
\hline Moving range (mm) & Standard: 3.5 & Option: 5,10 \\
\hline Robot cable length (m) &
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 3. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline RCX320 & \begin{tabular}{l} 
Programming //O point trace \\
Remote command \(/\) Operation using \\
RS-232C communication
\end{tabular} \\
\hline RCX222 & \\
\hline
\end{tabular}


Specify various controller setting items. RCX222 \(\downarrow\) P. 670
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke ( \(\mathbf{m m}\) ) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 12 \\
\hline \(\mathbf{2 5 0}\) & 12 \\
\hline \(\mathbf{3 5 0}\) & 11 \\
\hline \(\mathbf{4 5 0}\) & 9 \\
\hline \(\mathbf{5 5 0}\) & 7 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & Note 1. The moving range when returning to origin and the stop position when stopping by \\
\hline \multicolumn{2}{|l|}{L} & 460 & 560 & 660 & 760 & 860 & 960 & 1060 & 1160 & 1260 & 1360 & \begin{tabular}{l}
the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & & & & & & \\
\hline \multirow[b]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & & & & & & & 960 & 780 & 600 & 540 & Note 3. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce \\
\hline & Speed setting & & & & & & & 80\% & 65\% & 50\% & 45\% & table at the left. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specification} \\
\hline & X-axis & Y-axis & \[
\begin{gathered}
\text { Z-axis: } \\
\text { ZS12 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Z-axis: } \\
\text { ZS6 }
\end{gathered}
\] \\
\hline Axis construction & - & - & & \\
\hline AC servo motor output (W) & 100 & 60 & & \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.01 & +/-0.02 & & \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 12\) & Ball & * \(\phi 12\) \\
\hline Ball screw lead \({ }^{\text {Note } 2}\) (Deceleration ratio) (mm) & 20 & 12 & 12 & 6 \\
\hline Maximum speed \({ }^{\text {Note } 3}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 1200 & 800 & 1000 & 500 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 550 & & \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. Leads not listed in the catalog are also available. Contact us for details
Note 3. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZS12 & ZS6 \\
\hline \(\mathbf{1 5 0}\) & 3 & 5 \\
\hline \(\mathbf{2 5 0}\) & 3 & 5 \\
\hline \(\mathbf{3 5 0}\) & 3 & 5 \\
\hline \(\mathbf{4 5 0}\) & 3 & 5 \\
\hline \(\mathbf{5 5 0}\) & 3 & 3 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

FXYx 3 axes / ZS A1



Ordering method
\(\underset{\text { Model }}{\text { FXYX }}\)


RCX340-3

Specify various controller setting items. RCX340 P. 678
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & - & - & T6L-12-BK \\
\hline AC servo motor output (W) & 100 & 60 & 60 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.02 & +/-0.02 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 12\) & Ball screw \(\phi 12\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 12 & 12 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 800 & 800 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 550 & 50 to 300 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2.Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke \((\mathrm{mm})\) & ZT \\
\hline \(\mathbf{1 5 0}\) to 550 & 3 \\
\hline
\end{tabular}

FXYx 3 axes / ZT A1

 \(30+/-0.02 \quad \xlongequal{(21) \text { Sectional drawing of cable carrier }} \xlongequal{\text { (12) Sectional drawing of cable carrier }}\)

\(\xlongequal{\text { Detail of section } A}\)
\begin{tabular}{|c|l}
\hline Controller \\
\hline Controller & \multicolumn{1}{c|}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}




OArm type Cable carrier

FXYBx 2 axes A1
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline RCX320 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command \(/\) operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & B10 & - \\
\hline AC servo motor output (W) & 100 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.04 & +/-0.04 \\
\hline Drive system & Timing belt & Timing belt \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & Equivalent to lead 25 & Equivalent to lead 25 \\
\hline Maximum speed (mm/sec) & 1875 & 1875 \\
\hline Moving range (mm) & 150 to 2450 & 150 to 550 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY axes \\
\hline \(\mathbf{1 5 0}\) & 7 \\
\hline \(\mathbf{2 5 0}\) & 6 \\
\hline \(\mathbf{3 5 0}\) & 5 \\
\hline \(\mathbf{4 5 0}\) & 5 \\
\hline \(\mathbf{5 5 0}\) & 3 \\
\hline
\end{tabular}

Note 1 . Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2.Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
 Specify various controller setting items. RCX320 P P660


Specify various controller setting items. RCX222 \(\downarrow\) P. 670



Cross-sectional drawing F-F



Detail of section \(B\)

Cross-section of cable carrier

Note 1.The moving range when returning to origin and the stop position when stopping by the mechanical stopper. Note 3.The dimension marked with an asterisk (*) indicates the height of the screw. Note 2.The shaded position indicates an user cable extraction port.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 \\
\hline L & 560 & 660 & 760 & 860 & 960 & 1060 & 1160 & 1260 & 1360 & 1460 & 1560 & 1660 & 1760 & 1860 & 1960 & 2060 & 2160 & 2260 & 2360 & 2460 & 2560 & 2660 & 2760 & 2860 \\
\hline C & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 \\
\hline D & - & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 420 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 \\
\hline E & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline G & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 \\
\hline J & 330 & 330 & 430 & 430 & 530 & 530 & 630 & 630 & 730 & 730 & 830 & 830 & 930 & 930 & 1030 & 1030 & 1130 & 1130 & 1230 & 1230 & 1330 & 1330 & 1430 & 1430 \\
\hline K & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 \\
\hline M & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 \\
\hline N & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 & 30 & 30 \\
\hline Y stroke & 150 & 250 & 350 & 450 & 550 & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}


OArm type OWhipover



Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details．



Specify various controller setting items．RCX222 \(\downarrow\) P． 670

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 1．The moving range when returning to origin and the stop position when stopping by the mechanical stopper． \\
Note 2．User cable extraction port． \\
Note 3．The dimension marked with an asterisk（＊）indicates the height of the screw．
\end{tabular}} \\
\hline L & 560 & 660 & 760 & 860 & 960 & 1060 & 1160 & 1260 & 1360 & \\
\hline C & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & \\
\hline K & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline M & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline N & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & \\
\hline Y stroke & 150 & 250 & 350 & 450 & 550 & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Contro & \\
\hline Controller & Operation method \\
\hline \[
\begin{aligned}
& \mathrm{RCX} \times 20 \\
& \mathrm{RC} \times 222
\end{aligned}
\] & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}


\section*{Cross-section of cable carrier}
The numeric value shown in brackets is the cable dimension between Y and Z .
Note 1.The moving range when returning to origin and the stop position when stopping by the mechanical stopper. Note 3 .The dimension marked with an asterisk ( \({ }^{*}\) ) indicates the height of the screw. Note 2.The shaded position indicates an user cable extraction port.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 \\
\hline L & 560 & 660 & 760 & 860 & 960 & 1060 & 1160 & 1260 & 1360 & 1460 & 1560 & 1660 & 1760 & 1860 & 1960 & 2060 & 2160 & 2260 & 2360 & 2460 & 2560 & 2660 & 2760 & 2860 \\
\hline C & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 & 1320 \\
\hline D & - & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 420 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 \\
\hline E & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline G & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 \\
\hline J & 330 & 330 & 430 & 430 & 530 & 530 & 630 & 630 & 730 & 730 & 830 & 830 & 930 & 930 & 1030 & 1030 & 1130 & 1130 & 1230 & 1230 & 1330 & 1330 & 1430 & 1430 \\
\hline K & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 \\
\hline M & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 \\
\hline N & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 & 30 & 30 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Y stroke & 150 & 250 & 350 & 450 & 550 \\
\hline
\end{tabular}

SXYx 2 axes A1


Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|}
\hline Contro & \\
\hline Controller & Operation method \\
\hline \[
\begin{aligned}
& \text { RCX320 } \\
& \text { RCX222 }
\end{aligned}
\] & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}

SXYx 2 axes


Cross-section of cable carrier


SXYX 2 axes A4


OArm type O Whipover

\section*{Ordering method}

SXYx 2 axes A1
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 \\
\hline AC servo motor output (W) & 200 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi} 15\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 150 to 850 & 150 to 650 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 20 \\
\hline 250 & 17 \\
\hline \(\mathbf{3 5 0}\) & 15 \\
\hline 450 & 13 \\
\hline \(\mathbf{5 5 0}\) & 11 \\
\hline 650 & 9 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320 \\
RCX222
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \(\left(\mathrm{mm} / \mathrm{sec}\right.\) ) \({ }^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% \\
\hline
\end{tabular}
Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical
Note 2. The shaded position indicates an user cable extraction port



Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.


SXYx 2 axes / IO A1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 19 \\
\hline \(\mathbf{2 5 0}\) & 16 \\
\hline \(\mathbf{3 5 0}\) & 14 \\
\hline \(\mathbf{4 5 0}\) & 12 \\
\hline \(\mathbf{5 5 0}\) & 10 \\
\hline \(\mathbf{6 5 0}\) & 8 \\
\hline
\end{tabular}


Detail of section \(A\)

\(\xlongequal{(121) \text { Cross-section of cable carrier }} \quad\) (12) Cross-section of cable carrier


\(\phi 9.7\)


Detail of section B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & \\
\hline \multicolumn{2}{|l|}{T} & 55 & 110 & 165 & 220 & 275 & 330 & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & 50\% & 45\% \\
\hline
\end{tabular}

Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
ote 2 . The shaded position indicates an user cable extraction port.
Jote 2. The shaded position indicates an user cable extraction port.


Note 3. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce
the speed setting on the program by referring to the maximum speeds shown in the the speed setting on the program by referring to the maximum speeds shown in the
table at the left.
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X－axis & Y－axis & Z－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10－BK \\
\hline AC servo motor output（W） & 200 & 100 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（mm） & ＋／－0．01 & ＋／－0．01 & ＋／－0．01 \\
\hline Drive system & Ball screw \(\mathbf{\phi}^{15}\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1200 & 1200 & 600 \\
\hline Moving range（mm） & 150 to 1050 & 150 to 650 & 150 to 350 \\
\hline Robot cable length（m） & \multicolumn{3}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details
Note 4．When the \(X\)－axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & （kg） \\
\hline & \multicolumn{3}{|c}{ Z stroke（mm）} \\
\hline Y stroke（mm） & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 10 & 10 & 10 \\
\hline \(\mathbf{2 5 0}\) & 10 & 10 & 9 \\
\hline \(\mathbf{3 5 0}\) & 9 & 8 & 7 \\
\hline \(\mathbf{4 5 0}\) & 7 & 6 & 5 \\
\hline \(\mathbf{5 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{6 5 0}\) & 3 & 2 & 1 \\
\hline
\end{tabular}

SXYx 3 axes／ZF A1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & \\
\hline \multicolumn{2}{|l|}{T} & 55 & 110 & 165 & 220 & 275 & 330 & & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \(\left(\mathrm{mm} / \mathrm{sec}\right.\) ）\({ }^{\text {Note } 3}\)} & X－axis & & & & & & & 960 & 780 & 600 & 540 \\
\hline & Speed setting & & & & － & & & 80\％ & 65\％ & 50\％ & 45\％ \\
\hline
\end{tabular}

Note 1．The moving range when returning to origin and the stop position when stopping by the mechanical stopper．
Note 2．The shaded position indicates an user cable extraction port．

\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10-BK \\
\hline AC servo motor output (W) & 200 & 100 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 150 to 850 & 150 to 650 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 10 & 10 & 10 \\
\hline \(\mathbf{2 5 0}\) & 10 & 10 & 9 \\
\hline \(\mathbf{3 5 0}\) & 9 & 8 & 7 \\
\hline \(\mathbf{4 5 0}\) & 7 & 6 & 5 \\
\hline \(\mathbf{5 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{6 5 0}\) & 3 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


Ordering method


\section*{Specification}
\begin{tabular}{l|c|c|c}
\hline & X－axis & Y－axis & Z－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10H－BK \\
\hline AC servo motor output（W） & 200 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note }{ }^{2}(\mathrm{~mm})}\) & \(+/-0.01\) & \(+/-0.01\) & \(+/-0.01\) \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \(^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1200 & 1200 & 1200 \\
\hline Moving range（mm） & 150 to 1050 & 150 to 650 & 150 to 350 \\
\hline Robot cable length（m） & \multicolumn{3}{|c}{ Standard： 3.5 Option： 5,10} \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 4．When the X －axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & （kg） \\
\hline & \multicolumn{3}{|c}{ Z stroke（mm）} \\
\hline Y stroke（mm） & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{2 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{3 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{4 5 0}\) & 6 & 5 & 4 \\
\hline \(\mathbf{5 5 0}\) & 4 & 3 & 2 \\
\hline \(\mathbf{6 5 0}\) & 2 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{|c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYx 3 axes／ZFL20 A1


Detail of section A
Detail of section B
Detail of section C


\(\xlongequal{(12) \text { Cross－section of cable carrier }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 1．The moving range when returning to origin and the stop position when stopping by the mechanical stopper． \\
Note 2．The shaded position indicates an user cable extraction port．
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 & \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & & \\
\hline \multicolumn{2}{|l|}{T} & 55 & 110 & 165 & 220 & 275 & 330 & & & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & & \multirow[t]{3}{*}{Note 3．When the \(X\)－axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke（ \(\mathrm{mm} / \mathrm{sec}\) ）\({ }^{\text {Note } 3}\)} & X－axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{－} & 80\％ & 65\％ & 50\％ & 45\％ & \\
\hline
\end{tabular}

\section*{Ordering method}
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10H-BK \\
\hline AC servo motor output (W) & 200 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 650 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 13 & 12 & 11 \\
\hline \(\mathbf{2 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{3 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{4 5 0}\) & 6 & 5 & 4 \\
\hline \(\mathbf{5 5 0}\) & 4 & 3 & 2 \\
\hline \(\mathbf{6 5 0}\) & 2 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYx 3 axes / ZFH A1


Detail of section A
\(\underline{\underline{\text { Detail of section B }}}\)
Detail of section C

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper. \\
Note 2. The shaded position indicates an user cable extraction port.
\end{tabular}} \\
\hline L & & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 & \\
\hline K & & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline D & & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline M & & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline N & & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & \\
\hline Y stroke & & 150 & 250 & 350 & 450 & 550 & 650 & & & & & \\
\hline T & & 55 & 110 & 165 & 220 & 275 & 330 & & & & & \\
\hline Z stroke & & 150 & 250 & 350 & & & & & & & & \multirow[t]{3}{*}{Note 3. When the X-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke ( \(\mathrm{mm} / \mathrm{sec}\) ) \({ }^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & 50\% & 45\% & \\
\hline
\end{tabular}

\section*{Orderina method}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\mathbf{S X Y X} \mathbf{C}
\]
\(\square\) & -- & -15- + & RCY340 & \\
\hline  &  &  & Controller /
Number of controllable Specify vario & \[
\begin{aligned}
& \text { Safety } \\
& \text { standard } \\
& \text { controller }
\end{aligned}
\] \\
\hline Specification & & & & \\
\hline & X-axis & Y -axis & \[
\begin{aligned}
& \hline \text { Z-axis } \\
& \text { ZS12 }
\end{aligned}
\] & \[
\begin{gathered}
\text { Z-axis } \\
\text { ZS6 }
\end{gathered}
\] \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & & - \\
\hline AC servo motor output (W) & 200 & 100 & & \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & \multicolumn{2}{|c|}{+/-0.02} \\
\hline Drive system & Ball screw \({ }^{\text {1 }}\) 15 & Ball screw \(\mathbf{\phi 1 5}^{\text {d }}\) & \multicolumn{2}{|r|}{Ball screw \(\phi 12\)} \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 12 & 6 \\
\hline Maximum speed \({ }^{\text {Note } 4}(\mathrm{~mm} / \mathrm{sec}\) ) & 1200 & 1200 & 1000 & 500 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 650 & \multicolumn{2}{|c|}{150} \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Robot cable length (m)
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
. Positioning repeatability in one direction.
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.

SXYx 3 axes/ZS A1
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & \multicolumn{1}{c}{\((\mathrm{kg})\)} \\
\hline \hline Y stroke \((\mathrm{mm})\) & ZS12 & ZS6 \\
\hline 150 to 650 & 3 & 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper. \\
Note 2. The shaded position indicates an user cable extraction port.
\end{tabular}} \\
\hline L & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 & \\
\hline K & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline D & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline M & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline N & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & \\
\hline Y stroke & 150 & 250 & 350 & 450 & 550 & 650 & & & & & \\
\hline T & 55 & 110 & 165 & 215 & 270 & 325 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & & & & & & \multirow[t]{3}{*}{} & \multirow[b]{3}{*}{When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & & 1200 & 960 & 780 & 600 & 540 & & \\
\hline & Speed setting & & - & 80\% & 65\% & 50\% & 45\% & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Specification & & & & \\
\hline & X-axis & Y-axis & \[
\begin{gathered}
\text { Z-axis: } \\
\text { ZS12 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Z-axis: } \\
\text { ZS6 }
\end{gathered}
\] \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & & \\
\hline AC servo motor output (W) & 200 & 100 & & \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & & \\
\hline Drive system & Ball screw \(\$ 15\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) & Ball & w \(\phi 12\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 12 & 6 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 1000 & 500 \\
\hline Moving range (mm) & 150 to 850 & 150 to 650 & \multicolumn{2}{|c|}{150} \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZS12 & ZS6 \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{6 5 0}\) & 3 & 5 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYx 3 axes/ZS A1


Arm type Cable carrier Z－axis：clamped base／moving table type（100W）＋R－axis

\section*{Ordering method}

\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X－axis & Y－axis & Z－axis & R －axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10－BK & R5 \\
\hline AC servo motor output（W） & 200 & 100 & 100 & 50 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（XYZ：mm）（R：\({ }^{\circ}\) ） & ＋／－0．01 & ＋／－0．01 & ＋／－0．01 & ＋／－0．0083 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 10 & （1／50） \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（XYZ：mm／sec）（R：\({ }^{\circ} / \mathrm{sec}\) ） & 1200 & 1200 & 600 & 360 \\
\hline Moving range（XYZ：mm）（R：\({ }^{\circ}\) ） & 150 to 1050 & 150 to 650 & 150 to 350 & 360 \\
\hline Robot cable length（m） & \multicolumn{4}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots
Note 2．Positioning repeatability in one direction
Note 4．When the X －axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & （kg） \\
\hline & \(\mathbf{y y y}\) \\
\hline Y stroke（mm） & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 6 & 6 & 6 \\
\hline \(\mathbf{2 5 0}\) & 6 & 5 & 4 \\
\hline \(\mathbf{3 5 0}\) & 4 & 3 & 2 \\
\hline \(\mathbf{4 5 0}\) & 3 & 2 & 1 \\
\hline \(\mathbf{5 5 0}\) & 2 & 1 & - \\
\hline \(\mathbf{6 5 0}\) & 1 & - & - \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYX 4 axes／ZRF A1

\(\xlongequal{(21) \text { Cross－section of cable carrier }} \xlongequal{\text {（12）Cross－section of cable carrier }}\)
年


Detail of section B

Use M6 \(\times 1.0\) hex socket head bolt
with length head bolt with length （under head）of 20 mm or more．


RR）Cross－section of cable carrier


2－\(\phi 10 \mathrm{H} 7\)
See detaild
drawing of
C section



\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10-BK & R5 \\
\hline AC servo motor output (W) & 200 & 100 & 100 & 50 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw \(\$ 15\) & Ball screw \(\phi 15\) & Ball screw \(\mathbf{\phi}^{15}\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\% / \mathrm{sec}\) ) & 1200 & 1200 & 600 & 360 \\
\hline Moving range (XYZ: mm) (R: \({ }^{\circ}\) ) & 150 to 850 & 150 to 650 & 150 to 350 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{y y y}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 6 & 6 & 6 \\
\hline \(\mathbf{2 5 0}\) & 6 & 5 & 4 \\
\hline \(\mathbf{3 5 0}\) & 4 & 3 & 2 \\
\hline \(\mathbf{4 5 0}\) & 3 & 2 & 1 \\
\hline \(\mathbf{5 5 0}\) & 2 & 1 & - \\
\hline \(\mathbf{6 5 0}\) & 1 & - & - \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYx 4 axes / ZRF A1



\begin{tabular}{|c|c|c|c|c|}
\hline Specification & & & & \\
\hline & X-axis & Y-axis & Z-axis & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10H-BK & R5 \\
\hline AC servo motor output (W) & 200 & 100 & 200 & 50 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 20 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\% / \mathrm{sec}\) ) & 1200 & 1200 & 1200 & 360 \\
\hline Moving range (XYZ: mm) (R: \({ }^{\circ}\) ) & 150 to 1050 & 150 to 550 & 150 to 350 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{y y y}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 4 & 4 & 4 \\
\hline \(\mathbf{2 5 0}\) & 4 & 4 & 3 \\
\hline \(\mathbf{3 5 0}\) & 4 & 3 & 1 \\
\hline \(\mathbf{4 5 0}\) & 2 & 1 & - \\
\hline \(\mathbf{5 5 0}\) & 1 & - & - \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYx 4 axes / ZRFL20 A1


(9.7
( \(\times 1)\) Cross-section of cable carrier (12) Cross-section of cable carrier
\(\underline{\underline{\text { Detail of section A }} \quad \text { Detail of section B }}\)
\(\xlongequal{\text { (12) Cross-section of cable carrier }}\)



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & Note 1. The moving range when returning to origin and the stop position when stopping by \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 & the mechanical stopper. \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & & & & & & \\
\hline \multicolumn{2}{|l|}{T} & 55 & 110 & 165 & 220 & 275 & & & & & & \\
\hline Z stroke & & 150 & 250 & 350 & & & & & & & & \multirow[t]{3}{*}{Note 3. When the X-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 & \\
\hline & Speed setting & \multicolumn{4}{|c|}{-} & & & 80\% & 65\% & 50\% & 45\% & \\
\hline
\end{tabular}

\section*{Orderina method}

\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y -axis & Z-axis & R -axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10H-BK & R5 \\
\hline AC servo motor output (W) & 200 & 100 & 200 & 50 \\
\hline  & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw \(\mathbf{\phi 1 5}^{\text {15 }}\) & Ball screw \({ }^{\text {1 }} 15\) & Ball screw \(\mathbf{\phi 1 5}^{15}\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\left.\% / \mathrm{sec}\right)\) & 1200 & 1200 & 600 & 360 \\
\hline Moving range (XYZ: mm)(R: \({ }^{\circ}\) ) & 150 to 1050 & 150 to 550 & 150 to 350 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 3. Positioning repeatabitity in one direction.
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{y y y}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 9 & 8 & 7 \\
\hline \(\mathbf{2 5 0}\) & 6 & 5 & 4 \\
\hline \(\mathbf{3 5 0}\) & 4 & 3 & 1 \\
\hline \(\mathbf{4 5 0}\) & 2 & 1 & - \\
\hline \(\mathbf{5 5 0}\) & 1 & - & - \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


\section*{Ordering method}


ote 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.

SXYX 4 axes / ZRS A1



Arm type Whipover ZR axis integrated type

\section*{Orderina method}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specification} \\
\hline & X-axis & Y -axis & \begin{tabular}{c|c|}
\hline Z-axis: & Z-axis: \\
ZRS12 & ZRS6
\end{tabular} & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & - & - \\
\hline AC servo motor output (W) & 200 & 100 & 60 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.02 & +/-0.005 \\
\hline Drive system & Ball screw \$15 & Ball screw \(\mathbf{\phi 1 5}^{\text {d }}\) & Ball screw \(\mathbf{\phi 1 2}\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 12 6 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\left.\% \mathrm{sec}\right)\) & 1200 & 1200 & 1000500 & 1020 \\
\hline Moving range (XYZ: mm) ( \(\mathrm{R}:{ }^{\circ}\) ) & 150 to 850 & 150 to 650 & 150 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZRS12 & ZRS6 \\
\hline \(\mathbf{1 5 0}\) & 3 & 5 \\
\hline \(\mathbf{2 5 0}\) & 3 & 5 \\
\hline \(\mathbf{3 5 0}\) & 3 & 5 \\
\hline \(\mathbf{4 5 0}\) & 3 & 5 \\
\hline \(\mathbf{5 5 0}\) & 3 & 5 \\
\hline \(\mathbf{6 5 0}\) & 3 & 4 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


Arm type Cable carrier

Note 1 ．A regenerative unitis required when the maximum speed exceeds \(1250 \mathrm{~mm} / \mathrm{sec}\) ．

\section*{Specification}
\begin{tabular}{l|c|c}
\hline & X－axis & Y－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & B14H & B14 \\
\hline AC servo motor output（W） & 200 & 100 \\
\hline Repeatability \({ }^{\text {Note 2 }}\)（mm） & \(+/-0.04\) & \(+/-0.04\) \\
\hline Drive system & Timing belt & Timing belt \\
\hline\({\text { Ball screw lead }{ }^{\text {Note 3（Deceleration ratio）（mm）}}}^{\text {Maximum speed（mm／sec）}}\) Equivalent to lead 25 & Equivalent to lead 25 \\
\hline Moving range（mm） & 1875 & 1875 \\
\hline Robot cable length（m） & 150 to 3050 & 150 to 550 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction
Note 3．Leads not listed in the catalog are also available．Contact us for details．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke（mm） & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 14 \\
\hline \(\mathbf{2 5 0}\) & 12 \\
\hline \(\mathbf{3 5 0}\) & 10 \\
\hline \(\mathbf{4 5 0}\) & 8 \\
\hline \(\mathbf{5 5 0}\) & 7 \\
\hline
\end{tabular}

SXYBx 2 axes A1

\begin{tabular}{l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline \multicolumn{1}{c}{ Controller } \\
\hline \begin{tabular}{l} 
RCX320 \\
RCX222
\end{tabular} \\
\hline \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline \begin{tabular}{c} 
Note．A regenerative unit is required when the maximum speed \\
exceeds \(1250 \mathrm{~mm} / \mathrm{sec}\).
\end{tabular} \\
\hline
\end{tabular}



Cross－sectional drawing S－S Note 1．The moving range when returning to origin and the stop
position when stopping by the mechanical stopper．
Note 2．The shaded position indicates an user cable extraction port．








\begin{tabular}{l|l|l|l|l|l}
\hline Y stroke & 150 & 250 & 350 & 450 & 550
\end{tabular}


\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{2 5 0}\) & 6 & 5 & 4 \\
\hline \(\mathbf{3 5 0}\) & 4 & 3 & 2 \\
\hline \(\mathbf{4 5 0}\) & 2 & 1 & - \\
\hline \(\mathbf{5 5 0}\) & 1 & - & - \\
\hline
\end{tabular}

Note 1.Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2.Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYBx 3 axes / ZF A1



Cross-sectional drawing S-S

Note 1.The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
Note 2.The shaded position indicates an user cable extraction port.






 \begin{tabular}{l|l|l|l|l|l|}
\hline Y stroke & 150 & 250 & 350 & 450 & 550 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l}
\hline\(Z\) stroke & 150 & 250 & 350 \\
\hline
\end{tabular}

\section*{Specification}
\begin{tabular}{l|c|c|c}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & B14H & B14 & F10H-BK \\
\hline AC servo motor output (W) & 200 & 100 & 200 \\
\hline Repeatability \(^{\text {Note } \mathbf{~}(\mathbf{m m})}\) & \(+/-0.04\) & \(+/-0.04\) & \(+/-0.01\) \\
\hline Drive system & Timing belt & Timing belt & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3 \text { (Deceleration ratio) (mm) }}\) & Equivalent to lead 25 & Equivalent to lead 25 & 20 \\
\hline Maximum speed (mm/sec) & 1875 & 1875 & 1200 \\
\hline Moving range (mm) & 150 to 3050 & 150 to 450 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c}{ Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 7 & 6 & 5 \\
\hline \(\mathbf{2 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{3 5 0}\) & 3 & 2 & 1 \\
\hline \(\mathbf{4 5 0}\) & 1 & - & - \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYBx 3 axes / ZFL20 A1

의 85
\(\mathrm{M} \times 200\) \(\qquad\) K F- \(\mathrm{\phi} 10 \mathrm{H7}\) :



Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
Note 2. The shaded position indicates an user cable extraction port







\(\xlongequal{\otimes 11}\) Cross-section of cable carrier


Detail of section B

(12) Cross-section of cable carrier
\(\xrightarrow{(76)}\)


RCX340-3
\begin{tabular}{l|c|c|c}
\hline \multicolumn{1}{|c|}{ Specification } \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & B14 & B14 & F10H-BK \\
\hline AC servo motor output (W) & 200 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) & \(+/-0.04\) & \(+/-0.04\) & \(+/-0.01\) \\
\hline Drive system & Timing belt & Timing belt & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) & Equivalent to lead 25 & Equivalent to lead 25 & 10 \\
\hline Maximum speed (mm/sec) & 1875 & 1875 & 600 \\
\hline Moving range (mm) & 150 to 3050 & 150 to 450 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c}{ Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & \((\mathrm{kg})\) \\
\hline & \(\mathbf{3 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 7 & 6 & 5 \\
\hline \(\mathbf{2 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{3 5 0}\) & 3 & 2 & 1 \\
\hline \(\mathbf{4 5 0}\) & 1 & - & - \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{|c|c|}
\hline Contro & \\
\hline Controller & Operation method \\
\hline RCX340 & Programming / //O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}

SXYBx 3 axes / ZFH A1


Detail of section B

(2) Cross-section of cable carrier


(1) Cross-section of cable carrier
(12) Cross-section of cable carrier
|

\(\xrightarrow[\mathrm{N} \times 200]{85}\)


Note 1.The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
Note 2. The shaded position indicates an user cable extraction port.







 \begin{tabular}{l|l|l|l|l} 
\\
\hline Y stroke & 150 & 250 & 350 & 450
\end{tabular}
\begin{tabular}{|l|l|l|l|l}
\hline\(Z\) stroke & 150 & 250 & 350 \\
\hline
\end{tabular}

\section*{Orderina method}


Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{|c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZS12 & ZS6 \\
\hline \(\mathbf{1 5 0}\) & 3 & 5 \\
\hline \(\mathbf{2 5 0}\) & 3 & 5 \\
\hline \(\mathbf{3 5 0}\) & 3 & 5 \\
\hline \(\mathbf{4 5 0}\) & 3 & 4 \\
\hline \(\mathbf{5 5 0}\) & 3 & 3 \\
\hline
\end{tabular}

SXYBx 3 axes / ZS A1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 & 2550 & 2650 & 2750 & 2850 & 2950 & 3050 \\
\hline L & 588 & 688 & 788 & 888 & 988 & 1088 & 1188 & 1288 & 1388 & 1488 & 1588 & 1688 & 1788 & 1888 & 1988 & 2088 & 2188 & 2288 & 2388 & 2488 & 2588 & 2688 & 2788 & 2888 & 2988 & 3088 & 3188 & 3288 & 3388 & 3488 \\
\hline K & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline C & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline D & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline E & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 \\
\hline F & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline M & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 & 13 & 13 & 14 & 14 & 15 & 15 & 16 \\
\hline N & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 & 30 & 30 & 32 & 32 & 34 & 34 & 36 \\
\hline G & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 & 0 & 50 \\
\hline \(J\) & 330 & 330 & 430 & 430 & 530 & 530 & 630 & 630 & 730 & 730 & 830 & 830 & 930 & 930 & 1030 & 1030 & 1130 & 1130 & 1230 & 1230 & 1330 & 1330 & 1430 & 1430 & 1530 & 1530 & 1630 & 1630 & 1730 & 1730 \\
\hline Y stroke & 150 & 250 & 350 & 450 & 550 & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline Z stroke & 150 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Specification} \\
\hline & X-axis & Y-axis & \begin{tabular}{l}
Z-axis: \\
ZRS12
\end{tabular} & Z-axis: ZRS6 & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & B14H & B14 & - & - & - \\
\hline AC servo motor output (W) & 200 & 100 & 6 & & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm)(R: \({ }^{\circ}\) ) & +/-0.04 & +/-0.04 & +/-0 & . 02 & +/-0.005 \\
\hline Drive system & Timing belt & Timing belt & Ball scr & ew \(\phi 12\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & Equivalent to lead 25 & Equivalent to lead 25 & 12 & 6 & (1/50) \\
\hline Maximum speed (XYZ: mm/sec)(R: \%/sec) & 1875 & 1875 & 1000 & 500 & 1020 \\
\hline Moving range (XYZ: mm)(R: \({ }^{\circ}\) ) & 150 to 3050 & 150 to 550 & \multicolumn{2}{|r|}{150} & 360 \\
\hline Robot cable length (m) & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c}
\hline Maximum payload & (kg) \\
\hline Y stroke (mm) & ZRS12 & ZRS6 \\
\hline \(\mathbf{1 5 0}\) & 3 & 5 \\
\hline \(\mathbf{2 5 0}\) & 3 & 5 \\
\hline \(\mathbf{3 5 0}\) & 3 & 5 \\
\hline \(\mathbf{4 5 0}\) & 3 & 3 \\
\hline \(\mathbf{5 5 0}\) & 2 & 2 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYBx 4 axes / ZRS A1


\section*{Arm type Cable carrier}

\section*{Ordering method}


\section*{Specification}
\begin{tabular}{|c|c|c|}
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & N15 & F14 \\
\hline AC servo motor output (W) & 400 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi} 15\) & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 500 to 2000 & 150 to 650 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 25 \\
\hline \(\mathbf{2 5 0}\) & 21 \\
\hline \(\mathbf{3 5 0}\) & 18 \\
\hline \(\mathbf{4 5 0}\) & 16 \\
\hline \(\mathbf{5 5 0}\) & 13 \\
\hline \(\mathbf{6 5 0}\) & 11 \\
\hline
\end{tabular}

Note 1.Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2.Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{|c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

NXY 2 axes A1


Use M6 \(\times 1.0\) hex socket head bolt with length head bolt with length (under head) of 20 mm or more.
Detail of section A
Detail of section B

> Cross-section C-C


\begin{tabular}{l} 
Specification \\
\hline \\
\hline Axis construction \({ }^{\text {Note } 1}\) \\
\hline AC servo motor output (W) \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) \\
\hline Drive system \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) \\
\hline Maximum speed (mm/sec) \\
\hline Moving range (mm) \\
\hline Robot cable length (m) \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{c}{ (ktroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{2 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{3 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{4 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{5 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{6 5 0}\) & 3 & 2 & 1 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2.Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

NXY 3 axes / ZFL20 A1

NXY 3 axes / ZFL20 A3


\begin{tabular}{l} 
Specification \\
\hline \\
\hline Axis construction \({ }^{\text {Note } 1}\) \\
\hline AC servo motor output (W) \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) \\
\hline Drive system \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) \\
\hline Maximum speed (mm/sec) \\
\hline Moving range (mm) \\
\hline Robot cable length (m) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 13 & 13 & 12 \\
\hline \(\mathbf{2 5 0}\) & 12 & 11 & 10 \\
\hline \(\mathbf{3 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{4 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{5 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{6 5 0}\) & 3 & 2 & 1 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

NXY 3 axes / ZFH A1



Detail of section A


Detail of section B
 with length head bolt with length (under head) of 20 mm or more.



\section*{Arm type Cable carrier Double Y axes specifications}

Note 1 ．When the Y －axis stroke is different between the right and left，it will be an order－made．

\section*{Specification}
\begin{tabular}{|c|c|c|}
\hline & X－axis & Y－axis \({ }^{\text {Note } 1}\) \\
\hline Axis construction \({ }^{\text {Note } 2}\) & N15D & F14 \\
\hline AC servo motor output（W） & 400 & 100 \\
\hline Repeatability \({ }^{\text {Note } 3}\)（mm） & ＋／－0．01 & ＋／－0．01 \\
\hline Drive system & Ball screw \({ }^{\text {15 }}\) & Ball screw \({ }^{\text {1 }} 15\) \\
\hline Ball screw lead \({ }^{\text {Notet } 4}\)（Deceleration ratio）（mm） & 20 & 20 \\
\hline Maximum speed（ \(\mathrm{mm} / \mathrm{sec}\) ） & 1200 & 1200 \\
\hline Moving range（mm） & 250 to 1750 & 150 to 650 \\
\hline Robot cable length（m） & \multicolumn{2}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}

Note 1．The same two Y axes are installed and they have same specifications．If axes of individually different stroke are desired，it will be an order－made．In that case，consult YAMAHA．
Note 2．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇
Note 3．Positioning repeatability in one direction．
Note 4．Leads not listed in the catalog are also available．Contact us for details．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming \(/ / /\) o point trace \(/\) \\
Remote command \(/\) Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Maximum payload } \\
\hline Y stroke（mm） & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 25 \\
\hline \(\mathbf{2 5 0}\) & 21 \\
\hline \(\mathbf{3 5 0}\) & 18 \\
\hline \(\mathbf{4 5 0}\) & 16 \\
\hline \(\mathbf{5 5 0}\) & 13 \\
\hline \(\mathbf{6 5 0}\) & 11 \\
\hline
\end{tabular}

NXY－W 4 axes WA1


\(\xlongequal{\text { VIEW } Y \text {（ } Y \text {＂is symmetrical with this drawing．）}}\)


Detail of section B


Detail of section \(A\)




Cross－section of XY cable carrier
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & \multirow[t]{2}{*}{Note 1．The moving range when returning to origin and the stop position when stopping by the mechanical stopper．} \\
\hline L & 830 & 930 & 1030 & 1130 & 1230 & 1330 & 1430 & 1530 & 1630 & 1730 & 1830 & 1930 & 2030 & 2130 & 2230 & 2330 & \\
\hline D & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & 15 & 65 & washer，spring washer，etc．in the main unit． \\
\hline E & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & go into deeper than as shown in the drawing． \\
\hline F & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & Note 4．Use M4 tap of the box next to X axis for the user grounding terminal． \\
\hline G & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & 115 & 165 & Note 5．The M4 taps at both ends of the cable carriage can be used \\
\hline H & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & \multirow[t]{2}{*}{te 6．Minimum dimension between LX and RX sliders．} \\
\hline I & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & \\
\hline J & 620 & 720 & 820 & 920 & 1020 & 1120 & 1220 & 1320 & 1420 & 1520 & 1620 & 1720 & 1820 & 1920 & 2020 & 2120 & \\
\hline Y stroke & 150 & 250 & 350 & 450 & 550 & 650 & & & & & & & & & & & \\
\hline
\end{tabular}

Note 1. When either one or both of Y -axis or Z -axis stroke is different, it will be an order-made.

\section*{Specification}
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis \({ }^{\text {Note } 1}\) & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 2}\) & N15D & F14 & F10H-BK \\
\hline AC servo motor output (W) & 400 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note } 3}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi} 15\) & Ball screw \$15 & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 4}\) (Deceleration ratio) (mm) & 20 & 20 & 20 \\
\hline Maximum speed (mm/sec) & 1200 & 1200 & 1200 \\
\hline Moving range (mm) & 250 to 1750 & 150 to 650 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1.The same two Y axes are installed and they have same specifications. If axes of individually different stroke are desired, it will be an order-made. In that case, consult YAMAHA.
Note 2. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 3.Positioning repeatability in one direction.
Note 4. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{y y y}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{2 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{3 5 0}\) & 8 & 8 & 8 \\
\hline \(\mathbf{4 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{5 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{6 5 0}\) & 3 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

NXY-W 6 axes / ZFL WA1


Note 1. When either one or both of Y -axis or Z -axis stroke is different, it will be an order-made.
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis \({ }^{\text {Note } 1}\) & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 2}\) & N15D & F14 & F10H-BK \\
\hline AC servo motor output (W) & 400 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note } 3}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\$ 1 5}\) & Ball screw \(\mathbf{\$ 1 5}\) & Ball screw \$15 \\
\hline Ball screw lead \({ }^{\text {Note } 4}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1750 & 150 to 650 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{c}{ ztroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 13 & 13 & 12 \\
\hline \(\mathbf{2 5 0}\) & 12 & 11 & 10 \\
\hline \(\mathbf{3 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{4 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{5 5 0}\) & 5 & 4 & 3 \\
\hline \(\mathbf{6 5 0}\) & 3 & 2 & 1 \\
\hline
\end{tabular}

Note 1. The same two Y axes are installed and they have same specifications. If axes of individually different stroke are desired, it will be an order-made. In that case, consult YAMAHA
Note 2. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 3. Positioning repeatability in one direction.
Note 4. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}



Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 2.Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4.When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
 Specify various controller setting items. RCX320 P P. 660

\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 30 \\
\hline \(\mathbf{2 5 0}\) & 30 \\
\hline \(\mathbf{3 5 0}\) & 25 \\
\hline \(\mathbf{4 5 0}\) & 20 \\
\hline \(\mathbf{5 5 0}\) & 20 \\
\hline \(\mathbf{6 5 0}\) & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Contro & \\
\hline Controller & Operation method \\
\hline \[
\begin{aligned}
& \mathrm{RCX320-R} \\
& \mathrm{R} \times \times 222-\mathrm{R}
\end{aligned}
\] & Programming / I/O point trace / Remote command \(/\) Operation using RS-232C communication \\
\hline
\end{tabular}



MXYx 2 axes A4




Detail of section B


Arm type O Whipover
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H \\
\hline AC servo motor output (W) & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\$ 2 0}^{2}\) & Ball screw \(\mathbf{\$ 1 5}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 250 to 850 & 150 to 650 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 30 \\
\hline \(\mathbf{2 5 0}\) & 30 \\
\hline \(\mathbf{3 5 0}\) & 25 \\
\hline \(\mathbf{4 5 0}\) & 20 \\
\hline \(\mathbf{5 5 0}\) & 20 \\
\hline \(\mathbf{6 5 0}\) & 16 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4.When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 2 axes A1



Use M8 \(\times 1.25\) hex socket head bolt with length head bolt with length (under head) of 40 mm or more.
 Specify various controller setting items. RCX320 P P. 660




MXYx 2 axes A2


MXYx 2 axes

\section*{A3}


MXYx 2 axes
A4



Detail of section A



Detail of section B


\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis: ZFL20 & Z-axis: ZFL10 \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & \multicolumn{2}{|c|}{F10H-BK} \\
\hline AC servo motor output (W) & 400 & 200 & \multicolumn{2}{|c|}{200} \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & \multicolumn{2}{|c|}{+/-0.01} \\
\hline Drive system & Ball screw \(\mathbf{\phi}^{20}\) & Ball screw \(\phi 15\) & \multicolumn{2}{|l|}{Ball screw \(\mathbf{\phi} 15\)} \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 650 & 150 to & 350 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZFL with higher rigidity as compared with ZF types which are conventional standard types. When you need the ZF type, please consult YAMAHA
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multicolumn{7}{|c}{ Maximum payload } \\
\hline & \multicolumn{5}{|c}{ Z stroke (mm) } \\
\cline { 2 - 8 } & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline & & & & & & \\
\hline \(\mathbf{1 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{2 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{3 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{4 5 0}\) & 8 & 8 & 8 & 12 & 11 & 10 \\
\hline \(\mathbf{5 5 0}\) & 8 & 8 & 8 & 12 & 11 & 10 \\
\hline \(\mathbf{6 5 0}\) & 8 & 7 & 6 & 8 & 7 & 6 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 3 axes / ZFL20/10 A1




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & \begin{tabular}{l}
stopping by the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & & & Note 3. When the X -axis stroke is longer than 850 mm , resonance of the ball screw \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & speeds shown in the table at the left. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10H-BK \\
\hline AC servo motor output (W) & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\phi 15\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 650 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Robot cable length (m)
Note. The standard types are ZFH with higher rigidity as compared with ZF types which are conventional standard types. When you need the ZF type, please consu
ing (installation holes, tap holes) differs from single-axis robots'
Note 2. Positioning repeatability in one direction
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{2 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{3 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{4 5 0}\) & 12 & 11 & 10 \\
\hline \(\mathbf{5 5 0}\) & 12 & 11 & 10 \\
\hline \(\mathbf{6 5 0}\) & 8 & 7 & 6 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 3 axes / ZFH A1



Detail of section A


Use M8 \(\times 1.25\) hex socket head bolt with length head bolt with length (under head) of 40 mm or more.

Detail of section B




\(\xlongequal{\text { (2) Cross-section of cable carrier }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 \\
\hline L & & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 \\
\hline K & & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline c & & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 \\
\hline M & & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 \\
\hline N & & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 \\
\hline Y stroke & & 150 & 250 & 350 & 450 & 550 & 650 & & & & & \\
\hline Z stroke & & 150 & 250 & 350 & & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% \\
\hline
\end{tabular}

\footnotetext{
Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
User cable extraction port.
}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Specification & & & & & \\
\hline & X-axis & Y-axis & \[
\begin{array}{|l|}
\hline \text { Z-axis: } \\
\text { ZRFL20 } \\
\hline
\end{array}
\] & Z-axis: ZRFL10 & R -axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10H & -BK & R5 \\
\hline AC servo motor output (W) & 400 & 200 & 20 & & 50 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0 & . 01 & +/-0.0083 \\
\hline Drive system & Ball screw \(\mathbf{2}^{20}\) & Ball screw \({ }^{\text {1 }} 15\) & \multicolumn{2}{|l|}{Ball screw \(\phi 15\)} & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 20 & 10 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \({ }^{\circ} \mathrm{sec}\) ) & 1200 & 1200 & 1200 & 600 & 360 \\
\hline Moving range (XYZ: mm)(R: \({ }^{\circ}\) ) & 250 to 1250 & 150 to 650 & \multicolumn{2}{|l|}{150 to 350} & 360 \\
\hline Robot cable length ( m ) & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZRFL with higher rigidity as compared with ZRF types which are conventional standard types. When you need the ZRF type, please consult YAMAHA.
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2.Positioning repeatability in one direction.
ote 3. Leare available. Contact us for details
lenger than 850 mm , resonance of the ball screw may occur depending on the operation conditions speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multirow{7}{|c}{ Maximum payload } \\
\cline { 2 - 7 } & \multicolumn{5}{|c}{ Z stroke (mm) } \\
\hline \begin{tabular}{c} 
Y stroke \\
(mm)
\end{tabular} & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{2 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{3 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{4 5 0}\) & 4 & 4 & 4 & 8 & 7 & 6 \\
\hline \(\mathbf{5 5 0}\) & 4 & 4 & 4 & 8 & 7 & 6 \\
\hline \(\mathbf{6 5 0}\) & 4 & 4 & 4 & 4 & 3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 4 axes / ZRFL20/10 A1


Z-axis: clamped table / moving base type (200W)+R-axis

\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10H-BK & R5 \\
\hline AC servo motor output (W) & 400 & 200 & 200 & 50 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm)(R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw \({ }^{\text {2 } 20}\) & Ball screw \({ }^{\text {1 }} 5\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\% \mathrm{sec}\) ) & 1200 & 1200 & 600 & 360 \\
\hline Moving range (XYZ: mm)(R: \({ }^{\text {) }}\) ) & 250 to 1250 & 150 to 650 & 150 to 350 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZRFH with higher rigidity as compared with ZRF types which are conventional standard types. When you need the ZRF type, please consult YAMAHA.
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 11 & 9 & 8 \\
\hline \(\mathbf{2 5 0}\) & 11 & 9 & 8 \\
\hline \(\mathbf{3 5 0}\) & 11 & 9 & 8 \\
\hline \(\mathbf{4 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{5 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{6 5 0}\) & 4 & 3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c|}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 4 axes / ZRFH A1



 (BC) Coss-section ores

\section*{Detail of section A}

Detail of section B
(2RCross-section of cable carrier


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & Note 2. User cable extraction port. \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & & & \multirow[t]{3}{*}{Note 3. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 \\
\hline AC servo motor output (W) & 600 & 400 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{2}^{20}\) & Ball screw \(\mathbf{2}^{20}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 1200 & 1200 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 650 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
 Specify various controller setting items. RCX320 \(\boldsymbol{P} \mathbf{P . 6 6 0}\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{2 5 0}\) & 40 \\
\hline \(\mathbf{3 5 0}\) & 40 \\
\hline \(\mathbf{4 5 0}\) & 35 \\
\hline \(\mathbf{5 5 0}\) & 30 \\
\hline \(\mathbf{6 5 0}\) & 30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline RCX320-R RCX222HP-R & Programming / //O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}



\begin{tabular}{l|c|c|c}
\hline Specification \\
\hline & X－axis & Y－axis & Z－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H－BK \\
\hline AC servo motor output（W） & 600 & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note 2 }}\)（mm） & \(+/-0.01\) & \(+/-0.01\) & \(+/-0.01\) \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \(^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } \mathbf{~}(\mathbf{m m} / \mathbf{s e c})}\) & 1200 & 1200 & 600 \\
\hline Moving range（mm） & 250 to 1250 & 250 to 650 & 250 to 550 \\
\hline Robot cable length（m） & \multicolumn{4}{l}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c}
\hline \multicolumn{4}{|c}{ Maximum payload } & （kg） \\
\hline & \multicolumn{4}{c}{ Z stroke（mm）} \\
\hline Y stroke（mm） & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) & 20 & 20 & 20 & 20 \\
\hline \(\mathbf{3 5 0}\) & 20 & 20 & 20 & 20 \\
\hline \(\mathbf{4 5 0}\) & 20 & 20 & 19 & 18 \\
\hline \(\mathbf{5 5 0}\) & 18 & 17 & 16 & 15 \\
\hline \(\mathbf{6 5 0}\) & 18 & 17 & 16 & 15 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details
Note 4．When the \(X\)－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming／I／O point trace \(/\) \\
Remote com conmand \(/\) Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 3 axes／ZL A1

\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H-BK \\
\hline AC servo motor output (W) & 600 & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\$ 2 0}^{2}\) & Ball screw \(\mathbf{2}^{20}\) & Ball screw \(\$ 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 5 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) (\%/sec) & 1200 & 1200 & 300 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 650 & 250 to 550 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
ote 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 3. Postioning repeatabilty in one direction.
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{4}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{4}{c}{} \\
\hline Y stroke (mm) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) & 25 & 25 & 24 & 23 \\
\hline \(\mathbf{3 5 0}\) & 25 & 25 & 24 & 23 \\
\hline \(\mathbf{4 5 0}\) & 20 & 20 & 19 & 18 \\
\hline \(\mathbf{5 5 0}\) & 18 & 17 & 16 & 15 \\
\hline \(\mathbf{6 5 0}\) & 18 & 17 & 16 & 15 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 3 axes / ZH A1


\title{
HXYX
}

ZRL Model－Cable－Combi－＿ \(\begin{aligned} & \text { X－axis } \\ & \text { nation } \\ & \text { stroke }\end{aligned}\)－ \(\begin{aligned} & \text { Y－axis } \\ & \text { stroke }\end{aligned}\) ZR－axis
\begin{tabular}{|c|c|c|c|c|}
\hline Specification & & & & \\
\hline & X－axis & Y－axis & Z－axis & R－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H－BK & R20 \\
\hline AC servo motor output（W） & 600 & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（XYZ：mm）（R：\({ }^{\circ}\) ） & ＋／－0．01 & ＋／－0．01 & ＋／－0．01 & ＋／－0．0083 \\
\hline Drive system & Ball screw \(\mathbf{\phi 2 0}^{\text {20 }}\) & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 10 & （1／50） \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（XYZ：mm／sec）（R：\(\left.\% / \mathrm{sec}\right)\) & 1200 & 1200 & 600 & 360 \\
\hline Moving range（XYZ：mm）（R：\({ }^{\circ}\) ） & 250 to 1250 & 250 to 650 & 250 to 550 & 360 \\
\hline Robot cable length（m） & \multicolumn{4}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{4}{|c}{ Maximum payload } & （kg） \\
\hline & \multicolumn{4}{c}{} \\
\hline Y stroke（mm） & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) & 12 & 12 & 12 & 12 \\
\hline \(\mathbf{3 5 0}\) & 12 & 12 & 12 & 12 \\
\hline \(\mathbf{4 5 0}\) & 12 & 12 & 12 & 11 \\
\hline \(\mathbf{5 5 0}\) & 10 & 9 & 8 & 7 \\
\hline \(\mathbf{6 5 0}\) & 10 & 9 & 8 & 7 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details．
Note 4．When the X －axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 4 axes／ZRL A1

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specification} \\
\hline & X-axis & Y-axis & Z-axis & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H-BK & R20 \\
\hline AC servo motor output (W) & 600 & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm)(R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw 20 \(^{\text {20 }}\) & Ball screw \(\mathrm{\phi} 20\) & Ball screw \(\phi 15\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 5 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}(\mathrm{XYZ}\) : mm/sec) (R: \(\% / \mathrm{sec})\) & 1200 & 1200 & 300 & 360 \\
\hline Moving range (XYZ: mm) ( \(\mathrm{R}:{ }^{\circ}\) ) & 250 to 1250 & 250 to 650 & 250 to 550 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 3. Positioning repealabity
Note 4 . When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{4}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{4}{c}{} \\
\hline Y stroke (mm) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) & 12 & 12 & 12 & 12 \\
\hline \(\mathbf{3 5 0}\) & 12 & 12 & 12 & 12 \\
\hline \(\mathbf{4 5 0}\) & 12 & 12 & 12 & 11 \\
\hline \(\mathbf{5 5 0}\) & 11 & 10 & 9 & 8 \\
\hline \(\mathbf{6 5 0}\) & 11 & 10 & 9 & 8 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


Arm type Cable carrier
\begin{tabular}{l|c|c}
\hline \multicolumn{1}{|c}{ Specification } & X-axis & Y-axis \\
\hline & F20N & F17 \\
\hline Axis construction \({ }^{\text {Note } 1}\) & 400 & 400 \\
\hline AC servo motor output (W) & \(+/-0.04\) & \(+/-0.01\) \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) & Ball screw \(\phi 20\) & Ball screw \(\phi 20\) \\
\hline Drive system & 20 & 20 \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) & 1200 & 1200 \\
\hline Maximum speed (mm/sec) & 1150 to 2050 & 250 to 650 \\
\hline Moving range (mm) & \multicolumn{2}{|c}{ Standard: 3.5 } \\
\hline Robot cable length (m) & Option: 5,10 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline RCX320-R & \begin{tabular}{l} 
Programming /I/O point trace / \\
RCX222HP-R \\
Renotecommand Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{2 5 0}\) & 40 \\
\hline \(\mathbf{3 5 0}\) & 40 \\
\hline \(\mathbf{4 5 0}\) & 35 \\
\hline \(\mathbf{5 5 0}\) & 30 \\
\hline \(\mathbf{6 5 0}\) & 30 \\
\hline
\end{tabular}
HXYLx 2 axes



HXYLx 2 axes A4



\[
\text { M5 } \mathrm{K}
\]

Gantry type Cable carrier
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H \\
\hline AC servo motor output (W) & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\$ 2 0}^{2}\) & Ball screw \(\mathbf{\phi}^{15}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 1200 & 1200 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 850 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 30 \\
\hline \(\mathbf{2 5 0}\) & 30 \\
\hline 350 & 30 \\
\hline 450 & 30 \\
\hline 550 & 30 \\
\hline 650 & 30 \\
\hline 750 & 25 \\
\hline 850 & 20 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 850 mm ( 750 mm for Y -axis), resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.

MXYX 2 axes G1

\begin{tabular}{c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}





MXYx 2 axes G4

\(M X Y x=\)

\section*{Gantry type Cable carrier Type with Y-axis I/O cable carrier added}
MXYx 2 axes/IO G1

Maximum payload (kg)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 29 \\
\hline \(\mathbf{2 5 0}\) & 29 \\
\hline 350 & 29 \\
\hline 450 & 29 \\
\hline \(\mathbf{5 5 0}\) & 29 \\
\hline \(\mathbf{6 5 0}\) & 29 \\
\hline \(\mathbf{7 5 0}\) & 24 \\
\hline \(\mathbf{8 5 0}\) & 19 \\
\hline
\end{tabular}

Robot cable length (m)

\section*{Specification}
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H \\
\hline AC servo motor output (W) & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 850 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
Note 1.Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2.Positioning repeatability in one direction.
Note 4. When the X -axis stroke is longer than 850 mm ( 750 mm for Y -axis), resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
Ordering method



\(\begin{array}{r}\text { - } \\ 26.5 \\ \hline\end{array}\)
Use \(\mathrm{M} 8 \times 1.25\) hex socket head bolt with length head bolt with length
(under head) of 40 mm Detail of section B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & \begin{tabular}{l}
stopping by the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & & & & \\
\hline \multirow{4}{*}{Maximum speed for each stroke ( \(\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & Note 3. When the X -axis stroke is longer than 850 mm ( 750 mm for Y -axis), resonance of the ball screw may occur depending on the operation conditions (critical \\
\hline & Y -axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & & & & speed). In this case, reduce the speed setting on the program by referring to \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & & & & \\
\hline
\end{tabular}



RCX340-3

\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis: ZFL20 & Z-axis: ZFL10 \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H-BK & \multicolumn{2}{|c|}{F10H-BK} \\
\hline AC servo motor output (W) & 400 & 200 & \multicolumn{2}{|c|}{200} \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & \multicolumn{2}{|c|}{+/-0.01} \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\mathbf{\phi 1 5}\) & \multicolumn{2}{|l|}{Ball screw \(\mathbf{\$ 1 5}\)} \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 850 & 150 t & 350 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZFL with higher rigidity as compared with ZF types which are conventional standard types. When you need the ZF type, please consult YAMAHA.
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 850 mm ( 750 mm for Y -axis), resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.

Maximum payload
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multirow{2}{*}{} & \multicolumn{6}{|c}{ Z stroke (mm) } \\
\cline { 2 - 7 } & \multicolumn{3}{|c|}{ ZFL20 } & \multicolumn{3}{c}{ ZFL10 } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{2 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{3 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{4 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{5 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{6 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{7 5 0}\) & 8 & 8 & 8 & 15 & 15 & 15 \\
\hline \(\mathbf{8 5 0}\) & 8 & 8 & 8 & 12 & 11 & 10 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline Controller \\
\hline Controller & \multicolumn{1}{c|}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 3 axes / ZFL20/10 G1


\title{
\(M X Y x=\)
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Specification} \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10H-BK \\
\hline AC servo motor output (W) & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi 2 0}^{2}\) & Ball screw \(\phi 15\) & Ball screw \(\mathbf{\phi}^{15}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 850 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline \multicolumn{4}{|l|}{Note. The standard types are ZFH with higher rigidity as compared with ZF types which are conventional standard types. When you need the ZF type, please consult YAMAHA.} \\
\hline \multicolumn{4}{|l|}{Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.} \\
\hline Note 4. When the X -axis stroke is longer than 850 mm conditions (critical speed). In this case, reduce below. & mm for Y -axis), reso speed setting on the & e ball screw may o by referring to the \(m\) & ding on the operation peeds shown in the table \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{2 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{3 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{4 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{5 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{6 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{7 5 0}\) & 14 & 13 & 12 \\
\hline \(\mathbf{8 5 0}\) & 12 & 11 & 10 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Controller \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 3 axes / ZFH G1


\section*{Specification}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis: ZRFL20 & \begin{tabular}{l}
Z-axis: \\
ZRFL10
\end{tabular} & R -axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10 & -BK & R5 \\
\hline AC servo motor output (W) & 400 & 200 & 20 & & 50 \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (XYZ: mm)(R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0 & & +/-0.0083 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\$ 15\) & Ball scr & w \$15 & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note }} 3\) (Deceleration ratio) (mm) & 20 & 20 & 20 & 10 & (1/50) \\
\hline Maximum spee \({ }^{\text {d Note } 4}\) (XYZ: mm/sec) (R: \({ }^{\circ} / \mathrm{sec}\) ) & 1200 & 1200 & 1200 & 600 & 360 \\
\hline Moving range (XYZ: mm)(R: \({ }^{\circ}\) ) & 250 to 1250 & 150 to 850 & \multicolumn{2}{|l|}{150 to 350} & 360 \\
\hline Robot cable length (m) & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZRFL with higher rigidity as compared with ZRF types which are conventional standard types. When you need the ZRF type, please consult YAMAHA
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the X -axis stroke is longer than 850 mm ( 750 mm for Y -axis), resonance of the ball screw may occur depending on the operation below.
\begin{tabular}{c|c|c|c|c|c|c}
\multicolumn{6}{|c}{ Maximum payload } \\
\hline & \multicolumn{5}{|c}{ Z stroke (mm) } \\
\cline { 2 - 7 } & \multicolumn{3}{|c}{ ZRFL20 } & \multicolumn{3}{c}{ ZRFL10 } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{2 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{3 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{4 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{5 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{6 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{7 5 0}\) & 4 & 4 & 4 & 11 & 11 & 11 \\
\hline \(\mathbf{8 5 0}\) & 4 & 4 & 4 & 8 & 7 & 6 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 4 axes / ZRFL20/10 G1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & & & \\
\hline \multirow{4}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \multirow[b]{4}{*}{Note 3. When the X -axis stroke is longer than 850 mm ( 750 mm for Y -axis), resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & \\
\hline & Y -axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & & & & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & & & & \\
\hline
\end{tabular}

\title{
\(M X Y x=\)
}

RCX340-4
ZR-axis

\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10H-BK & R5 \\
\hline AC servo motor output (W) & 400 & 200 & 200 & 50 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw \(\mathbf{2}^{20}\) & Ball screw \(\mathbf{\phi 1 5}^{15}\) & Ball screw \(\mathbf{\phi}^{15}\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\% \mathrm{sec}\) ) & 1200 & 1200 & 600 & 360 \\
\hline Moving range (XYZ: mm) (R: \({ }^{\circ}\) ) & 250 to 1250 & 150 to 850 & 150 to 350 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZRFH with higher rigidity as compared with ZRF types which are conventional standard types. When you need the ZRF type, please consult YAMAHA.

Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 850 mm ( 750 mm for \(Y\)-axis), resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{2 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{3 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{4 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{5 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{6 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{7 5 0}\) & 10 & 9 & 8 \\
\hline \(\mathbf{8 5 0}\) & 8 & 7 & 6 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 4 axes / ZRFH G1




\(\frac{128.5}{-6.71}\)
\(\xrightarrow{\text { Cross-section E-E }}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \multicolumn{2}{|l|}{D} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & & \\
\hline \multirow{4}{*}{Maximum speed for each stroke (mm/sec) \({ }^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% \\
\hline & Y -axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & & & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & & & \\
\hline
\end{tabular}

Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
Note 2. User cable extraction port.

\footnotetext{
3. When the \(X\)-axis stroke is longer than 850 mm ( 750 mm for \(Y\)-axis), resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to speed). In this case, reduce the speed setting on the program by referring to
the maximum speeds shown in the table at the left.
}

\section*{Gantry type O Cable carrier}

\section*{Specification}
\begin{tabular}{|c|c|c|}
\hline & X－axis & Y－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 \\
\hline AC servo motor output（W） & 600 & 400 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（mm） & ＋／－0．01 & ＋／－0．01 \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\$ 20\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1200 & 1200 \\
\hline Moving range（mm） & 250 to 1250 & 250 to 1050 \\
\hline Robot cable length（m） & \multicolumn{2}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details
Note 4．When the \(X\)－axis \(/ \mathrm{Y}\)－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions （critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline \begin{tabular}{l}
RCX320－R \\
RCX222HP－R
\end{tabular} & \begin{tabular}{l}
Programming／／／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 2 axes G1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1．The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 667 & 767 & 867 & 967 & 1067 & 1167 & 1267 & 1367 & 1467 & 1567 & 1667 & \begin{tabular}{l}
stopping by the mechanical stopper． \\
Note 2．User cable extraction port．
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & Note 3．Dimension of reinforced bracket（To be installed when the \(Y\) stroke is \\
\hline \multicolumn{2}{|l|}{F} & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1320 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & & & \\
\hline \multirow[t]{3}{*}{Maximum speed for each stroke （ \(\mathrm{mm} / \mathrm{sec})^{\text {Note } 4}\)} & X －axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & Note 4．When the \(X\)－axis \(/ \mathrm{Y}\)－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）． \\
\hline & Y－axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & & & In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left． \\
\hline & Speed setting & \multicolumn{6}{|c|}{－} & 80\％ & 70\％ & 60\％ & 50\％ & 40\％ & \\
\hline
\end{tabular}


HXYx 2 axes G4


\section*{Specification}
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H-BK \\
\hline AC servo motor output (W) & 600 & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 1050 & 250 to 550 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the X -axis \(/ \mathrm{Y}\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions
(critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


\section*{Specification}
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H-BK \\
\hline AC servo motor output (W) & 600 & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{Q}^{20}\) & Ball screw \(\mathbf{\$ 2 0}^{2}\) & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 5 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 300 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 1050 & 250 to 550 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the X -axis \(/ \mathrm{Y}\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|cc}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline & Z stroke (mm) \\
\hline Y stroke (mm) & \(\mathbf{2 5 0}\) to \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{1 0 5 0}\) & 30 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 3 axes / ZH G1


\title{
HXYx
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specification} \\
\hline & x －axis & Y －axis & 2－axis & R－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H－BK & R20 \\
\hline AC servo motor output（W） & 600 & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note2 }}\)（ XYZ ： mm ）（R：\({ }^{\circ}\) ） & ＋／－0．01 & ＋／－0．01 & ＋／－0．01 & ＋／－0．0083 \\
\hline Drive system & Ball screw \(\dagger 20\) & Ball screw \(\phi 20\) & Ball screw \(\dagger 15\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note3 }}\)（ Deceleration ratio）（mm） & 20 & 20 & 10 & （1／50） \\
\hline Maximum speed \({ }^{\text {Noses }}\)（XYZ：mm／sec）（R：\(/ \mathrm{sec}\) ） & 1200 & 1200 & 600 & 360 \\
\hline Moving range（XYZ：mm）（R：\({ }^{\circ}\) ） & 250 to 1250 & 250 to 1050 & 250 to 550 & 360 \\
\hline Robot cable length（ \(m\) ） & \multicolumn{4}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}
\begin{tabular}{c|c|}
\hline Maximum payload & \((\mathrm{kg})\) \\
\hline & \(\mathbf{Z}\) stroke \((\mathrm{mm})\) \\
\hline Y stroke \((\mathbf{m m})\) & \(\mathbf{2 5 0 \text { to } 5 5 0}\) \\
\hline 250 to 1050 & 12 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details．
Note 4．When the X －axis \(/ \mathrm{Y}\)－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions
（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline RCX340 & \begin{tabular}{l}
Programming／／／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 4 axes／ZRL G1




Detail of section A

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1．The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 667 & 767 & 867 & 967 & 1067 & 1167 & 1267 & 1367 & 1467 & 1567 & 1667 & le extraction port． \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & Note 3．Dimension of reinforced bracket（To be installed when the \(Y\) stroke is 750 mm or longer） \\
\hline \multicolumn{2}{|l|}{F} & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1320 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 250 & 350 & 450 & 550 & & & & & & & & \multirow[b]{4}{*}{Note 4．When the X －axis／Y－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）． In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．} \\
\hline \multirow[t]{3}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 4}\)} & X－axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Y－axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & & & \\
\hline & Speed setting & \multicolumn{6}{|c|}{－} & 80\％ & 70\％ & 60\％ & 50\％ & 40\％ & \\
\hline
\end{tabular}

Ordering method

HXYx-C

 ZRH man \begin{tabular}{cc} 
stroke & \(-\begin{array}{c}\text { stroke } \\
25 \text { to } 125 \mathrm{~cm} \\
25\end{array}\) \\
\hline
\end{tabular} \(\square\)


RCX340-4

Specify various controller setting items. RCX340 \(>\) P. 678

HXYX 4 axes / ZRH G1


\section*{Specification}
\begin{tabular}{|c|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis & R-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H & R20 \\
\hline AC servo motor output (W) & 600 & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0.01 & +/-0.0083 \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 5 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \(\% \mathrm{sec}\) ) & 1200 & 1200 & 300 & 360 \\
\hline Moving range (XYZ: mm) (R: \({ }^{\circ}\) ) & 250 to 1250 & 250 to 1050 & 250 to 550 & 360 \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 2. Positioning repeatability in one direction.
Note 4. When the \(X\)-axis \(/ \mathrm{Y}\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions
(critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline & Z stroke (mm) \\
\hline Y stroke (mm) & \(\mathbf{2 5 0}\) to \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{1 0 5 0}\) & 20 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

Gantry type Cable carrier

HXYLx 2 axes \(\quad\) G1
\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20N & F17 \\
\hline AC servo motor output (W) & 400 & 400 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.04 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\phi 20\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 1150 to 2050 & 250 to 1050 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the Y -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{l|l|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c|}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222HP-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remotet command \\
RS-232C comatation using
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & Note 1 . The moving range when returning to origin and the stop position when stopping by \\
\hline \multicolumn{2}{|l|}{L} & 1570 & 1670 & 1770 & 1870 & 1970 & 2070 & 2170 & 2270 & 2370 & 2470 & Note 2. User cable extraction port. \\
\hline \multicolumn{2}{|l|}{E} & 528 & 574 & 620 & 666 & 712 & 758 & 804 & 850 & 896 & 942 & Note 3. Dimension of reinforced bracket (To be installed when the \(Y\) stroke is 750 mm or \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & \\
\hline \multicolumn{2}{|l|}{M} & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & \\
\hline \multicolumn{2}{|l|}{N} & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & \\
\hline \multicolumn{2}{|l|}{F} & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Note 4.When the Y -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.}} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 4}\)} & Y-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & & \\
\hline
\end{tabular}

HXYLx 2 axes \(\quad\) G2


HXYLx 2 axes G4


Note 1．The total of the \(X\) and \(Y\) strokes should be 1000 mm or less．

\section*{Ordering method}
 Specify various controller setting items．RCX320 P P． 660
RCX222

\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke（mm） & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 15 \\
\hline \(\mathbf{2 5 0}\) & 14 \\
\hline \(\mathbf{3 5 0}\) & 13 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details
Note 4．When the X－axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical
speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c|}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320 \\
RCX222
\end{tabular} & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYx 2 axes
 Detail of section A Detail of section B \(\quad \underline{\text { Detail of section } \mathbf{C}}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke \({ }^{\text {Note } 3}\)} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & \multirow[t]{2}{*}{\begin{tabular}{l}
Note 1．The moving range when returning to origin and the stop position when stopping by the mechanical stopper． \\
Note 2．The shaded position indicates an user cable extraction port．
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & \multirow[b]{4}{*}{\begin{tabular}{l}
Note 3．The total of the \(X\) and \(Y\) strokes should be 1000 mm or less． \\
Note 4．When the \(X\)－axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Y stroke \({ }^{\text {Note } 3}\)} & 150 & 250 & 350 & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 4}\)} & X－axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{－} & 80\％ & 65\％ & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke \({ }^{\text {Note } 3}\)} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & Note 2. The shaded position indicates an user cable extraction port. \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & \multirow[b]{4}{*}{\begin{tabular}{l}
Note 3. The total of the \(X\) and \(Y\) strokes should be 1000 mm or less. \\
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Y stroke \({ }^{\text {Note3 }}\)} & 150 & 250 & 350 & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \(\left(\mathrm{mm} / \mathrm{sec}\right.\) ) \({ }^{\text {Note } 4}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & \\
\hline
\end{tabular}

\section*{Moving arm type O Whipover}

Z－axis：clamped base／moving table type（100W）

Note 1．The total of the \(X\) and \(Y\) strokes should be 1000 mm or less．
\begin{tabular}{|c|c|c|c|}
\hline & X－axis & Y －axis & Z－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10－BK \\
\hline AC servo motor output（W） & 200 & 100 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（mm） & ＋／－0．01 & ＋／－0．01 & ＋／－0．01 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1200 & 1200 & 600 \\
\hline Moving range（mm） & 150 to 850 & 150 to 350 & 150 to 350 \\
\hline Robot cable length（m） & \multicolumn{3}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details
Note 4．When the \(X\)－axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．



Note 1.The total of the \(X\) and \(Y\) strokes should be 1000 mm or less.
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10H-BK \\
\hline AC servo motor output (W) & 200 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 1200 \\
\hline Moving range (mm) & 150 to 850 & 150 to 350 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 3. Positioning repeatability in one direction.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 8 & 8 & 7 \\
\hline \(\mathbf{2 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{3 5 0}\) & 7 & 6 & 5 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


Note 1. The total of the \(X\) and \(Y\) strokes should be 1000 mm or less.
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F14 & F10H-BK \\
\hline AC servo motor output (W) & 200 & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 15\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) ( \({ }^{\circ} / \mathrm{sec}\) ) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 150 to 850 & 150 to 350 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) & 9 & 8 & 7 \\
\hline \(\mathbf{2 5 0}\) & 8 & 7 & 6 \\
\hline \(\mathbf{3 5 0}\) & 7 & 6 & 5 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.


O Moving arm type Whipover
Z-axis shaft vertical type
Ordering method


Note 1. The total of the \(X\) and \(Y\) strokes should be 1000 mm or less.


Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZS12 & ZS6 \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{3 5 0}\) & 3 & 5 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


\section*{Moving arm type Cable carrier}

\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H \\
\hline AC servo motor output (W) & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\mathbf{\phi}^{15}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 550 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{c|c|}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{5 5 0}\) & 20 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 2 axes M1


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & \begin{tabular}{l}
stopping by the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{D} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \multirow[b]{4}{*}{Note 3. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \(\left(\mathrm{mm} / \mathrm{sec}\right.\) ) \({ }^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & \\
\hline
\end{tabular}





Controller \(I\)
Number of controllable ax


Absolute
battery Specify various controller setting items. RCX340 P. 678
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specification} \\
\hline & X-axis & Y -axis & \[
\begin{aligned}
& \hline \text { Z-axis: } \\
& \text { ZFL20 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Z-axis: } \\
& \text { ZFL10 } \\
& \hline
\end{aligned}
\] \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & \multicolumn{2}{|c|}{F10H-BK} \\
\hline AC servo motor output (W) & 400 & 200 & \multicolumn{2}{|c|}{200} \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & \multicolumn{2}{|c|}{+/-0.01} \\
\hline Drive system & Ball screw \(\mathbf{\phi 2 0}^{0}\) & Ball screw \(\dagger 15\) & \multicolumn{2}{|l|}{Ball screw \(\phi 15\)} \\
\hline Ball screw lead \({ }^{\text {Notes } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 1200 & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 550 & \multicolumn{2}{|c|}{150 to 350} \\
\hline Robot cable length (m) & & dard: 3.5 Option & & \\
\hline
\end{tabular}

Note. The standard types are ZFL with higher rigidity as compared with ZF types which are conventional standard types. When you need the ZF type, please consult YAMAHA.
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multicolumn{6}{|c}{ Maximum payload } & (kg) \\
\hline & \multicolumn{5}{|c}{ ZFL20 } & \multicolumn{3}{c}{ ZFL10 } \\
\hline \begin{tabular}{c} 
Y stroke \\
(mm)
\end{tabular} & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to 550 & 8 & 8 & 8 & 12 & 11 & 10 \\
\hline
\end{tabular}

MXYx 3 axes / ZFL20/10 M1
\begin{tabular}{|c|c|}
\hline \(\square\) Contro & \\
\hline Controller & Operation method \\
\hline RCX340 &  \\
\hline
\end{tabular}


Ordering method

ZFH
Model
ZR-axis
RCX340.3

Specify various controller setting items. RCX340 P P. 678


\section*{Specification}
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H & F10H-BK \\
\hline AC servo motor output (W) & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 550 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZFH with higher rigidity as compared with ZF types which are conventional standard types. When you need the ZF type, please consult YAMAHA
Note 1. Use caution that the flame machining (in
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4 . When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{4}{|c}{ Maximum payload } \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{5 5 0}\) & 12 & 11 & 10 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}


\section*{Moving arm type Cable carrier}


Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline \begin{tabular}{l}
RCX320-R \\
RCX222HP-R
\end{tabular} & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}

HXYx 2 axes M1

\begin{tabular}{c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{6 5 0}\) & 30 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 667 & 767 & 867 & 967 & 1067 & 1167 & 1267 & 1367 & 1467 & 1567 & 1667 & Note 2. User cable extraction port. \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1320 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \multirow[b]{4}{*}{Note 3.When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multicolumn{2}{|l|}{Y stroke} & 250 & 350 & 450 & 550 & 650 & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & \\
\hline
\end{tabular}

Ordering method




\section*{Specification}
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F17 & F14H-BK \\
\hline AC servo motor output (W) & 600 & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\$ 2 0}^{2}\) & Ball screw \(\mathbf{\$ 2 0}^{2}\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 5 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 & 300 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 650 & 250 to 550 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
ote 1 . Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & moving range when returning to origin and the stop position wh \\
\hline \multicolumn{2}{|l|}{L} & 667 & 767 & 867 & 967 & 1067 & 1167 & 1267 & 1367 & 1467 & 1567 & 1667 & \begin{tabular}{l}
stopping by the mechanical stopper. \\
Note 2. User cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1320 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 250 & 350 & 450 & 550 & 650 & & & & & & & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 250 & 350 & 450 & 550 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{ZK} & 100 & 200 & 100 & 200 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{ZM} & 1 & 1 & 2 & 2 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{ZN} & 10 & 10 & 12 & 12 & & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & Note 3. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this \\
\hline & Speed setting & \multicolumn{4}{|c|}{-} & & & 80\% & 70\% & 60\% & 50\% & 40\% & case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left. \\
\hline
\end{tabular}

Note 1．The total of the \(X\) and \(Y\) strokes should be 1100 mm or less．


RCX222
\begin{tabular}{l|c|c}
\hline \multicolumn{1}{c}{ Specification } & X－axis & Y－axis \\
\hline & F14H & F14－BK \\
\hline Axis construction \({ }^{\text {Note } 1}\) & 200 & 100 \\
\hline AC servo motor output（W） & \(+/-0.01\) & \(+/-0.01\) \\
\hline Repeatability \({ }^{\text {Note 2 }}\)（mm） & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Drive system & 20 & 10 \\
\hline Ball screw lead \(^{\text {Note } 3}\)（Deceleration ratio）（mm） & 1200 & 600 \\
\hline Maximum speed \({ }^{\text {Note } \mathbf{~}(\mathbf{m m} / \mathbf{s e c})}\) & 150 to 850 & 150 to 550 \\
\hline Moving range（mm） & Standard：3．5 Option： 5,10 \\
\hline Robot cable length（m） & \\
\hline
\end{tabular}
\begin{tabular}{c|c|}
\hline \multicolumn{2}{|c|}{ Maximum payload } \\
\hline \hline Y stroke \((\mathrm{mm})\) & XY 2 axes \\
\hline 150 to 550 & 8 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（instaliation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 4．When the X －axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical
speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．

SXYx 2 axes P1


Controller
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline RCX320 & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}

\(\xrightarrow{\text { Detail of section A }}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke \({ }^{\text {Note } 3}\)} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \multicolumn{2}{|l|}{D} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 780 \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 \\
\hline \multicolumn{2}{|l|}{Y stroke \({ }^{\text {Note } 3}\)} & 150 & 250 & 350 & 450 & 550 & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 4}\)} & X－axis & & & & & & & 960 & 780 \\
\hline & Speed setting & & & & & & & 80\％ & 65\％ \\
\hline
\end{tabular}

\footnotetext{
The mov．
stopper．
The shaded position indicates an user cable extraction port
}

\begin{tabular}{|c|c|c|}
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H-BK \\
\hline AC servo motor output (W) & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 650 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{c|cc}
\hline \multicolumn{3}{c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) to 650 & 20 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

MXYx 2 axes P2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. The moving range when returning to origin and the stop position when \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & chanical sto \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & & & \multirow[b]{3}{*}{Note 3. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X -axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & \\
\hline
\end{tabular}

Note 1．The total of the \(X\) and \(Y\) strokes should be 1100 mm or less．
Specification
\begin{tabular}{|c|c|c|}
\hline & X－axis & Y－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H－BK \\
\hline AC servo motor output（W） & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（mm） & ＋／－0．01 & ＋／－0．01 \\
\hline Drive system & Ball screw \({ }^{\text {2 }} 20\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1200 & 600 \\
\hline Moving range（mm） & 250 to 950 & 150 to 650 \\
\hline Robot cable length（m） & \multicolumn{2}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．

Note 4．When the X －axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．

\section*{Ordering method}



\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320－R \\
RCX222－R
\end{tabular} & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command／Operation using \\
RS－232C communication
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|c|}
\hline \multicolumn{2}{|c}{ Maximum payload } \\
\hline Y stroke（mm） & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) to 650 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke \({ }^{\text {Note } 3}\)} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & \multirow[t]{2}{*}{\begin{tabular}{l}
Note 1．The moving range when returning to origin and the stop position when stopping by the mechanical stopper． \\
Note 2．User cable extraction port．
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & \\
\hline \multicolumn{2}{|l|}{Y stroke \({ }^{\text {Note } 3}\)} & 150 & 250 & 350 & 450 & 550 & 650 & & & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 3．The total of the \(X\) and \(Y\) strokes should be 1100 mm or less． \\
Note 4．When the X －axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \(\left(\mathrm{mm} / \mathrm{sec}\right.\) ）\({ }^{\text {Note } 4}\)} & X－axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{－} & 80\％ & 70\％ & \\
\hline
\end{tabular}

Z-axis: Clamped table / moving base type (200W) for Pole type
Ordering method
MXYx-C - P2




Specify various controller setting items. RCX340 P. 678
\(\qquad\) 10L: 10 m
\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H-BK & F10H-BK \\
\hline AC servo motor output (W) & 400 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi 2 0}^{2}\) & Ball screw \({ }^{\text {1 }} 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 & 1200 \\
\hline Moving range (mm) & 250 to 1250 & 150 to 650 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note. The standard types are ZPMH with higher rigidity as compared with ZPM types which are conventional standard types. When you need the ZPM type, please consult YAMAHA.
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'
Note 2. Positioning repeatability in one direction.
Note 3. Leads 4 are details
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c|c}
\hline Maximum payload & (kg) \\
\hline & \multicolumn{3}{|c}{ Z stroke (mm) } \\
\hline Y stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{6 5 0}\) & 10 & 9 & 8 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

OPole type Cable carrier
OOrdering method

Specify various controller setting items. RCX320 P P. 660

Specify various controller setting items. RCX222 - P. 670
\begin{tabular}{|c|c|c|}
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F20-BK \\
\hline AC servo motor output (W) & 600 & 600 \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\mathbf{\phi}^{20}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 1050 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{c|cc}
\hline \multicolumn{3}{|c|}{ Maximum payload } \\
\hline \(\mathbf{Y}\) stroke \((\mathrm{mm})\) & \(\mathbf{X Y} 2\) axes \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{1 0 5 0}\) & 30 \\
\hline
\end{tabular}
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis \(/ Y\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions
(critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222HP-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}
HXYx 2 axes P2


\begin{tabular}{|c|c|c|}
\hline & X-axis & Y-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F20-BK \\
\hline AC servo motor output (W) & 600 & 600 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi 2 0}^{\text {20 }}\) & Ball screw \(\mathbf{\phi} 20^{2}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 \\
\hline Moving range (mm) & 250 to 850 & 250 to 850 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\square\) Maximum payload} \\
\hline \({ }^{\text {strorese (mm) }}\) & xr \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details,
Note 4. When the X -axis \(/ \mathrm{Y}\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions
(critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.


Note 1. The total of the \(Y\) and \(Z\) strokes should be 1200 mm or less.
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y -axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F20-BK & F14H \\
\hline AC servo motor output (W) & 600 & 600 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \({ }^{\text {2 }} 20\) & Ball screw \(\mathbf{Q 2 0}^{2}\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 & 1200 \\
\hline Moving range (mm) & 250 to 1250 & 250 to 950 & 250 to 650 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction
able Contact us for details.
Note 4. When the \(X\)-axis \(/ \mathrm{Y}\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions
(critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.

HXYx 3 axes / ZPHL P2
(Board thickness 10)

Detail of section A with length head bolt with length under head) of 45 mm or more


\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

\section*{Specification}
\begin{tabular}{|c|c|c|c|}
\hline & X-axis & Y-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F20 & F20-BK & F14H \\
\hline AC servo motor output (W) & 600 & 600 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\$ 20\) & Ball screw \(\mathbf{\$ 2 0}^{\text {2 }}\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 & 1200 \\
\hline Moving range (mm) & 250 to 850 & 250 to 850 & 250 to 650 \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Robot cable length (m)
Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots
Note 2. Positioning repeatability in one direction.
available. Contact us for detail
Note 4. When the X -axis \(/ \mathrm{Y}\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions
(critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|cc}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline & Z stroke (mm) \\
\hline Y stroke (mm) & \(\mathbf{2 5 0}\) to \(\mathbf{6 5 0}\) \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{8 5 0}\) & 15 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 3 axes / ZPHL P1

27. 44.
 with length head bolt with length (under head) of 45 mm or more (under head) of 45 mm or more. Detail of section B


Note 1


\begin{tabular}{l|c|c}
\hline \multicolumn{1}{|c}{ Specification } & X－axis & Z－axis \\
\hline & F14 & F10－BK \\
\hline Axis construction \({ }^{\text {Note } 1}\) & 100 & 100 \\
\hline AC servo motor output（W） & \(+/-0.01\) & \(+/-0.01\) \\
\hline Repeatability \({ }^{\text {Note 2 }}\)（mm） & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Drive system & 20 & 10 \\
\hline Ball screw lead \(^{\text {Note 3 }}\)（Deceleration ratio）（mm） & 1200 & 600 \\
\hline Maximum speed \({ }^{\text {Note } 4 \text {（mm／sec）}}\) & 150 to 1050 & 150 to 350 \\
\hline Moving range（mm） & \multicolumn{2}{c}{ Standard： 3.5 Option： 5,10} \\
\hline Robot cable length（m） &
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇，
Note 2．Positioning repeatability in one direction．
Note 4．When the X －axis stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline & Z stroke（mm） \\
\hline \(\mathbf{X}\) stroke \((\mathrm{mm})\) & \(\mathbf{1 5 0}\) to \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to 1050 & 10 \\
\hline
\end{tabular}

SXYx 2 axes／ZF F1


4 －M5 \(\times 0.8\) Depth12
2－\＄5H7 Depth15
Detail of section A


Use M6 \(\times 1.0\) hex socket head bolt
with length head bolt with length
（under head）of 20 mm or more．






OXZ type Whipover Z-axis: clamped base / moving table type (100W)
\(\square\) Ordering method


RCX320-2
\(\begin{gathered}\text { Controller } / \\ \text { Number of controllable axes }\end{gathered}-\begin{gathered}\text { Safety } \\ \text { standard }\end{gathered}\) Specify various controller setting items. RCX320 \(\boldsymbol{P} \mathbf{P} \mathbf{6 6 0}\)
RCX222
Specify various controller setting items. RCX222 P. 670

\section*{Specification}
\begin{tabular}{|c|c|c|}
\hline & X-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14 & F10-BK \\
\hline AC servo motor output (W) & 100 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \({ }^{\text {¢ }} 15\) & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 \\
\hline Moving range (mm) & 150 to 850 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline & (kg) \\
\hline \(\mathbf{X}\) stroke \((\mathbf{m m})\) & \(\mathbf{1 5 0}\) to \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{8 5 0}\) & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline \[
\begin{aligned}
& \text { RCX320 } \\
& \text { RCX222 }
\end{aligned}
\] & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical \\
\hline \multicolumn{2}{|l|}{L} & 405 & 505 & 605 & 705 & 805 & 905 & 1005 & 1105 & Note 2. The shaded position indicates an user cable extraction port. \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 780 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & Note 3. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & referring to the maximum speeds shown in the table at the left. \\
\hline
\end{tabular}


Note 1. RCX320 uses the YHX-RU regenerative unit. The RCX222 uses the RG2.

\(\square\) Specification
\begin{tabular}{|c|c|c|}
\hline & X-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14 & F10H-BK \\
\hline AC servo motor output (W) & 100 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1200 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.

SXYx 2 axes / ZFL20 F1




\begin{tabular}{|c|c|c|c|}
\hline Specification & & & \\
\hline & X-axis & Z-axis: ZS12 & Z-axis: ZS6 \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14 & & \\
\hline AC servo motor output (W) & 100 & & \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & & \\
\hline Drive system & Ball screw \(\mathbf{\phi} 15\) & Ball & \$12 \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 12 & 6 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 1000 & 500 \\
\hline Moving range (mm) & 150 to 1050 & \multicolumn{2}{|c|}{150} \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZS12 & ZS6 \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{1 0 5 0}\) & 3 & 5 \\
\hline
\end{tabular}

SXYx 2 axes/ZS F1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & Note 1. The moving range when returning to origin and the stop position when stopping by \\
\hline \multicolumn{2}{|l|}{L} & 405 & 505 & 605 & 705 & 805 & 905 & 1005 & 1105 & 1205 & 1305 & \begin{tabular}{l}
the mechanical stopper. \\
Note 2. The shaded position indicates an user cable extraction port.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & & & & & & & & & & \multirow[t]{3}{*}{Note 3. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & 50\% & 45\% & \\
\hline
\end{tabular}
 Specify various controller setting items. RCX320 P P. 660


Note 1. A regenerative unit is required when the maximum speed exceeds \(1250 \mathrm{~mm} / \mathrm{sec}\)
\begin{tabular}{l|c|c}
\hline \multicolumn{1}{c}{ Specification } & X-axis & Z-axis \\
\hline & B14H & F10-BK \\
\hline Axis construction \({ }^{\text {Note } 1}\) & 200 & 100 \\
\hline AC servo motor output (W) & \(+/-0.04\) & \(+/-0.01\) \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) & Timing belt & Ball screw \(\phi 15\) \\
\hline Drive system & Equivalent to lead 25 & 10 \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) & 1875 & 600 \\
\hline Maximum speed (mm/sec) & 150 to 3050 & 150 to 350 \\
\hline Moving range (mm) & Standard: 3.5 Option: 5,10 \\
\hline Robot cable length (m) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{3}{|c}{ Maximum payload } & (kg) \\
\hline & Z stroke (mm) \\
\hline \(\mathbf{X}\) stroke \((\mathrm{mm})\) & \(\mathbf{1 5 0}\) to \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to 3050 & 10 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
\begin{tabular}{|c|c|}
\hline Controller & Operation method \\
\hline \[
\begin{aligned}
& \text { RCX320 } \\
& \text { RCX222 }
\end{aligned}
\] & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline
\end{tabular}

SXYBx 2 axes / ZF F1


Cross-section of cable carrier




Note 2. The shaded position indicates an user cable extraction port
Note 3. LU specification should be used for installation of the \(X\) axis motor.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 & 2550 & 2650 & 2750 & 2850 & 2950 & 3050 \\
\hline L & 538 & 638 & 738 & 838 & 938 & 1038 & 1138 & 1238 & 1338 & 1438 & 1538 & 1638 & 1738 & 1838 & 1938 & 2038 & 2138 & 2238 & 2338 & 2438 & 2538 & 2638 & 2738 & 2838 & 2938 & 3038 & 3138 & 3238 & 3338 & 3438 \\
\hline K & - & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline C & 240 & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline D & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline E & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 \\
\hline F & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline M & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 & 13 & 13 & 14 & 14 & 15 \\
\hline N & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 & 30 & 30 & 32 & 32 & 34 & 34 & 36 \\
\hline Z stroke & 150 & 250 & 350 & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

XZ type Cable carrier Z-axis: clamped base / moving table type (200W)

\section*{Ordering method}

\begin{tabular}{l|c|c}
\hline \multicolumn{1}{|c|}{ Specification } & X-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & B14H & F10H-BK \\
\hline AC servo motor output (W) & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) & \(+/-0.04\) & \(+/-0.01\) \\
\hline Drive system & Timing belt & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note 3 }}\) (Deceleration ratio) (mm) & Equivalent to lead 25 & 20 \\
\hline Maximum speed (mm/sec) & 1875 & 1200 \\
\hline Moving range (mm) & 150 to 3050 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{2}{c}{ Standard: 3.5 } \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

SXYBx 2 axes / ZFL20 F1



Cross-section of cable carrier

Note 1. The moving range when returning to origin and the stop position when stopping by the mechanical stopper.
Note 2. The shaded position indicates an user cable extraction port.
Note 3. LU specification should be used for installation of the X axis motor.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline X stroke & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & 2150 & 2250 & 2350 & 2450 & 2550 & 2650 & 2750 & 2850 & 2950 & 3050 \\
\hline L & 538 & 638 & 738 & 838 & 938 & 1038 & 1138 & 1238 & 1338 & 1438 & 1538 & 1638 & 1738 & 1838 & 1938 & 2038 & 2138 & 2238 & 2338 & 2438 & 2538 & 2638 & 2738 & 2838 & 2938 & 3038 & 3138 & 3238 & 3338 & 3438 \\
\hline K & - & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline C & 240 & 420 & 420 & 600 & 600 & 780 & 780 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline D & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 & 1140 \\
\hline E & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 \\
\hline F & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline M & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11 & 12 & 12 & 13 & 13 & 14 & 14 & 15 \\
\hline N & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & 28 & 28 & 30 & 30 & 32 & 32 & 34 & 34 & 36 \\
\hline
\end{tabular}

\footnotetext{
\begin{tabular}{l|l|l|l|}
\hline\(Z\) stroke & 150 & 250 & 350 \\
\hline
\end{tabular}
}

\begin{tabular}{|c|c|c|}
\hline Specification & & \\
\hline & X-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F10H-BK \\
\hline AC servo motor output (W) & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi 1 5}\) & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}
ote 1 . Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 4. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{|c|c|}
\hline Contro & \\
\hline Controller & Operation method \\
\hline RCX320-R
RCX222-R & Programming / I/O point trace / Remote command \(/\) Operation using RS-232C communication \\
\hline
\end{tabular}

MXYx 2 axes / ZFL10 F1
\begin{tabular}{c|c|}
\hline Maximum payload & \((\mathrm{kg})\) \\
\hline & Z stroke \((\mathrm{mm})\) \\
\hline X stroke \((\mathrm{mm})\) & 150 to 350 \\
\hline 150 to 1050 & 15 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \multicolumn{2}{|l|}{C} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & 50\% & 45\% \\
\hline
\end{tabular}

\footnotetext{
The moving range when
the mechanical stopper
Note 2. The shaded position indicates an user cable extraction port
\[
0
\].

Note 3. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.
}
\begin{tabular}{|c|c|c|}
\hline & & Specify vario \\
\hline Specification & & \\
\hline & X-axis & Z-axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F14H & F10H-BK \\
\hline AC servo motor output (W) & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\mathbf{\phi} 15\) & Ball screw \(\mathbf{\phi} 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1200 & 600 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 350 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details.
Note 4. When the \(X\)-axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline \multicolumn{1}{c|}{ Controller } & \multicolumn{1}{c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c}
\hline Maximum payload & (kg) \\
\hline & \multicolumn{4}{|c}{ Z stroke (mm) } \\
\hline \(\mathbf{X}\) stroke (mm) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{1 0 5 0}\) & 14 & 13 & 12 \\
\hline
\end{tabular}


\section*{Detail of section B}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & Note 1. The moving range when returning to origin and the stop position when stopping by \\
\hline \multicolumn{2}{|l|}{L} & 470 & 570 & 670 & 770 & 870 & 970 & 1070 & 1170 & 1270 & 1370 & Note 2. The shaded position indicates an user cable extraction port. \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 240 & 420 & 420 & 600 & 600 & 780 & 960 & 960 & 1140 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & \multirow[b]{4}{*}{Note 3. When the X -axis stroke is longer than 750 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & 250 & 350 & & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 780 & 600 & 540 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 65\% & 50\% & 45\% & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|}
\hline & X－axis & Z－axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & F17 & F14H－BK \\
\hline AC servo motor output（W） & 400 & 200 \\
\hline Repeatability \({ }^{\text {Note } 2}\)（mm） & ＋／－0．01 & ＋／－0．01 \\
\hline Drive system & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 10 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1200 & 600 \\
\hline Moving range（mm） & 250 to 1250 & 250 to 550 \\
\hline Robot cable length（m） & \multicolumn{2}{|c|}{Standard：3．5 Option：5，10} \\
\hline
\end{tabular}
\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline & （kg） \\
\hline \(\mathbf{X}\) stroke \((\mathbf{m m})\) & \(\mathbf{2 5 0}\) to \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{1 2 5 0}\) & 20 \\
\hline
\end{tabular}

Note 1．Use caution that the flame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 3．Leads not listed in the catalog are also available．Contact us for details．
Note 4．When the \(X\)－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical
speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controller} \\
\hline Controller & Operation method \\
\hline RCX320－R RCX222－R & Programming／／／O point trace／ Remote command／Operation using RS－232C communication \\
\hline
\end{tabular}

HXYx 2 axes／ZL F1


Detail of section A



Use M8 \(\times 1.25\) hex socket head bolt with length head bolt with length （under head）of 40 mm or more．

Detail of section B


\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c}
\hline \(\mathbf{X}\) stroke & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) & \(\mathbf{6 5 0}\) & \(\mathbf{7 5 0}\) & \(\mathbf{8 5 0}\) & \(\mathbf{9 5 0}\) & \(\mathbf{1 0 5 0}\) & \(\mathbf{1 1 5 0}\) & \(\mathbf{1 2 5 0}\) \\
\hline \(\mathbf{L}\) & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 \\
\hline \(\mathbf{K}\) & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 \\
\hline \(\mathbf{C}\) & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 \\
\hline \(\mathbf{M}\) & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 \\
\hline \(\mathbf{N}\) & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & \(\mathbf{1 8}\) \\
\hline \hline Z stroke & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) & & & & & & &
\end{tabular}


\begin{tabular}{l|c|c}
\hline \multicolumn{1}{|c}{ Specification } & X-axis & Z-axis \\
\hline & F17 & F14H-BK \\
\hline Axis construction \({ }^{\text {Note } 1}\) & 400 & 200 \\
\hline AC servo motor output (W) & \(+/-0.01\) & \(+/-0.01\) \\
\hline Repeatability \({ }^{\text {Note 2 }}\) (mm) & Ball screw \(\phi 20\) & Ball screw \(\phi 15\) \\
\hline Drive system & 20 & 5 \\
\hline Ball screw lead \(^{\text {Note } 3}\) (Deceleration ratio) (mm) & 1200 & 300 \\
\hline Maximum speed \({ }^{\text {Note } 4 \text { (mm/sec) }}\) & 250 to 1250 & 250 to 550 \\
\hline Moving range (mm) & \multicolumn{2}{c}{ Standard: 3.5 } \\
\hline Robot cable length (m) & Option: 5,10 \\
\hline
\end{tabular}
\begin{tabular}{c|cc}
\hline \multicolumn{2}{|c}{ Maximum payload } & (kg) \\
\hline & \(\mathbf{Z}\) stroke (mm) \\
\hline \(\mathbf{X}\) stroke \((\mathbf{m m})\) & \(\mathbf{2 5 0}\) to \(\mathbf{5 5 0}\) \\
\hline \(\mathbf{2 5 0}\) to \(\mathbf{1 2 5 0}\) & 30 \\
\hline
\end{tabular}

Note 1. Use caution that the flame machining (installation holes, tap holes) differs from single-axis robots.
Note 2. Positioning repeatability in one direction.
Note 4. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{|c}{ Operation method } \\
\hline \begin{tabular}{l} 
RCX320-R \\
RCX222-R
\end{tabular} & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command / Operation using \\
RS-232C communication
\end{tabular} \\
\hline
\end{tabular}

HXYx 2 axes / ZH
Use M8 \(\times 1.25\) hex socket head bolt with length head bolt with length (under head) of 40 mm or more.

Detail of section B


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & Note 1. Th \\
\hline \multicolumn{2}{|l|}{L} & 615 & 715 & 815 & 915 & 1015 & 1115 & 1215 & 1315 & 1415 & 1515 & 1615 & Note 2. U \\
\hline \multicolumn{2}{|l|}{K} & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{C} & 240 & 420 & 600 & 600 & 780 & 780 & 960 & 960 & 1140 & 1140 & 1320 & \\
\hline \multicolumn{2}{|l|}{M} & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & \\
\hline \multicolumn{2}{|l|}{N} & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & \\
\hline \multicolumn{2}{|l|}{Z stroke} & 250 & 350 & 450 & 550 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{ZK} & 100 & 200 & 100 & 200 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{ZM} & 1 & 1 & 2 & 2 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{ZN} & 10 & 10 & 12 & 12 & & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke \((\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}\)} & X-axis & \multicolumn{6}{|c|}{1200} & 960 & 840 & 720 & 600 & 480 & \\
\hline & Speed setting & \multicolumn{6}{|c|}{-} & 80\% & 70\% & 60\% & 50\% & 40\% & \\
\hline
\end{tabular}

\section*{SCARA ROBOTS YK-X SERIES}


\section*{CONTENTS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{■ YK-X SPECIFICATION SHEET \(\cdots 492\)} \\
\hline & Robot ordering method
description \(\cdots \cdots . . . . . . . . . . . . . . . . . . . . . ~\) 493 \\
\hline & Robot ordering method
terminology \(\cdots \cdots . . . . . . . . . . . . . . . . . . . . ~\) 493 \\
\hline & ORBIT TYPE \\
\hline & YK350TW -................................ 494 \\
\hline & YK500TW - .............................. 496 \\
\hline & EXTRA SMALL TYPE \\
\hline & YK120XG ................................. 498 \\
\hline & YK150XG \(\cdot\).............................. 499 \\
\hline & YK180XG ............................. 500 \\
\hline &  \\
\hline &  \\
\hline & SMALL TYPE \\
\hline & YK250XG ................................. 503 \\
\hline & YK350XG .............................. 505 \\
\hline &  \\
\hline & YK400XG .............................. 508 \\
\hline & MEDIUM TYPE \\
\hline & YK500XGL .................................. 510 \\
\hline & YK500XG .............................. 512 \\
\hline & YK510XE-10 **........................ 513 \\
\hline & YK600XGL .............................. 514 \\
\hline & YK600XG ................................ 516 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline YK610XE-10 & 517 & YK600XGP & 547 \\
\hline YK600XGH & 518 & YK600XGHP & 548 \\
\hline LARGE TYPE & & YK700XGP & 549 \\
\hline YK700XGL & 519 & YK800XGP & 550 \\
\hline YK710XE-10 & 520 & YK900XGP & \\
\hline & & YK1000XGP & 552 \\
\hline
\end{tabular}
YK800XG ..... 522
YK900XG ..... 523
YK1000XG ..... 524
YK1200X ..... 525
WALL MOUNT / INVERSE TYPE YK300XGS ..... 526
YK400XGS .....  528
YK500XGS ..... 530
YK600XGS ..... 531
YK700XGS ..... 532
YK800XGS ..... 533
YK900XGS ..... 534
YK1000XGS ..... 535
DUST-PROOF \& DRIP-PROOF TYPE
YK250XGP ..... 536
YK350XGP ..... 538
YK400XGP ..... 540
YK500XGLP ..... 542
YK500XGP ..... 544
YK600XGLP ..... 545

\section*{YK-X SPECIFICATION SHEET}


Note 1. The standard cycle time is measured under the following conditions.
- During back and forth movement 25 mm vertically and 100 mm horizontally (extra small type)

During back and forth movement 25 mm vertically and 300 mm horizontally (small type / medium type / large type)
Note 2. Maintains high accuracy over long periods because the beltless structure drastically cuts down on wasted motion.
Operation is also nearly maintenance-free for long periods with no worries about belt breakage, stretching or deterioration over time

\section*{Robot ordering method description}

In the order format for the YAMAHA SCARA robots YK-X series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation.

\section*{[Example]}
\begin{tabular}{l:l} 
Mechanical \(\triangleright\) YK250XG & Controller \(>\) RCX340 \\
- Z-axis stroke \(\triangleright 150 \mathrm{~mm}\) \\
- Tool flange \(\triangleright\) With tool flange & \\
- Hollow shaft \(\triangleright\) With hollow shaft & \\
- Cable length \(\triangleright 3.5 \mathrm{~m}\) & \\
Ordering method \\
Mechanical section
\end{tabular}


Note 1. Available only for the master.

\section*{Robot ordering method terminology}
\begin{tabular}{|l|l|}
\hline (1) Model & Enter the robot unit model. \\
\hline (2) Z-axis stroke & \begin{tabular}{l} 
Select the Z axis stroke. \\
The stroke varies with the model you select so see that model's page to confirm \\
the specifications.
\end{tabular} \\
\hline (3) Tool flange & \begin{tabular}{l} 
Tool flange option for easy mounting of a tool to the tip. \\
No entry: None F: With tool flange
\end{tabular} \\
\hline (4) Hollow shaft & \begin{tabular}{l} 
Hollow shaft option for easy routing of air tubes and harness wires. \\
No entry: None \(\quad\) S: With hollow shaft
\end{tabular} \\
\hline (5) Cable & \begin{tabular}{l} 
Select the length of the robot cable connecting the robot and controller. \\
2L: 2 m (Note 1) \(3 \mathrm{~L}: 3.5 \mathrm{~m}=5 \mathrm{~L}: 5 \mathrm{~m} \quad 10 \mathrm{~L}: 10 \mathrm{~m}\)
\end{tabular} \\
\hline (6) Controller & \begin{tabular}{l} 
Select the RCX340.
\end{tabular} \\
\hline
\end{tabular}

Mechanical > YK250XG \(\quad\) - Controller > RCX340
-Z-axis stroke \(\downarrow\) 150mm
Hollow shaft \(\triangle\) With hollow shaft
- Cable length \(\triangleright 3.5 \mathrm{~m}\)

\section*{- Ordering method}

YK250XG-150-F-S-3L-RCX340
Mechanical section
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y -axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 175 mm & 175 mm & 130 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-225 \({ }^{\circ}\) & +/-225 \({ }^{\circ}\) & - & +/-720 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 200 W & 105 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & Timing belt & Direct-coupled & Timing belt & \multirow[b]{2}{*}{Timing belt} \\
\hline & & Speed reducer to output & \multicolumn{3}{|c|}{Direct-coupled} & \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.01 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(5.6 \mathrm{~m} / \mathrm{sec}\)} & \(1.5 \mathrm{~m} / \mathrm{sec}\) & 3000 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{5 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 1kg payload \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{0.32 sec} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathbf{R}\)-axis tolerable moment of inertia \({ }^{\text {Note }} 4\)}} & Rated & \multicolumn{4}{|c|}{\(0.005 \mathrm{kgm}^{2}\)} \\
\hline & & Maximum & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.15 \mathrm{sq} \times 8\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 2\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{26 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature.
Note 2. Tool flange specifications (option) are 4 kg .
Note 3. When moving a 1 kg load back and forth 300 mm horizontally and 25 mm vertically (rough positioning arch motion).
Note 4. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
\begin{tabular}{|c|c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 2500 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

\section*{R-axis moment of inertia (load inertia)} Recommended positional relationship between the load weight and the set amount from the center of the R-axis (center of gravity position)


Weight (kg) When the payload exceeds 4 kg , it is predicted that the R -axis
moment of inertia may exceed the rated value. So, make proper parameter setting.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

\footnotetext{
Our robot manuals (installation manuals) can be tps:/lad
}



\section*{Dedicated mounting bracket for the YK-TW <BASE POST ASSY.>}

The YK-TW can be easily installed on top of a customer-provided stand.
- External diagram for the YK350TW



8- \(\$ 17.5\) pass-through



The mounting bracket is assembled by the customer. Refer to the included assembly diagram for assembly.

Note 1. Identical to the height of the robot mounting surface.
The height of the stand can be selected at a 50 mm pitch.
\begin{tabular}{c|c|c} 
Height (mm) & Model & Unit weight (kg) \\
\hline 500 & KDU-M6100-P0 & 46 \\
\hline 550 & KDU-M6100-50 & 48 \\
\hline 600 & KDU-M6100-R0 & 50 \\
\hline 650 & KDU-M6100-60 & 51 \\
\hline 700 & KDU-M6100-S0 & 54 \\
\hline 750 & KDU-M6100-70 & 55 \\
\hline 800 & KDU-M6100-T0 & 57 \\
\hline 850 & KDU-M6100-80 & 59 \\
\hline
\end{tabular}

Note. YK350TW and YK500TW are parts in common.
Note. The top plate by itself weighs 19 kg .

\section*{Bolts supplied with the controller}
\begin{tabular}{c|l|c}
\hline 1 & M16 x Pitch \(2.0 \times\) Length 45 [Hexagonal socket head bolt] & 8 pcs. (For securing the installation base) \\
\hline 2 & \begin{tabular}{l} 
Washer for M16 bolt [Plate thickness 3 mm, \\
Outside diameter \(\phi 26\), Inside diameter \(\phi 16]\)
\end{tabular} & 8 pcs. \\
\hline 3 & M10 \(\times\) Pitch \(1.5 \times\) Length 30 & \begin{tabular}{c}
6 pcs. (Bolts used to secure the \\
SCARA main body from the bottom surface.)
\end{tabular} \\
\hline 4 & M10 \(\times\) Pitch \(1.5 \times\) Length 40 & \begin{tabular}{c}
6 pcs. (Bolts used to secure the \\
SCARA main body from the top surface.)
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Note. Only either 3 or 4 is used
}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 250 mm & 250 mm & 130 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-225 \({ }^{\circ}\) & +/-225 \({ }^{\circ}\) & - & +/-720 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 200 W & 105 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & Timing belt & Direct-coupled & Timing belt & \multirow[b]{2}{*}{Timing belt} \\
\hline & & Speed reducer to output & \multicolumn{3}{|c|}{Direct-coupled} & \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.015 mm} & +/-0.01 mm & +/-0.01 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(6.8 \mathrm{~m} / \mathrm{sec}\)} & \(1.5 \mathrm{~m} / \mathrm{sec}\) & 3000 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{5 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 1kg payload \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{0.29 sec} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathbf{R}\)-axis tolerable moment of inertia \({ }^{\text {Note }} 4\)}} & Rated & \multicolumn{4}{|c|}{\(0.005 \mathrm{kgm}^{2}\)} \\
\hline & & Maximum & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.15 \mathrm{sq} \times 8\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 2\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{27 kg} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 2500 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

\section*{R-axis moment of inertia (load inertia)}

Recommended positional relationship between the load weight and the Recommended positional relationship between the load weight and the
offset amount from the center of the R-axis (center of gravity position)
\[
\text { Offset (mm) } 100
\]


Weight (kg)

Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Note 1. This is the value at a constant ambient temperature.
Note 2. For the option specifications (tool flange mount type), the maximum payload becomes 4 kg .
Note 4. The moving a 1 kg load back and forth 300 mm horizontally and 25 mm vertically (rough positioning arch motion).




\section*{Dedicated mounting bracket for the YK-TW <BASE POST ASSY.>}

The YK-TW can be easily installed on top of a customer-provided stand.
- External diagram for the YK500TW
The mounting bracket is assembled by the customer. Refer to the included assembly diagram for assembly.
Note 1. Identical to the height of the robot mounting surface.
The height of the stand can be selected at a 50 mm pitch.
\begin{tabular}{c|c|c} 
Height (mm) & Model & Unit weight (kg) \\
\hline 500 & KDU-M6100-P0 & 46 \\
\hline 550 & KDU-M6100-50 & 48 \\
\hline 600 & KDU-M6100-R0 & 50 \\
\hline 650 & KDU-M6100-60 & 51 \\
\hline 700 & KDU-M6100-S0 & 54 \\
\hline 750 & KDU-M6100-70 & 55 \\
\hline 800 & KDU-M6100-T0 & 57 \\
\hline 850 & KDU-M6100-80 & 59 \\
\hline
\end{tabular}
Note. YK350TW and YK500TW are parts in common.

Note. The top plate by itself weighs 19 kg .
Bolts supplied with the controller
\begin{tabular}{c|l|c}
\hline 1 & M16 \(\times\) Pitch \(2.0 \times\) Length 45 [Hexagonal socket head bolt] & 8 pcs. (For securing the installation base) \\
\hline 2 & \begin{tabular}{l} 
Washer for M16 bolt [Plate thickness 3 mm, \\
Outside diameter \(\phi 26\), Inside diameter \(\phi 16]\)
\end{tabular} & 8 pcs.
\end{tabular}

Note. Only either 3 or 4 is used.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y -axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 45 mm & 75 mm & 50 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-125 \({ }^{\circ}\) & +/-145 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 30 W & 30 W & 30 W & 30 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(3.3 \mathrm{~m} / \mathrm{sec}\)} & \(0.9 \mathrm{~m} / \mathrm{sec}\) & 1700 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{1.0 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 0.1kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.33 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.01 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.1 \mathrm{sq} \times 8\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 2\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 2 m Option: \(3.5 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight (Excluding robot cable) \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{3.9 kg} \\
\hline \multicolumn{3}{|l|}{Robot cable weight} & 0.9 kg (2 m) & \(1.5 \mathrm{~kg}(3.5 \mathrm{~m})\) & 2.1 kg (5 m) & kg (10 m) \\
\hline
\end{tabular}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When moving 25 mm in vertical direction and 100 mm in horizontal direction reciprocally.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. The total robot weight is the sum of the robot body weight and the cable weight.


\section*{Specifications}


\section*{Controller}
\begin{tabular}{c|c|c}
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 300 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
& & \begin{tabular}{c} 
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions The movement range can be limited by changing the positions of \(X\) and \(Y\) axis mechanical stoppers. (The \(m\).)
set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information.
Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When moving 25 mm in vertical direction and 100 mm in horizontal direction reciprocally,
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings,
Note 4. The total robot weight is the sum of the robot body weight and the cable weight.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y -axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 105 mm & 75 mm & 50 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-125 \({ }^{\circ}\) & +/-145 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 30 W & 30 W & 30 W & 30 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(3.3 \mathrm{~m} / \mathrm{sec}\)} & \(0.9 \mathrm{~m} / \mathrm{sec}\) & 1700 /sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{1.0 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 0.1kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.33 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.01 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.1 \mathrm{sq} \times 8\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 2\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 2 m Option: \(3.5 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight (Excluding robot cable) \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{4.1 kg} \\
\hline \multicolumn{3}{|l|}{Robot cable weight} & \(0.9 \mathrm{~kg} \mathrm{(2} \mathrm{m)}\) & 1.5 kg (3.5 m) & \(2.1 \mathrm{~kg}(5 \mathrm{~m})\) & \[
4.2 \mathrm{~kg}(10 \mathrm{~m})
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 500 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When moving 25 mm in vertical direction and 100 mm in horizontal direction reciprocally.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. The total robot weight is the sum of the robot body weight and the cable weight.



\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & X-axis & Y -axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 71 mm & 109 mm & 100 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-120 \({ }^{\circ}\) & +/-140 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 50 W & 30 W & 30 W & 30 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(3.3 \mathrm{~m} / \mathrm{sec}\)} & \(0.7 \mathrm{~m} / \mathrm{sec}\) & 1700 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{1.0 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 0.1kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.39 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.01 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.1 \mathrm{sq} \times 6\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 3 \times 2\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight (Excluding robot cable) \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{5.5 kg} \\
\hline \multicolumn{3}{|l|}{Robot cable weight} & \multicolumn{4}{|c|}{\(1.5 \mathrm{~kg}(3.5 \mathrm{~m}) 2.1 \mathrm{~kg}(5 \mathrm{~m}) \quad 4.2 \mathrm{~kg}(10 \mathrm{~m})\)} \\
\hline
\end{tabular}

Controller
\begin{tabular}{c|c|c} 
Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & \multirow{2}{*}{\begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular}} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is of \(X\) and \(Y\) axis mechanical stoppers. (The movement range See our robot manuals (installation manuals) information. h

Our robot manuals (installation manuals) can be downloaded from our website at the address below: downloaded from our website at he address below.
https \(/ /\) global.yamaha-motor.com/business/robot/

Note 1. This is the value at a constant ambient temperature.
Note 2. When reciprocating 100 mm in horizontal and 25 mm in vertical directions.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. The total robot weight is the sum of the robot body weight and the cable weight.


Ordering method

YK220X－100 Model

Z axis stroke
Cable \begin{tabular}{|l|}
\hline \(3 \mathrm{~L}: 3.5 \mathrm{~m}\) \\
\hline \(5 \mathrm{~L}: 5 \mathrm{~m}\) \\
\hline \(10 \mathrm{~L} \cdot 10 \mathrm{~m}\) \\
\hline
\end{tabular} 10L： 10 m

\section*{Specifications}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & Power capacity（VA） & Operation method \\
\hline RCX340 & 500 & \begin{tabular}{c} 
Programming／ \\
I／O point trace／ \\
Remote command／ \\
Operation
\end{tabular} \\
using RS－232C \\
communication
\end{tabular}

Note．The movement range can be limited by changing the positions The movement range can be limited by changing the position
of X and Y axis mechanical stoppers．（The movement range is set to the maximum at the time of shipment．） See our robot manuals（installation manuals）for detailed information．
Our robot manuals（installation manuals）can be Our robot manuals（installation manuals）can be
downloaded from our website at the address below： https：／／global．yamaha－motor．com／business／robot／

Note 1．This is the value at a constant ambient temperature．
Note 2．When reciprocating 100 mm in horizontal and 25 mm in vertical directions
Note 3．The acceleration coefficient is set automatically in accordance with the tip weight and R －axis moment of inertia settings．
Note 4．The total robot weight is the sum of the robot body weight and the cable weight．


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y -axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 100 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-140 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(4.5 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{5 kg (Standard specification), 4 kg (Option specifications \({ }^{\text {Note 4 }}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.43 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\) ( \(0.5 \mathrm{kgfcms}^{2}\) )} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{18.5 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. Theacceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg .
\begin{tabular}{c|c|c}
\multicolumn{2}{|c}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 1000 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Our robot manuals (installation manuals) can be downloaded from our website at the address below. https://global.yamaha-motor.com/business/robot/


\section*{YK250XG}


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y -axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 200 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-140 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(5.6 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \% sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{5 kg (Standard specification), 4 kg (Option specifications \({ }^{\text {Note 4 }}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.44 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\left(0.5 \mathrm{kgfcms}^{2}\right)\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{19 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg .



Cross section B-B D-sub connector for user wiring (No. 1 to 10 usable)
\[
129
\]

330 during arm rotation
620
Maxim during arm rotation

\begin{tabular}{c|c|c}
\multicolumn{2}{|c}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 1000 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/


IV If the robot enters the inside of the corner of R190 and dimension 148, the Z-axis upper end stopper may be in contact with the base harness. So, do not perform such motion
- Note that the robot cannot be used at a position where the base flange or robot cable interferes with the spline
in the working envelope shown above.


4-M3 \(\times 0.5\) through-hole (No phase relation to R-axis origin.) As this hole is intended for the wiring/tubing clamp, do not attach a large load to it.


Option:
User wiring/tubing through spline type

\section*{YK350XG Tool flange mount type}



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y -axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 225 mm & 175 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-132 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 100 W & 100 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{2}{|c|}{Direct-coupled} & \multicolumn{2}{|c|}{Timing belt} \\
\hline & & \multirow[t]{2}{*}{Speed reducer to output} & \multicolumn{3}{|c|}{Direct-coupled} & Timing belt \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.01 \({ }^{\text {。 }}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(6 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 2600 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{4 kg (Standard specification, Option specifications \({ }^{\text {Note } 4}\) ), 3 kg (Option specifications \({ }^{\text {Note } 5}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.41 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{17 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions and performing the coarse positioning arch operation.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and offset amount for R -axis moment of inertia settings
Note 4. Maximum payload of the standard or option specifications (brake release switch type) is 4 kg .
Note 5 . Maximum payload of the option specifications (user wiring/tubing through shaft type) is 3 kg .


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y -axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 250 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-140 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(6.1 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{5 kg (Standard specification), 4 kg (Option specifications \({ }^{\text {Note } 4}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.45 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\) ( \(0.5 \mathrm{kgfcms}^{2}\) )} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{19.5 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg

- Note that the robot cannot be used at a position where
the base flange or robot cable interferes with the tool
flange in the working envelope shown above
- X-axis mechanical stopper position : \(142^{\circ}{ }^{\circ}\)

4 -M3 \(\times 0.5\) through-hole (No phase relation to R-axis origin.) As this hole is intended for the wiring/tubing clamp, do not attach a large load to it.


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 250 mm & 250 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-140 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(5.1 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 /sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{5 kg (Standard specification), 4 kg (Option specifications \({ }^{\text {Note } 4}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with \(\mathbf{2 k g}\) payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.48 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\left(0.5 \mathrm{kgfcms}^{2}\right)\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{21 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings.
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg .

YK500XGL



YK500XG

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y-axis & Z-ax & & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 200 mm & 300 mm & 200 mm & 300 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-145 \({ }^{\circ}\) & - & & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 400 W & 200 W & 200 & W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{5}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{5}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & \multicolumn{2}{|l|}{+/-0.01 mm} & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(7.6 \mathrm{~m} / \mathrm{sec}\)} & \(2.3 \mathrm{~m} / \mathrm{sec}\) & \(1.7 \mathrm{~m} / \mathrm{sec}\) & 1700 \% sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{5}{|l|}{10 kg (Standard type), 9 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{5}{|c|}{0.42 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{5}{|c|}{\(0.30 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{5}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{5}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{5}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{5}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{5}{|c|}{30 kg} \\
\hline
\end{tabular}
Note 1. This is the value at a constant ambient temperature. ( \(X, Y\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings



OArm length 510 mm Maximum payload 10kg
Ordering method

YK510XE-10-200
 \begin{tabular}{|l|}
\hline No entry: None \\
\hline F: With tool flange \\
\hline
\end{tabular}



Specify various controller setting items. RCX340 P. 678

Note. The return-to-origin method is provided only in the sensor specifications, but not in the stroke end specifications.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 235 mm & 275 mm & 200 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-134 \({ }^{\circ}\) & +/-152 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 400 W & 200 W & 200 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{2}{|c|}{Direct-coupled} & \multicolumn{2}{|c|}{Timing belt} \\
\hline & & \multirow[t]{2}{*}{Speed reducer to output} & \multicolumn{3}{|c|}{Direct-coupled} & Timing belt \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.01 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(7.8 \mathrm{~m} / \mathrm{sec}\)} & \(2 \mathrm{~m} / \mathrm{sec}\) & 2600 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{10 kg (Standard specification, Option specifications \({ }^{\text {Note } 4}\) ), 9 kg (Option specifications \({ }^{\text {Note } 5}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.38 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.3 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{25 kg} \\
\hline \multicolumn{7}{|l|}{Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)} \\
\hline \multicolumn{7}{|l|}{Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions and performing the coarse positioning arch operation.} \\
\hline \multicolumn{7}{|l|}{Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and offset amount for R -axis moment of inertia settings} \\
\hline \multicolumn{7}{|l|}{Note 4. Maximum payload of the standard or option specifications (brake release switch type, user wiring/tubing through cap type) is 10 kg .
Note 5. Maximum payload of the option specifications (tool flange mount type, user wiring/tubing through shaft type) is 9 kg .} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 1700 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation \\
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be restricted by adding the X - and Y -axis mechanical stoppers. (The maximum movement range was set at shipment.)
See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/

Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions and performing the coarse positioning arch operation. Note 4. Maximum payload of the standard or option specifications (brake release switch type, user wiring/tubing through cap type) is 10 kg . Note 5. Maximum payload of the option specifications (tool flange mount type, user wiring/tubing through shaft type) is 9 kg .


\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. Tacceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings.
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg


129


- Note that the robot cannot be used at a position where

Note that the robot cannot be used at a position where
the base flange or robot cable interferes with the tool the base flange or robot cable interferes with the tool

 added to the tip mass.

Keep enough space for the maintenance work at the rear of the base.
\(X\)-axis mechanical stopper position : \(142^{\circ}\)
- Y-axis mechanical stopper position : 146

4-M3 \(\times 0.5\) through-hole
(No phase relation to R-axis origin.)
As this hole is intended for the wiring/tubing
clamp, do not attach a large load to it
, do not attach a large load to

Arm length 600 mm Maximum payload 10 kg

YK600XG


\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings

\title{
YK610XE-10 \\ Standard type: Medium type \\ LOW COST HIGH PERFORMANCE MODEL
}

OArm length 610 mm O Maximum payload 10 kg
Ordering method
YK610XE- 10 -200

\title{
Model \\ \begin{tabular}{|c} 
Maximum \\
payload
\end{tabular}\(-\begin{gathered}\mathrm{Z} \text { axis } \\
\text { stroke }\end{gathered}\)
}

\author{
Tool flange
} \begin{tabular}{l} 
No entry: None \\
\hline F: With tool flange \\
\hline
\end{tabular}

RCX340-4


Note. The return-to-origin method is provided only in the sensor specifications, but not in the stroke end specifications
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 335 mm & 275 mm & 200 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-134 \({ }^{\circ}\) & +/-152 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 400 W & 200 W & 200 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{2}{|r|}{Direct-coupled} & \multicolumn{2}{|c|}{Timing belt} \\
\hline & & Speed reducer to output & \multicolumn{3}{|c|}{Direct-coupled} & Timing belt \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.01 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{8.6 m/sec} & \(2 \mathrm{~m} / \mathrm{sec}\) & 2600 /sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{10 kg (Standard specification, Option specifications \({ }^{\text {Note } 4}\) ), 9 kg (Option specifications \({ }^{\text {Note } 5}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.39 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.3 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{25 kg} \\
\hline \multicolumn{7}{|l|}{Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Note 2. When reciprocating 300 mm in horizontal and 25 mm in v \\
Note 3. The acceleration coefficient is set automatically in accord \\
Note 4. Maximum payload of the standard or option specification \\
Note 5. Maximum payload of the option specifications (tool flang
\end{tabular}} & \multicolumn{4}{|l|}{directions and performing the coarse positioning arch operation. e with the tip weight and offset amount for R -axis moment of inertia settings. (brake release switch type, user wiring/tubing through cap type) is 10 kg . ount type, user wiring/tubing through shaft type) is 9 kg .} \\
\hline
\end{tabular}
\(\begin{array}{l}\text { Controller } \\ \hline \text { Controller }\end{array}\) Power capacity (VA) \(\left.\begin{array}{c|c}\text { Operation method }\end{array} \left\lvert\, \begin{array}{c}\text { Programming / } \\ \text { RCX340 point trace / } \\ \text { Remote command / } \\ \text { Operation } \\ \text { using RS-232C } \\ \text { communication }\end{array}\right.\right]\)



Arm length 600 mm O Maximum payload 20kg
Ordering method

YK600XGH

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 200 mm & 400 mm & 200 mm 400 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(7.7 \mathrm{~m} / \mathrm{sec}\)} & \(2.3 \mathrm{~m} / \mathrm{sec} 1.7 \mathrm{~m} / \mathrm{sec}\) & 920 \% sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg (Standard type), 19 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.47 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{\(Z\) axis \(200 \mathrm{~mm}: 48 \mathrm{~kg} \quad Z\) axis \(400 \mathrm{~mm}: 50 \mathrm{~kg}\)} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(X, Y\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia setting
Note. Please consult YAMAHA when connecting other tubes and cables to the self-supporting machine harness

\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(X, Y\) axes )
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.



Note．The return－to－origin method is provided only in the sensor specifications，but not in the stroke end specifications．

\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & Power capacity（VA） & Operation method \\
\hline RCX340 & 1700 & \begin{tabular}{c} 
Programming／ \\
I／O point trace／ \\
Remote command／ \\
Operation
\end{tabular} \\
using RS－232C \\
communication
\end{tabular}

Note．The movement range can be limited by changing the position of \(X\) and \(Y\) axis mechanical stoppers．（The movement range is set to the maximum at the time of shipment．） See our robot manuals（installation manuals）for detailed information．
Note．To set the standard coordinates with high accuracy，use a standard coordinate setting jig（option）．Refer to the user＇s manual（installation manual）for more details．

Our robot manuals（installation manuals）can be
downloaded from our website at the address below
https：／／global．yamaha－motor．com／business／robot／

Note 1．This is the value at a constant ambient temperature．（ \(X, Y\) axes）
Note 2．When reciprocating 300 mm in horizontal and 25 mm in vertical directions and performing the coarse positioning arch operation．
Note 3．The acceleration coefficient is set automatically in accordance with the tip weight and offset amount for R－axis moment of inertia settings Note 4．Maximum payload of the standard or option specifications（brake release switch type，user wiring／tubing through cap type）is 10 kg Note 5．Maximum payload of the option specifications（tool flange mount type，user wiring／tubing through shaft type）is 9 kg

YK710XE－10


Arm length 700 mm Maximum payload 20kg


Ordering method
MY700MG

\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
Note. Please consult YAMAHA when connecting other tubes and cables to the self-supporting machine harness.


Controller
\begin{tabular}{c|c|c} 
Controller & Power capacity (VA) & Operation method \\
\hline & & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
RCX340
\end{tabular} \\
& 2500 & \begin{tabular}{c} 
Remote command / \\
Operation \\
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.)
See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Our robot manuals (installation manuals) can be https://global.yamaha-motor.com/business/robot/

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X－axis & Y－axis & Z－axis & R－axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 400 mm & 400 mm & 200 mm 400 mm & － \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & ＋／－130 \({ }^{\circ}\) & ＋／－150 \({ }^{\circ}\) & － & ＋／－360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct－coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct－coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{＋／－0．02 mm} & ＋／－0．01 mm & ＋／－0．004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(9.2 \mathrm{~m} / \mathrm{sec}\)} & \(2.3 \mathrm{~m} / \mathrm{sec} 1.7 \mathrm{~m} / \mathrm{sec}\) & 920 \％sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg （Standard type）， 19 kg （Tool flange mount type）} \\
\hline \multicolumn{3}{|l|}{Standard cycle time：with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.48 sec} \\
\hline \multicolumn{3}{|l|}{R－axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing（Outer diameter）} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1．Soft limit 2．Mechanical stopper（ \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis）} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard： 3.5 m Option： \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{Z axis \(200 \mathrm{~mm}: 52 \mathrm{~kg} \mathrm{Z}\) axis \(400 \mathrm{~mm}: 54 \mathrm{~kg}\)} \\
\hline
\end{tabular}

Note 1．This is the value at a constant ambient temperature．（X，Y axes）
Note 2．When reciprocating 300 mm in horizontal and 25 mm in vertical directions．
Note 3．The acceleration coefficient is set automatically in accordance with the tip weight and R －axis moment of inertia settings．
Note．Please consult YAMAHA when connecting other tubes and cables to the self－supporting machine harness


\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
Note. Please consult YAMAHA when connecting other tubes and cables to the self-supporting machine harness.


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 600 mm & 400 mm & 200 mm 400 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{10.6 m/sec} & \(2.3 \mathrm{~m} / \mathrm{sec} 1.7 \mathrm{~m} / \mathrm{sec}\) & 920 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg (Standard type), 19 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.49 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{Z axis \(200 \mathrm{~mm}: 56 \mathrm{~kg} \mathrm{Z}\) axis 400 mm : 58 kg} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 2500 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation \\
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.
\[
\begin{aligned}
& \text { Our robot manuals (installation manuals) can be } \\
& \text { downloaded from our website at the address below: } \\
& \text { https://global.yamaha-motor.com/business/robot/ }
\end{aligned}
\]
ote 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia setting
Note. Please consult YAMAHA when connecting other tubes and cables to the self-supporting machine harness


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 600 mm & 600 mm & 400 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-125 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-180 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 900 W & 800 W & 600 W & 400 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{2}{|c|}{Direct-coupled} & Timing belt transmission & Timing belt transmission \\
\hline & & Speed reducer to output & \multicolumn{2}{|c|}{Direct-coupled} & Direct-coupled & Direct-coupled \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.05 mm} & +/-0.02 mm & +/-0.005 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(7.4 \mathrm{~m} / \mathrm{sec}\)} & \(0.75 \mathrm{~m} / \mathrm{sec}\) & \(600 \% \mathrm{sec}\) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{50 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.91 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(2.45 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{124 kg} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 2500 & \(\begin{array}{c}\text { Programming / } \\
\text { I/O point trace / } \\
\text { Remote command / } \\
\text { Operation }\end{array}\) \\
using RS-232C \\
communication
\end{tabular}\(]\)
ote 1. This is the value at a constant ambient temperature. (X,Y axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings


\section*{Ordering method}


Note 1. When installing the robot, always follow the specifications
Do not install the ceiling-mount robot upside down or do not install the inverse type robot to a ceiling Incorrect installation can cause trouble or malfunction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y -axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 150 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-120 \({ }^{\circ}\) & +/-130 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(4.4 \mathrm{~m} / \mathrm{sec}\)} & \(1.0 \mathrm{~m} / \mathrm{sec}\) & \(1020 \% \mathrm{sec}\) (wall mount) \(720 \%\) sec (inverse wall mount) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{5 kg (Standard specification), 4 kg (Option specifications \({ }^{\text {Note } 4}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|l|}{0.49 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{19.5 kg} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|c}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constantambient temperature.
. Whe reciprocating 25 mm horizontaly and 300 mm horizontaly (with
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg .



\section*{Ordering method}


Note 1. When installing the robot, always follow the specifications
Do not install the ceiling-mount robot upside down or do not install the inverse type robot to a ceiling. Incorrect installation can cause trouble or malfunction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 250 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-125 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(6.1 \mathrm{~m} / \mathrm{sec}\)} & 1.1 m/sec & \(1020 \%\) sec (wall mount) \(720 \%\) sec (inverse wall mount) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{5 kg (Standard specification), 4 kg (Option specifications \({ }^{\text {Note } 4}\) )} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.49 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{20 kg} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature.
No
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Maximum payload of option specifications (with tool flange attached or with user wiring and tubing routed through spline shaft) is 4 kg .



\title{
YK500XGS
}

YK500XGS



Note 1．When installing the robot，always follow the specifications．
Do not install the ceiling－mount robot upside down or do not install the inverse type robot to a ceiling． Incorrect installation can cause trouble or malfunction．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X－axis & Y －axis & Z－axis & R －axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 200 mm & 300 mm & \(200 \mathrm{~mm} / 300 \mathrm{~mm}\) & － \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & ＋／－105 \({ }^{\circ}\) & ＋／－125 \({ }^{\circ}\) & － & ＋／－360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 400 W & 200 W & 200 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct－coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct－coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{＋／－0．01 mm} & ＋／－0．01 mm & ＋／－0．004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{7.6 m／sec} & \[
\begin{array}{|c|c|}
\hline 2.3 & 1.7 \\
\mathrm{~m} / \mathrm{sec} & \mathrm{~m} / \mathrm{sec} \\
\hline
\end{array}
\] & \(1700 \% \mathrm{sec}\)（wall mount） \(800 \% \mathrm{sec}\)（inverse wall mount） \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{10 kg （Standard type）， 9 kg （Tool flange mount type）} \\
\hline \multicolumn{3}{|l|}{Standard cycle time：with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.45 sec} \\
\hline \multicolumn{3}{|l|}{R－axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.30 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing（Outer diameter）} & \multicolumn{4}{|c|}{\＄ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1．Soft limit 2．Mechanical stopper（X，Y，Z axis）} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard： 3.5 m Option： \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{30 kg} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity（VA） & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1．This is the value at a constant ambient temperature．（ \(X, Y\) axes \()\)
Note 3．The acceleration coefficient is set automatically in accordance with the tip weight and R －axis moment of inertia settings．
Note．Please consult YAMAHA when connecting other tubes and cables to the self－supporting machine harness


YK600XGS



RCX340-4

Note 1. When installing the robot, always follow the specifications
Do not install the ceiling-mount robot upside down or do not install the inverse type robot to a ceiling. Incorrect installation can cause trouble or malfunction.

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 300 mm & 300 mm & 200 mm 300 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-145 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 400 W & 200 W & 200 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(8.4 \mathrm{~m} / \mathrm{sec}\)} & \[
\begin{array}{|c|c|}
\hline 2.3 & 1.7 \\
\mathrm{~m} / \mathrm{sec} & \mathrm{~m} / \mathrm{sec} \\
\hline
\end{array}
\] & \(1700 \% \mathrm{sec}\) (wall mount) \(800 \%\) sec (inverse wall mount) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{10 kg (Standard type), 9 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|r|}{0.46 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.30 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{31 kg} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \((, Y\) axes \()\)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions.
Note. Please consult YAMAHA when connecting other tubes and cables to the self-ight and R -axis moment of inertia settings.

\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}


Note 1. When installing the robot, always follow the specifications.
Do not install the ceiling-mount robot upside down or do not install the inverse type robot to a ceiling. Incorrect installation can cause trouble or malfunction.

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 300 mm & 400 mm & \(200 \mathrm{~mm} / 400 \mathrm{~mm}\) & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-130 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(8.4 \mathrm{~m} / \mathrm{sec}\)} & \[
\begin{array}{|c|c|}
\hline 2.3 & 1.7 \\
\mathrm{~m} / \mathrm{sec} & \mathrm{~m} / \mathrm{sec} \\
\hline
\end{array}
\] & \(920 \% \mathrm{sec}\) (wall mount) \(480 \%\) sec (inverse wall mount) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg (Standard type), 19 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.42 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|r|}{Z axis \(200 \mathrm{~mm}: 50 \mathrm{~kg} \mathrm{Z} \mathrm{axis} 400 \mathrm{~mm}: 52 \mathrm{~kg}\)} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature. (X,Y axes)
.
Note. Please consult YAMAHA when connecting other tubes and cables to the self-supporting maxhis moment of inertia settings.


Arm length 800 mm O Maximum payload 20kg
Ordering method

YK800XGS



RCX340-4
\begin{tabular}{c} 
Controller \(I\) \\
Number of \(\boldsymbol{I}\) \\
\hline
\end{tabular}
Safety Specify various controller setting items. RCX340 P P. 678

Note 1. When installing the robot, always follow the specifications
Do not install the ceiling-mount robot upside down or do not install the inverse type robot to a ceiling. Incorrect installation can cause trouble or malfunction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 400 mm & 400 mm & \(200 \mathrm{~mm} / 400 \mathrm{~mm}\) & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-145 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline Deceleration & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline mechanism & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(9.2 \mathrm{~m} / \mathrm{sec}\)} & \[
\begin{array}{|c|c|}
\hline 2.3 & 1.7 \\
\mathrm{~m} / \mathrm{sec} & \mathrm{~m} / \mathrm{sec} \\
\hline
\end{array}
\] & \(920 \% \mathrm{sec}\) (wall mount) \(480 \%\) sec (inverse wall mount) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg (Standard type), 19 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.48 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{¢ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|r|}{Z axis \(200 \mathrm{~mm}: 52 \mathrm{~kg} \mathrm{Z}\) axis \(400 \mathrm{~mm}: 54 \mathrm{~kg}\)} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|l|}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \((, Y\) axes \()\)
Z axis \(200 \mathrm{~mm}: 52 \mathrm{~kg} \quad \mathrm{Z}\) axis \(400 \mathrm{~mm}: 54 \mathrm{~kg}\)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions
tip weight and \(R\)-axis moment of inertia settings.


YK900XGS



Specify various controller setting items. RCX340 P P. 678

Note 1. When installing the robot, always follow the specifications.
Do not install the ceiling-mount robot upside down or do not install the inverse type robot to a ceiling Incorrect installation can cause trouble or malfunction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 500 mm & 400 mm & \(200 \mathrm{~mm} / 400 \mathrm{~mm}\) & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(9.9 \mathrm{~m} / \mathrm{sec}\)} & \begin{tabular}{c|c}
2.3 & 1.7 \\
\(\mathrm{~m} / \mathrm{sec}\) & \(\mathrm{m} / \mathrm{sec}\)
\end{tabular} & \begin{tabular}{l}
\(920 \%\) sec (wall mount) \\
\(480 \% \mathrm{sec}\) (inverse wall mount)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg (Standard type), 19 kg (Tool flange mount type)} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.49 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|r|}{Z axis \(200 \mathrm{~mm}: 54 \mathrm{~kg}\) Z axis \(400 \mathrm{~mm}: 56 \mathrm{~kg}\)} \\
\hline
\end{tabular}


Note 1. This is the value at a constant ambient temperature. ( \(X, Y\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings.
Note. Please consult YAMAHA when connecting other tubes and cables to the self-supporting machine harness


Ordering method

YK1000XGS （upside down）

Note 1．When installing the robot，always follow the specifications
Do not install the ceiling－mount robot upside down or do not install the inverse type robot to a ceiling． Incorrect installation can cause trouble or malfunction．

\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X－axis & Y－axis & Z－axis & R－axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 600 mm & 400 mm & 200 mm 400 mm & － \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & ＋／－130 \({ }^{\circ}\) & ＋／－150 \({ }^{\circ}\) & － & ＋／－360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct－coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct－coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{＋／－0．02 mm} & ＋／－0．01 mm & ＋／－0．004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{10.6 m／sec} & \[
\begin{array}{|c|c|}
\hline 2.3 & 1.7 \\
\mathrm{~m} / \mathrm{sec} & \mathrm{~m} / \mathrm{sec} \\
\hline
\end{array}
\] & \begin{tabular}{l}
\(920 \% \mathrm{sec}\)（wall mount） \\
\(480 \% \mathrm{sec}\)（inverse wall mount）
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{20 kg （Standard type）， 19 kg （Tool flange mount type）} \\
\hline \multicolumn{3}{|l|}{Standard cycle time：with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.49 sec} \\
\hline \multicolumn{3}{|l|}{R－axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 20\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing（Outer diameter）} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|r|}{1．Soft limit 2．Mechanical stopper（ \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis）} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard： 3.5 m Option： \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|r|}{Z axis \(200 \mathrm{~mm}: 56 \mathrm{~kg}\) Z axis 400 mm ： 58 kg} \\
\hline
\end{tabular}

Note 1．This is the value at a constant ambient temperature．（ \(X, Y\) axes）
Note 2．When reciprocating 300 mm in horizontal and 25 mm in vertical directions．
Note．Please consult YAMAHA when connecting other tubes and cables to the sip weight and R －axis moment of inertia settings．

\begin{tabular}{c|c|c}
\hline \multicolumn{3}{|c}{ Controller } \\
\hline Controller & Power capacity（VA） & Operation method \\
\hline RCX340 & 2500 & \begin{tabular}{c} 
Programming／ \\
I／O point trace／ \\
Remote command／ \\
Operation \\
using RS－232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note．The movement range can be limited by changing the positions of X and Y axis mechanical stoppers．（The movement range is et to the maximum（i） （inals）for detailed

Our robot manuals（installation manuals）can be downloaded from our website at the address below： https：／／global．yamaha－motor．com／business／robot／
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 100 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-129 \({ }^{\circ}\) & +/-134 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(4.5 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \% sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{4 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.50 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 4\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{21.5 kg} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and \(R\)-axis moment of inertia settings.
4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof
structure preventing liquid other than water.



\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y -axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 200 mm & 150 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-129 \({ }^{\circ}\) & +/-134 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(5.6 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{4 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.52 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(4 \times 4\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{22 kg} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Controller} \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 1000 & Programming / I/O point trace / Remote command/ Operation using RS-232C communication \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information. \\
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.
\end{tabular}} \\
\hline \multicolumn{3}{|r|}{Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.



\section*{Specifications}

\begin{tabular}{l}
\hline Controller \\
\hline Controller \\
\hline Power capacity（VA）
\end{tabular} Operation method \begin{tabular}{c} 
Programming／ \\
RCX340
\end{tabular}

Note 1．This is the value at a constant ambient temperature．（ \(X, Y\) axes）
Note 2．When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction（rough－positioning arch motion）．
Note 3 ．The acceleration coefficient is set automatically in accordance with the tip weight and R －axis moment of inertia settings．
Note 4．Do not use robots where the bellows section is directly exposed to water jet．Contact our distributor for information on drip－proof structure preventing liquid other than water．


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 250 mm & 250 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-129 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(5.1 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{4 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.66 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(4 \times 4\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{25 kg} \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline Controller \\
\hline Controller \\
\hline Power capacity (VA)
\end{tabular} Operation method \begin{tabular}{c} 
Programming / \\
RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof
structure preventing liquid other than water.



\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings,
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.
\begin{tabular}{|c|c|c}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 1700 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}
\begin{tabular}{l} 
Note. The movement range can be limited by changing the positions \\
of \(X\) and \(Y\) axis mechanical stoppers. (The movement range is \\
set to the maximum at the time of shipment.) \\
See our robot manuals (installation manuals) for detailed \\
information. \\
Note. To set the standard coordinates with high accuracy, use a \\
standard coordinate setting jig (option). Refer to the user's \\
manual (installation manual) for more details. \\
\hline \begin{tabular}{l} 
Our robot manuals (installation manuals) can be \\
downloaded from our website at the address below: \\
https://global.yamaha-motor.com/business/robot//
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions
of \(X\) and \(Y\) axis mechanical stoppers. (The movement range is of \(X\) and \(Y\) axis mechanical stoppers. (The movement rang is See our robot manuals (installation manual) Sinformation.

To set the standard coordinates with high accuracy, use a
standard coordinate setting jig (option). Refer to the user's alation manual) for more details.
downloaded from (installation manuals) can be https://global.yamaha-motor.com/business/robot/


\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & X-axis & Y -axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 350 mm & 250 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-129 \({ }^{\circ}\) & +/-144 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 150 W & 50 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(4.9 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & 1020 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{4 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.71 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 10\)} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(4 \times 4\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{26 kg} \\
\hline
\end{tabular}

\section*{Controller}
\begin{tabular}{c|c|c}
\hline Controller & Power capacity (VA) & Operation method \\
\hline & & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
RCX340
\end{tabular} \\
& 1000 & \begin{tabular}{c} 
Remote command / \\
Operation \\
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of \(X\) and \(Y\) axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.)
See our robot manuals (installation manuals) for detailed
ote. To set the s
standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.
Our robot manuals (installation manuals) can be downloaded from our website at the address below: downloaded from our website at the address below.
https://global.yamaha-motor.com/business/robot/

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion),
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.



\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 300 mm & 300 mm & 200 mm 300 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-145 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 400 W & 200 W & 200 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(8.4 \mathrm{~m} / \mathrm{sec}\)} & \(2.3 \mathrm{~m} / \mathrm{sec} 1.7 \mathrm{~m} / \mathrm{sec}\) & 1700 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{10 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.56 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.3 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 20\)} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{Z axis \(200 \mathrm{~mm}: 33 \mathrm{~kg} \quad \mathrm{Z}\) axis \(300 \mathrm{~mm}: 34 \mathrm{~kg}\)} \\
\hline
\end{tabular}
\begin{tabular}{l} 
Controller \\
\hline Controller \\
\hline Power capacity (VA)
\end{tabular} Operation method \begin{tabular}{c} 
Programming / \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.



\section*{Specifications}


Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 1. This is the value at a constant ambient temperature. ( \(X, Y\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.
\begin{tabular}{c|c|c}
\multicolumn{2}{|c}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 2500 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.)
See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.
Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Controller} \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 2500 & Programming / I/O point trace / Remote command / Operation using RS-232C communication \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information. \\
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.
\end{tabular}} \\
\hline \multicolumn{3}{|r|}{Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
structure preventing liquid other than water.
structure preventing liquid other than water.



\section*{Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & X-axis & Y-axis & Z-axis & R -axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 500 mm & 400 mm & 200 mm 400 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(9.9 \mathrm{~m} / \mathrm{sec}\)} & \(2.3 \mathrm{~m} / \mathrm{sec} 1.7 \mathrm{~m} / \mathrm{sec}\) & 920 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{20 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.59 sec} \\
\hline \multicolumn{3}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 20\)} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{Z axis \(200 \mathrm{~mm}: 58 \mathrm{~kg}\) Z axis \(400 \mathrm{~mm}: 60 \mathrm{~kg}\)} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 1. This is the value at a constant ambient temperature. \((X, Y\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.


\section*{Controller}
\begin{tabular}{c|c|c}
\hline Controller & Power capacity (VA) & Operation method \\
\hline & & \begin{tabular}{c} 
Programming / \\
RCX340 point trace /
\end{tabular} \\
& 2500 & \begin{tabular}{c} 
Remote command / \\
Operation \\
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.
See our robot manuals (installation manuals) for detailed information.
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer
manual (installation manual) for more details.

Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 600 mm & 400 mm &  & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-130 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 750 W & 400 W & 400 W & 200 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline & & Speed reducer to output & \multicolumn{4}{|c|}{Direct-coupled} \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.02 mm} & +/-0.01 mm & +/-0.004 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{10.6 m/sec} & \(2.3 \mathrm{~m} / \mathrm{sec} 1.7 \mathrm{~m} / \mathrm{sec}\) & 920 \%sec \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|c|}{20 kg} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with 2kg payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.59 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(1.0 \mathrm{kgm}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Protection class \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{Equivalent to IP65 (IEC 60529)} \\
\hline \multicolumn{3}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 20\)} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 6 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{Z axis \(200 \mathrm{~mm}: 60 \mathrm{~kg} \quad \mathrm{Z}\) axis 400 mm : 62 kg} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 4. Do not use robots where the bellows section is directly exposed to water jet. Contact our distributor for information on drip-proof structure preventing liquid other than water.


\section*{PICK \& PLACE ROBOTS}

\section*{YP-X SERIES}

\section*{CONTENHS}

YP-X SPECIFICATION SHEET \(\cdots 554\)
\(\square\) Robot ordering method description .......................... 554
■ Robot ordering method terminology ..... 554
2 AXES ..... 555
YP320X ..... 556
3 AXES
YP220BXR ..... 557
YP320XR ..... 558
YP330X ..... 559
4 AXES
YP340X ..... 560

\section*{YP-X SPECIFICATION SHEET}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type & Model & Maximum payload (kg) & Cycle time (sec) \({ }^{\text {Note } 1}\) & \multicolumn{2}{|r|}{Structure} & Moving range & Detailed info page \\
\hline \multirow{4}{*}{2-axes} & \multirow[b]{2}{*}{YP220BX} & \multirow[b]{2}{*}{3} & \multirow[b]{2}{*}{0.45} & X-axis & Belt & 200 mm & \multirow[t]{2}{*}{P.555} \\
\hline & & & & Z-axis & Belt & 100 mm & \\
\hline & \multirow[b]{2}{*}{YP320X} & \multirow[b]{2}{*}{3} & \multirow[b]{2}{*}{0.57} & X-axis & Ball screw & 330 mm & \multirow[t]{2}{*}{P.556} \\
\hline & & & & Z-axis & Belt & 100 mm & \\
\hline \multirow{9}{*}{3-axes} & \multirow{3}{*}{YP220BXR} & \multirow{3}{*}{1} & \multirow{3}{*}{0.62} & X-axis & Belt & 200 mm & \multirow{3}{*}{P. 557} \\
\hline & & & & Z-axis & Belt & 100 mm & \\
\hline & & & & R-axis & Rotation axis & +/-180 \({ }^{\circ}\) & \\
\hline & \multirow{3}{*}{YP320XR} & \multirow{3}{*}{1} & \multirow{3}{*}{0.67} & X-axis & Ball screw & 330 mm & \multirow{3}{*}{P.558} \\
\hline & & & & Z-axis & Belt & 100 mm & \\
\hline & & & & R-axis & Rotation axis & +/-180 \({ }^{\circ}\) & \\
\hline & \multirow{3}{*}{YP330X} & \multirow{3}{*}{3} & \multirow{3}{*}{0.57} & X-axis & Ball screw & 330 mm & \multirow{3}{*}{P.559} \\
\hline & & & & Y-axis & Ball screw & 150 mm & \\
\hline & & & & Z-axis & Belt & 100 mm & \\
\hline \multirow{4}{*}{4-axes} & \multirow{4}{*}{YP340X} & \multirow{4}{*}{1} & \multirow{4}{*}{0.67} & X-axis & Ball screw & 330 mm & \multirow{4}{*}{P.560} \\
\hline & & & & Y-axis & Ball screw & 150 mm & \\
\hline & & & & Z-axis & Belt & 100 mm & \\
\hline & & & & R-axis & Rotation axis & +/-180 \({ }^{\circ}\) & \\
\hline
\end{tabular}

Note 1. Cycle time is the time required for moving back and forth 150 mm (arch 50 ) and vertically 50 mm (during rough-positioning motion with 1 kg load).

\section*{Robot ordering method description}

In the order format for the YAMAHA pick \& place robots YP-X series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation.
[Example]
■ 2-axis specifications
- Mechanical \(>\) YP220BX \(\quad\) Controller \(>\) RCX320
- Robot cable length \(\triangleright 3.5 \mathrm{~m}\)

\section*{- Ordering method}

\section*{YP220BX-3L-RCX32O-2-N-NS-2}

Mechanical section



■ 3 / 4 axis specifications
- Mechanical \(>\) YP340X \(\quad\) Controller \(>\) RCX340
- Robot cable length \(>5 \mathrm{~m}\)

\section*{- Ordering method}

\section*{YP340X-5L-RCX340}

Mechanical section
Controller section



\section*{Robot ordering method terminology}
\begin{tabular}{|l|l|}
\hline (1) Model & Enter the robot unit model. \\
\hline (2) Cable length & \begin{tabular}{l} 
Select the length of the robot cable connecting the robot and controller. \\
\(3 \mathrm{~L}: 3.5 \mathrm{~m} \quad 5 \mathrm{~L}: 5 \mathrm{~m} \quad\) 10L: 10m
\end{tabular} \\
\hline (3) Controller & \begin{tabular}{l} 
2-axis specifications: Select either the RCX320 or RCX222. \\
3/4 axis specifications: Select the RCX340.
\end{tabular} \\
\hline
\end{tabular}


Controller -Usable for CE-IVO selection 1-IVO selection 2
Specify various controller setting items. RCX222 \(\boldsymbol{P}\) P. 670
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Specifications} \\
\hline & X axis & Z axis \\
\hline AC servo motor output (W) & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.05 & +/-0.05 \\
\hline Drive system & Timing belt & Timing belt \\
\hline Deceleration ratio (mm) & Equivalent to lead 24 & Equivalent to lead 20 \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (mm/sec) & 1440 & 1200 \\
\hline Moving range (mm) & 200 & 100 \\
\hline Cycle time (sec) & \multicolumn{2}{|c|}{\(0.45{ }^{\text {Note } 3}\)} \\
\hline Maximum payload (kg) & \multicolumn{2}{|c|}{3} \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline Weight (kg) & \multicolumn{2}{|c|}{17} \\
\hline
\end{tabular}

Note 1. Positioning repeatability precision in a single swing when residual vibration is stabilized (variable depending on the load and stroke).
Note 2. When the moving stroke is short, the maximum speed may not be reached.
Note 3. Reciprocating time in vertical direction \((50 \mathrm{~mm})\) and longitudinal direction \((150 \mathrm{~mm})\) with the arch amount of 50 (when executing rough-
positioning arch motion with 1 kg load).
\begin{tabular}{l|c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \begin{tabular}{c} 
Power \\
consumption (VA)
\end{tabular} & Operating method \\
\hline RCX320 & \begin{tabular}{l} 
Programming / \\
RCX222
\end{tabular} & 500 \\
\begin{tabular}{l} 
Remote command / trace / \\
Operation using \\
RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}






Specify various controller setting items. RCX320 \(\boldsymbol{P} \mathbf{P 6 6 0}\)
RCX222
Controller -Usable for CE-IVO selection 1-IIO selection 2
Specify various controller setting items. RCX222 \(\downarrow\) P. 670
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Specifications} \\
\hline & X axis & Z axis \\
\hline AC servo motor output (W) & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.02 & +/-0.05 \\
\hline Drive system & Ball screw \(\phi 15\) & Timing belt \\
\hline Deceleration ratio (mm) & Equivalent to lead 20 & Equivalent to lead 25 \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (mm/sec) & 1500 & 1500 \\
\hline Moving range (mm) & 330 & 100 \\
\hline Cycle time (sec) & \multicolumn{2}{|c|}{\(0.57{ }^{\text {Note 3 }}, 0.788^{\text {Note } 4}\)} \\
\hline Maximum payload (kg) & \multicolumn{2}{|c|}{3} \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline Weight (kg) & \multicolumn{2}{|c|}{21} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \begin{tabular}{l} 
Power \\
consumption (VA)
\end{tabular} & Operating method \\
\hline RCX320 & \begin{tabular}{l} 
Programming / \\
RCX222
\end{tabular} & \begin{tabular}{l} 
I/O point trace / \\
Remote command / \\
Operation using \\
RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note 1. Positioning repeatability precision in a single swing when residual vibration is stabilized (variable depending on the load and stroke). Note 2. When the moving stroke is short, the maximum speed may not be reached.
Note 3. Reciprocating time in vertical direction \((50 \mathrm{~mm})\) and longitudinal direction \((150 \mathrm{~mm})\) with the arch amount of 50 (when executing rough-
Note 4. Reciprocating time in vertical direction \((25 \mathrm{~mm})\) and longitudinal direction \((300 \mathrm{~mm})\) with the arch amount of 25 (when executing roughpositioning arch motion with 1 kg load).


\title{
YP220BXR
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Specifications} \\
\hline & X axis & Z axis & R axis \\
\hline AC servo motor output (W) & 200 & 200 & 60 \\
\hline Repeatability \({ }^{\text {Note1 }}\) (mm) & +/-0.05 & +/-0.05 & +/-0.1 \\
\hline Drive system & Timing belt & Timing belt & Ball Reducer \\
\hline Deceleration ratio (mm) & Equivalent to lead 24 & Equivalent to lead 20 & 1/18 \\
\hline Maximum speed \({ }^{\text {Note } 2}\) (XZ: mm/sec) (R: \(\left.\% / \mathrm{sec}\right)\) & 1440 & 1200 & 1000 \\
\hline Moving range (XZ: mm) (R: \({ }^{\circ}\) ) & 200 & 100 & +/-180 \\
\hline Cycle time (sec) & \multicolumn{3}{|c|}{\(0.62{ }^{\text {Note } 3}\)} \\
\hline Maximum payload (kg) & \multicolumn{3}{|c|}{1} \\
\hline R-axis allowable moment inertia ( \(\mathrm{kgm}^{2}\left[\mathrm{kgfcms}^{2}\right]\) ) & \multicolumn{3}{|c|}{0.00098 [0.01]} \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline Weight (kg) & \multicolumn{3}{|c|}{19} \\
\hline
\end{tabular}

Note 1. Positioning repeatability precision in a single swing when residual vibration is stabilized (variable depending on the load and stroke).
Note 2. When the moving stroke is short, the maximum speed may not be reached
Note 3. Reciprocating time in vertical direction \((50 \mathrm{~mm})\) and longitudinal direction \((150 \mathrm{~mm})\) with the arch amount of 50 (when executing roughpositioning arch motion with 1 kg load).
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \begin{tabular}{l} 
Power \\
consumption (VA)
\end{tabular} & Operating method \\
\hline RCX340 & \begin{tabular}{l} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation using \\
RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

\section*{YP220BXR}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Specifications} \\
\hline & X axis & Z axis & R axis \\
\hline AC servo motor output（W） & 200 & 200 & 60 \\
\hline Repeatability \({ }^{\text {Note } 1}\)（XZ：mm）（R：\({ }^{\circ}\) ） & ＋／－0．02 & ＋／－0．05 & ＋／－0．1 \\
\hline Drive system & Ball screw \(\mathbf{\$ 1 5}\) & Timing belt & Ball Reducer \\
\hline Deceleration ratio（mm） & Equivalent to lead 20 & Equivalent to lead 25 & 1／18 \\
\hline Maximum speed \({ }^{\text {Note } 2}\)（XZ：mm／sec）（R：\％／sec） & 1500 & 1500 & 1000 \\
\hline Moving range（XZ：mm）（R：\({ }^{\circ}\) ） & 330 & 100 & ＋／－180 \\
\hline Cycle time（sec） & \multicolumn{3}{|c|}{\(0.67{ }^{\text {Note 3 }}, 0.87^{\text {Note } 4}\)} \\
\hline Maximum payload（kg） & \multicolumn{3}{|c|}{1} \\
\hline R－axis allowable moment inertia （ \(\mathrm{kgm}^{2}\left[\mathrm{kgfcms}^{2}\right]\) ） & \multicolumn{3}{|c|}{0.00098 ［0．01］} \\
\hline Robot cable length（m） & \multicolumn{3}{|c|}{Standard：3．5 Option：5，10} \\
\hline Weight（kg） & \multicolumn{3}{|c|}{23} \\
\hline
\end{tabular}
\begin{tabular}{l|c|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & \begin{tabular}{c} 
Power \\
consumption（VA）
\end{tabular} & Operating method \\
\hline RCX340 & \begin{tabular}{l} 
Programming／ \\
I／O point trace／ \\
Remote command／ \\
Operation using \\
RS－232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note 1．Positioning repeatability precision in a single swing when residual vibration is stabilized（variable depending on the load and stroke）． Note 2．When the moving stroke is short the maximum speed may not be reached
Note 3．Reciprocating time in vertical direction（ 50 mm ）and longitudinal direction \((150 \mathrm{~mm})\) with the arch amount of 50 （when executing rough－ positioning arch motion with 1 kg load）
Note 4．Reciprocating time in vertical direction \((25 \mathrm{~mm})\) and longitudinal direction \((300 \mathrm{~mm})\) with the arch amount of 25 （when executing rough－ positioning arch motion with 1 kg load）．


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Specifications} \\
\hline & X axis & Y axis & Z axis \\
\hline AC servo motor output (W) & 200 & 200 & 200 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (mm) & +/-0.02 & +/-0.02 & +/-0.05 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\phi 15\) & Timing belt \\
\hline Deceleration ratio (mm) & Equivalent to lead 20 & Equivalent to lead 20 & Equivalent to lead 25 \\
\hline Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) ) & 1500 & 1000 & 1500 \\
\hline Moving range (mm) & 330 & 150 & 100 \\
\hline Cycle time (sec) & \multicolumn{3}{|c|}{\(0.57^{\text {Note } 3}, 0.788^{\text {Note } 4}\)} \\
\hline Maximum payload (kg) & \multicolumn{3}{|c|}{3} \\
\hline Robot cable length (m) & \multicolumn{3}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline Weight (kg) & \multicolumn{3}{|c|}{32} \\
\hline
\end{tabular}
\begin{tabular}{l|c|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \begin{tabular}{c} 
Power \\
consumption (VA)
\end{tabular} & Operating method \\
\hline RCX340 & 700 & \begin{tabular}{l} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation using \\
RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note 1. Positioning repeatability precision in a single swing when residual vibration is stabilized (variable depending on the load and stroke). Note 2. When the moving stroke is short, the maximum speed may not be reached.
Note 3. Reciprocating time in vertical direction \((50 \mathrm{~mm})\) and longitudinal direction \((150 \mathrm{~mm})\) with the arch amount of 50 (when executing rough-
Note 4. Reciprocating time in vertical direction \((25 \mathrm{~mm})\) and longitudinal direction \((300 \mathrm{~mm})\) with the arch amount of 25 (when executing rough-
positioning arch motion with 1 kg load).


Grounding terminal (M4)



Note 1. Distance to mechanical stopper.


Note 2. Return-to-origin on the YP330X is by absolute reset. So the origin position must be set the first time (making initial settings) Note 3. Do not use bolts longer than 20 mm (robot bottom plate thickness)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Specifications} \\
\hline & X axis & Y axis & Z axis & R axis \\
\hline AC servo motor output (W) & 200 & 200 & 200 & 60 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm)(R: \({ }^{\circ}\) ) & +/-0.02 & +/-0.02 & +/-0.05 & +/-0.1 \\
\hline Drive system & Ball screw \(\phi 15\) & Ball screw \(\mathbf{\phi 1 5}\) & Timing belt & Ball Reducer \\
\hline Deceleration ratio (mm) & Equivalent to lead 20 & Equivalent to lead 20 & Equivalent to lead 25 & 1/18 \\
\hline Maximum spee \({ }^{\text {Note } 2}\) (XYZ: mm/sec) (R: \(\left.\% / \mathrm{sec}\right)\) & 1500 & 1000 & 1500 & 1000 \\
\hline Moving range (XYZ: mm) (R: \({ }^{\circ}\) ) & 330 & 150 & 100 & +/-180 \\
\hline Cycle time (sec) & \multicolumn{4}{|c|}{\(0.67{ }^{\text {Note 3 }}, 0.87^{\text {Note 4 }}\)} \\
\hline Maximum payload (kg) & \multicolumn{4}{|c|}{1} \\
\hline R-axis allowable moment inertia ( \(\mathrm{kgm}^{2}\left[\mathrm{kgfcms}^{2}\right]\) ) & \multicolumn{4}{|c|}{0.00098 [0.01]} \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5,10} \\
\hline Weight (kg) & \multicolumn{4}{|c|}{34} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \begin{tabular}{l} 
Power \\
consumption (VA)
\end{tabular} & Operating method \\
\hline RCX340 & \begin{tabular}{l} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation using \\
RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note 1. Positioning repeatability precision in a single swing when residual vibration is stabilized (variable depending on the load and stroke). Note 2. When the moving stroke is short, the maximum speed may not be reached
Note 3. Reciprocating time in vertical direction \((50 \mathrm{~mm})\) and longitudinal direction \((150 \mathrm{~mm})\) with the arch amount of 50 (when executing roughpositioning arch motion with 1 kg load).
Note 4. Reciprocating time in vertical direction \((25 \mathrm{~mm})\) and longitudinal direction \((300 \mathrm{~mm})\) with the arch amount of 25 (when executing roughpositioning arch motion with 1 kg load).


Note 1. Distance to mechanical stopper.
Note 2. Return-to-origin on the YP340X is by absolute reset. So the origin position must be set the first time (making initial settings) but after that is not required
Note 3. Do not use bolts longer than 20 mm (robot bottom plate thickness).

\section*{CLEAN ROBOTS}
 TYPE

- 3 axes / ZSC

SXYxC ........................................... 584
- 4 axes / ZRSC

SXYxC .............................................. 586

YK220XC ......................................... 589
YK220XC
YK250XGC ............................................ 590
YK350XGC ........................................ 592
YK400XGC .................................... 594
YK500XGLC..................................... 596
YK500XC.......................................... 598
YK600XGLC...................................... 599
YK600XC........................................... 601
YK700XC.......................................... 602
YK800XC......................................... 603
YK1000XC ...................................... 604

\section*{CLEAN ROBOTS SPECIFICATION SHEET}

\section*{Clean single-axis robots}

\section*{-TRANSERVO}
- Degree of cleanliness CLASS 10
- Intake air 15 to \(80 \mathrm{~N} \ell / \mathrm{min}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Model} & \multirow[t]{2}{*}{\begin{tabular}{l}
Lead \\
(mm)
\end{tabular}} & \multicolumn{2}{|c|}{Payload (kg)} & \multicolumn{16}{|c|}{Stroke ( mm ) and maximum speed ( \(\mathrm{mm} / \mathrm{sec}\) )} & \multirow[t]{2}{*}{Detailed info page} \\
\hline & & Horizontal & Vertical & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & \\
\hline \multirow{3}{*}{SSC04} & 12 & 2 & 1 & \multicolumn{16}{|c|}{600} & \multirow{3}{*}{P. 565} \\
\hline & 6 & 4 & 2 & \multicolumn{8}{|c|}{300} & & & & & & & & & \\
\hline & 2 & 6 & 4 & \multicolumn{8}{|c|}{100} & & & & & & & & & \\
\hline \multirow{3}{*}{SSC05} & 20 & 4 & - & \multicolumn{12}{|c|}{1000} & 933 & 833 & 733 & 633 & \multirow{3}{*}{P. 566} \\
\hline & 12 & 6 & 1 & \multicolumn{12}{|c|}{600} & 560 & 500 & 440 & 380 & \\
\hline & 6 & 10 & 2 & \multicolumn{12}{|c|}{300} & 280 & 250 & 220 & 190 & \\
\hline \multirow{5}{*}{SSC05H} & 20 & 6 & - & \multicolumn{12}{|c|}{1000} & 933 & 833 & 733 & 633 & \multirow{5}{*}{P. 567} \\
\hline & \multirow{2}{*}{12} & 8 & - & \multicolumn{12}{|c|}{600} & 560 & 500 & 440 & 380 & \\
\hline & & - & 2 & \multicolumn{14}{|c|}{500} & 440 & 380 & \\
\hline & \multirow{2}{*}{6} & 12 & - & \multicolumn{12}{|c|}{300} & 280 & 250 & 220 & 190 & \\
\hline & & - & 4 & \multicolumn{14}{|c|}{250} & 220 & 190 & \\
\hline
\end{tabular}

\section*{-FLIP-XC}
- Degree of cleanliness C4L/C4LH/C5L/C5LH/C6L ...................... ISO CLASS 3 (ISO14644-1) \({ }^{\text {Note }}\)

Models other than those shown above .... CLASS 10
Note. Class \(10(0.1 \mu \mathrm{~m})\) equivalent to FED-STD-209D
- Intake air 20 to \(90 \mathrm{~N} \ell /\) min



\section*{Clean cartesian robots}

\section*{- XY-XC}
- Degree of cleanliness CLASS 10
- Intake air 60 to \(90 \mathrm{~N} \ell / \mathrm{min}\)
- Aperture designed to minimal dimensions by use of stainless steel sheet
- Installed clean robot dedicated cable duct

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type & Model & Axis & Moving range & Maximun speed ( \(\mathrm{mm} / \mathrm{sec}\) ) & Maximum payload (kg) & Detailed info page \\
\hline \multirow[b]{2}{*}{2 axes} & \multirow[b]{2}{*}{SXYXC} & X & 150 to 1050 mm & 1000 & \multirow[b]{2}{*}{20} & \multirow[b]{2}{*}{P. 582} \\
\hline & & Y & 150 to 650 mm & 1000 & & \\
\hline \multirow{6}{*}{3 axes} & \multirow{3}{*}{SXYXC (ZSC12)} & X & 150 to 1050 mm & 1000 & \multirow{3}{*}{3} & \multirow{3}{*}{P. 584} \\
\hline & & Y & 150 to 650 mm & 1000 & & \\
\hline & & Z & 150 mm & 1000 & & \\
\hline & \multirow{3}{*}{SXYXC (ZSC6)} & X & 150 to 1050 mm & 1000 & \multirow{3}{*}{5} & \multirow{3}{*}{P. 584} \\
\hline & & Y & 150 to 650 mm & 1000 & & \\
\hline & & Z & 150 mm & 500 & & \\
\hline \multirow{8}{*}{4 axes} & \multirow{4}{*}{SXYXC (ZRSC12)} & X & 150 to 1050 mm & 1000 & \multirow{4}{*}{3} & \multirow{4}{*}{P. 586} \\
\hline & & Y & 150 to 650 mm & 1000 & & \\
\hline & & Z & 150 mm & 1000 & & \\
\hline & & R & \(360^{\circ}\) & 1020\%sec & & \\
\hline & \multirow{4}{*}{SXYXC (ZRSC6)} & X & 150 to 1050 mm & 1000 & \multirow{4}{*}{5} & \multirow{4}{*}{P. 586} \\
\hline & & Y & 150 to 650 mm & 1000 & & \\
\hline & & Z & 150 mm & 500 & & \\
\hline & & R & \(360^{\circ}\) & 1020\%/sec & & \\
\hline
\end{tabular}

Arm variations

Special model for clean rooms with moving Y -axis carriage installed upward.
(T1)

(T3)


\section*{Clean SCARA robots}

\section*{- YK-XC/YK-XGC/YK-XGLC}

\author{
- Degree of cleanliness YK-XC CLASS 10 \\ YK-XGC/YK-XGLC... ISO CLASS 3 (ISO14644-1) Note \\ Note. Class \(10(0.1 \mu \mathrm{~m})\) equivalent to FED-STD-209D
}
- Intake air 30 to \(60 \mathrm{~N} \ell / \mathrm{min}\)
- Harness placed completely on inside
- Bellows cover fitted in axial tip


Passed 20 million stroke durability test
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Type} & \multirow{2}{*}{Model} & \multicolumn{15}{|c|}{Arm length (mm) and XY axis combined maximum speed ( \(\mathrm{m} / \mathrm{s}\) )} & \multirow[t]{2}{*}{Standard cycle time (sec)} & \multirow[t]{2}{*}{Maximum payload (kg)} & \multirow[t]{2}{*}{R axis tolerable moment of inertia ( \(\mathbf{k g m}^{2}\) )} & \multirow[t]{2}{*}{Detailed info page} \\
\hline & & 120 & 150 & 180 & 220 & 250 & 300 & 350 & 400 & 500 & 600 & 700 & 800 & 900 & 1000 & 1200 & & & & \\
\hline \multirow[t]{2}{*}{Extra small type} & YK180XC & \multicolumn{3}{|c|}{\(3.3 \mathrm{~m} / \mathrm{s}\)} & & & & & & & & & & & & & 0.42 & 1.0 & 0.01 & P. 588 \\
\hline & YK220XC & \multicolumn{4}{|c|}{\(3.4 \mathrm{~m} / \mathrm{s}\)} & & & & & & & & & & & & 0.45 & 1.0 & 0.01 & P. 589 \\
\hline \multirow{3}{*}{Small type} & YK250XGC & \multicolumn{5}{|c|}{\(4.5 \mathrm{~m} / \mathrm{s}\)} & & & & & & & & & & & 0.50 & 4.0 & 0.05 & P. 590 \\
\hline & YK350XGC & \multicolumn{7}{|c|}{\(5.6 \mathrm{~m} / \mathrm{s}\)} & & & & & & & & & 0.52 & 4.0 & 0.05 & P.592 \\
\hline & YK400XGC & \multicolumn{8}{|c|}{\(6.1 \mathrm{~m} / \mathrm{s}\)} & & & & & & & & 0.50 & 4.0 & 0.05 & P. 594 \\
\hline \multirow{4}{*}{Medium type} & YK500XGLC & \multicolumn{9}{|c|}{\(5.1 \mathrm{~m} / \mathrm{s}\)} & & & & & & & 0.66 & 4.0 & 0.05 & P. 596 \\
\hline & YK500XC & \multicolumn{9}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}\)} & & & & & & & 0.53 & 10.0 & 0.12 & P. 598 \\
\hline & YK600XGLC & \multicolumn{10}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}\)} & & & & & & 0.71 & 4.0 & 0.05 & P. 599 \\
\hline & YK600xC & \multicolumn{10}{|c|}{\(5.6 \mathrm{~m} / \mathrm{s}\)} & & & & & & 0.56 & 10.0 & 0.12 & P. 601 \\
\hline \multirow[b]{3}{*}{Large type} & YK700XC & \multicolumn{11}{|c|}{\(6.7 \mathrm{~m} / \mathrm{s}\)} & & & & & 0.57 & 20.0 & 0.32 & P. 602 \\
\hline & YK800XC & \multicolumn{12}{|c|}{\(7.3 \mathrm{~m} / \mathrm{s}\)} & & & & 0.57 & 20.0 & 0.32 & P. 603 \\
\hline & YK1000XC & \multicolumn{15}{|c|}{\(8.0 \mathrm{~m} / \mathrm{s}\)} & 0.60 & 20.0 & 0.32 & P. 604 \\
\hline
\end{tabular}


Note 1. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual
Note 2. The robot cable is flexible and resists bending
Note 3. See P. 634 for DIN rail mounting bracket
Note 4. Select this selection when using the gateway function. For details, see P.96.

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor} & \multicolumn{3}{|c|}{\(42 \square\) Step motor} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \({ }^{\text {¢ }} 8\)} \\
\hline \multicolumn{2}{|l|}{Maximum motor torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & \multicolumn{3}{|c|}{0.27} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 600 & 300 & 100 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 2 & 4 & 6 \\
\hline & Vertical & 1 & 2 & 4 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 45 & 90 & 150 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 400 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+216} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+261} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W49 \(\times\) H59} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 1 / Option: 3, 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|c|}{CLASS \(10{ }^{\text {Note } 2}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Intake air ( \(\mathrm{N} / \mathrm{/min}\) )}} & Lead 12 & Lead 6 & Lead 2 \\
\hline & & 50 & 30 & 15 \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base), when suction blower is used

\section*{Allowable overhang Nole}

of \(10,000 \mathrm{~km}\) (Service life is calculated for 400 mm stroke models).

\begin{tabular}{c|c|c|c}
\multicolumn{4}{c}{ Horizontal installation (Unit: mm ) } \\
\hline \multicolumn{4}{|c|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & A & B & C \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \mathrm{N} \\
& \stackrel{\mathrm{O}}{\mathrm{I}} \\
& \hline
\end{aligned}
\]} & 1kg & 807 & 218 & 292 \\
\hline & 2kg & 667 & 107 & 152 \\
\hline \multirow[t]{3}{*}{\[
\]} & 2kg & 687 & 116 & 169 \\
\hline & 3kg & 556 & 76 & 112 \\
\hline & 4kg & 567 & 56 & 84 \\
\hline \multirow[t]{2}{*}{} & 4kg & 869 & 61 & 92 \\
\hline & 6kg & 863 & 40 & 60 \\
\hline
\end{tabular}


Vertical installation (Unit: mm )


SSC04

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & Note 1. Stop positions are determined by the mechanical stoppers at both ends. \\
\hline L & 266 & 316 & 366 & 416 & 466 & 516 & 566 & 616 & Note 2. Either right or left can be selected for the suction This drawing shows the RJ (standard) direction. \\
\hline A & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Note 3. Secure the cable with a tie-band 100 mm or less from unit's end face to prevent the cable from being \\
\hline B & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & Note 4. The cable's minimum bend radius is R30. \\
\hline C & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & Note 5. These are the weights without a brake. The weights are 0.2 kg heavier when equipped with a brake. \\
\hline Weight (kg) \({ }^{\text {Note } 5}\) & 1.5 & 1.6 & 1.7 & 1.8 & 2.0 & 2.1 & 2.2 & 2.3 & \\
\hline
\end{tabular}


SSC05



Note 1. Only the model with a lead of 12 mm or 6 mm can select specifications with brake.
Note 2. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.
Note 3. The robot cable is flexible and resists bending
Note 4. See P. 634 for DIN rail mounting bracket.
Note 5. Select this selection when using the gateway function. For details, see P. 96 .
\(\square\) Basic specifications
Motor
\begin{tabular}{l|c}
\hline Repeatability \({ }^{\text {Note } 1}(\mathrm{~mm})\) & \(+/-0.02\) \\
\hline Deceleration mechanism & Ball screw \(\phi 12\) \\
\hline
\end{tabular}
Maximum motor torque ( \(\mathrm{N} \cdot \mathrm{m}\) )
Ball screw lead (mm)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Ball screw lead (m)} & 20 & 12 & 6 \\
\hline \multirow[t]{2}{*}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & Horizontal & 1000 & 600 & 300 \\
\hline & Vertical & - & 500 & 250 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 6 & 8 & 12 \\
\hline & Vertical & - & 2 & 4 \\
\hline \multicolumn{2}{|l|}{Max. pressing force (N)} & 36 & 60 & 120 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 800 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+286} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+306} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W55 x H56} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 1 / Option: 3, 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|c|}{CLASS \(10{ }^{\text {Note } 3}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intake air ( \(\mathrm{N} / \mathrm{/min}\) )}} & Lead 20 & Lead 12 & Lead 6 \\
\hline & & 80 & 50 & 30 \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. When the stroke is longer than 650 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program speed). In this case, reduce the speed setting on the program
by referring to the maximum speeds shown in the table below. Note 3. Per 1 cf ( \(0.1 \mu \mathrm{~m}\) base), when suction blower is used.

\section*{\(\square\) Allowable overhang Note}




Wall installation (Unit: mm



Static loading moment


\section*{Controller}

Controller Operation method \begin{tabular}{l|l} 
TS-S2 & I/O point trace / \\
TS-SH & Remote command \\
\hline
\end{tabular} \begin{tabular}{l|l}
\hline TS-SD & Pulse train control \\
\hline
\end{tabular}

Note. Distance from center of slider upper surface to conveyor center-of-gravity at a guide service life


\section*{OOrdering method}


\section*{ERCD}

Controller


Note 1. The robot cable is flexible and resists bending. See P. 732 for details on robot cable.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & \multicolumn{3}{|c|}{30} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw ¢ 8} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 720 & 360 & 120 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 4.5 & 6 & 6 \\
\hline & Vertical & 1.2 & 2.4 & 7.2 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 32 & 64 & 153 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 400 ( 50 mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+205} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+243} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W \(45 \times \mathrm{H} 55\)} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 1,5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|l|}{ISO CLASS 3 (ISO14644-1) \({ }^{\text {Note } 2}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N//min) \({ }^{\text {Note } 3}\)} & 50 & 30 & 15 \\
\hline
\end{tabular}

Note 2. CLASS \(10(0.1 \mu \mathrm{~m})\) FED-STD-209D or equivalent when a
suction blower is used.
Note 3. The necessary intake amount varies depending on the use conditions and environment.


\section*{OOrdering method}

\section*{C4LH}

\title{
\begin{tabular}{l}
\(\square\) \\
\(-\quad\) Stroke \\
\(\begin{array}{l}50 \text { to } 400 \\
(50 \mathrm{~mm} \text { pitch })\end{array}\) \\
\hline
\end{tabular}
}

\begin{tabular}{|c|c|c|c|c|}
\hline TSX & & & & \\
\hline Peme & mpemempues & -ccomontict & Vosalection & Bate \\
\hline &  & Nown &  & Ansolue \\
\hline & & &  & \\
\hline SR1-X & 05 & & & \\
\hline Contoler & Peweremeill & Usaberece & Iose & bat \\
\hline & & Le.Cemaxine & Nipen & \\
\hline & & & coiccilink & v: Sone \\
\hline & & &  & \\
\hline
\end{tabular}

Note 1. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.


Note 2. See P. 634 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.96.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & \multicolumn{3}{|c|}{30} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw ¢ 8} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 12 & 6 & 2 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 720 & 360 & 120 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 4.5 & 6 & 6 \\
\hline & Vertical & 1.2 & 2.4 & 7.2 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 32 & 64 & 153 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 400 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+205} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+243} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W45×H55} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|l|}{ISO CLASS 3 (ISO14644-1) \({ }^{\text {Note } 2}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N \(\mathrm{l} / \mathrm{min}\) ) \({ }^{\text {Note } 3}\)} & 50 & 30 & 15 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. CLASS \(10(0.1 \mu \mathrm{~m})\) FED-STD-209D or equivalent when a suction blower is used. \\
Note 3. The necessary intake amount varies depending on the use conditions and environment.
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

\begin{tabular}{l|l} 
SR1-X05 & l/O point trace / \\
RCX320 & Remote command / \\
RCX221/2222 & Operation \\
RCX340 & \begin{tabular}{l} 
using RS-232C \\
communication
\end{tabular} \\
\hline TS-X105 & I/O point trace / \\
\hline TS-X205 & Remote command \\
\hline RDV-X205 & Pulse train control \\
\hline
\end{tabular}
C4LH

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & \\
\hline \multicolumn{2}{|l|}{L} & 255 & 305 & 355 & 405 & 455 & 505 & 555 & 605 & \\
\hline \multicolumn{2}{|l|}{A} & 4 & 6 & 6 & 8 & 8 & 10 & 10 & 10 & \\
\hline \multicolumn{2}{|l|}{B} & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 4 & \\
\hline \multicolumn{2}{|l|}{C} & 150 & 100 & 125 & 125 & 125 & 125 & 125 & 125 & \\
\hline \multicolumn{2}{|l|}{E} & 0 & 0 & 0 & 50 & 100 & 25 & 75 & 0 & \multirow[b]{2}{*}{\begin{tabular}{l}
Note 1. Stop positions are determined by the mechanical stoppers at both ends. \\
Note 2. Minimum bend radius of motor cable is R30.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{S} & 70 & 120 & 170 & 220 & 270 & 320 & 370 & 420 & \\
\hline \multicolumn{2}{|l|}{Weight (kg) \({ }^{\text {Note } 3}\)} & 1.4 & 1.5 & 1.7 & 1.8 & 2 & 2.1 & 2.3 & 2.4 & Note 3. Weight of models with no brake. The weight of brake-attached models is 0.2 kg heavier than the models \\
\hline \multirow[t]{3}{*}{\begin{tabular}{c} 
Maximum \\
speed for each \\
stroke \\
( \(\mathrm{mm} / \mathrm{sec}\) ) \\
\hline
\end{tabular}} & Lead 12 & \multicolumn{8}{|c|}{720} & with no brake shown in the table. \\
\hline & Lead 6 & \multicolumn{8}{|c|}{360} & Note 4. Either right or left can be selected for the installation direction for the \(\phi 6\) intake air joint. (The left side is the standard.) \\
\hline & Lead 2 & \multicolumn{8}{|c|}{120} & Note 5. External view of C4LH is identical to C4L. \\
\hline
\end{tabular}


Note 1. The model with a lead of 20 mm cannot select specifications with brake (vertical specifications).
Note 2. The robot cable is flexible and resists bending. See P. 732 for details on robot cable.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & \multicolumn{3}{|c|}{30} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \$12} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 12 & 6 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 1000 & 800 & 400 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 3 & 5 & 9 \\
\hline & Vertical & - & 1.2 & 2.4 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 19 & 32 & 64 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 800 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+201.5} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+239.5} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W55×H65} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 1,5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|l|}{ISO CLASS 3 (ISO14644-1) \({ }^{\text {Note 2 }}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (NQ/min) \({ }^{\text {Note } 3}\)} & 80 & 50 & 30 \\
\hline
\end{tabular}
Note 1. Positioning repeatability in one direction.
suction 0
Note 3. The necessary intake amount varies depending on the use
conditions and environment.


\section*{OOrdering method}

\section*{C5LH}

Stroke 50 to 800
\((50 \mathrm{~mm}\) pitch)


Note 1. The model with a lead of 20 mm cannot select specifications with brake (vertical specifications)
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable
Note 3. See P. 634 for DIN rail mounting bracket.
Note 4. Select this selection when using the gateway function. For details, see P.96.

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & & 30 & \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \$12} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 12 & 6 \\
\hline \multicolumn{2}{|l|}{Maximum speed (mm/sec)} & 1000 & 800 & 400 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 3 & 5 & 9 \\
\hline & Vertical & - & 1.2 & 2.4 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 19 & 32 & 64 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{50 to 800 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+201.5} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+239.5} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W55×H65} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|l|}{ISO CLASS 3 (ISO14644-1) \({ }^{\text {Nole 2 }}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N८/min) \({ }^{\text {Note } 3}\)} & 80 & 50 & 30 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. CLASS \(10(0.1 \mu \mathrm{~m})\) FED-STD-209D or equivalent when a suction blower is used. \\
Note 3. The necessary intake amount varies depending on the use conditions and environment.
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}


\section*{TSX}
\begin{tabular}{l} 
Postioner \\
TS-X \\
\hline
\end{tabular}
cosc)



\section*{Ordering method}

Note 1．The model with a lead of 20 mm cannot select specifications with brake（vertical specifications）．
Note 2．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible cable See P． 732 for details on robot cable．
Note 3．See P． 634 for DIN rail mounting bracket
Note 4．Select this selection when using the gateway function．For details，see P．96．


\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output（W）} & \multicolumn{3}{|c|}{60} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)（mm）} & \multicolumn{3}{|c|}{＋／－0．02} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \＄12} \\
\hline \multicolumn{2}{|l|}{Ball screw lead（mm）} & 20 & 12 & 6 \\
\hline \multicolumn{2}{|l|}{Maximum speed（mm／sec）} & 1000 & 800 & 400 \\
\hline \multirow[t]{2}{*}{Maximum payload（kg）} & Horizontal & 10 & 12 & 30 \\
\hline & Vertical & & 4 & 8 \\
\hline \multicolumn{2}{|l|}{Rated thrust（N）} & 51 & 85 & 170 \\
\hline \multicolumn{2}{|l|}{Stroke（mm）} & \multicolumn{3}{|l|}{50 to 800 （ 50 mm pitch）} \\
\hline \multirow[t]{2}{*}{Overall length （mm）} & Horizontal & \multicolumn{3}{|c|}{Stroke＋247．5} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke＋285．5} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross－section（ mm ）} & \multicolumn{3}{|c|}{W65×H65} \\
\hline \multicolumn{2}{|l|}{Cable length（m）} & \multicolumn{3}{|l|}{Standard：3．5／Option：5， 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|l|}{ISO CLASS 3 （ISO14644－1）\({ }^{\text {Note 2 }}\)} \\
\hline \multicolumn{2}{|l|}{Intake air（NQ／min）\({ }^{\text {Note } 3}\)} & 80 & 50 & 30 \\
\hline
\end{tabular}

Note 2．CLASS \(10(0.1 \mu \mathrm{~m})\) FED－STD－209D or equivalent when a
suction blower is used．
Note 3．The necessary intake amount varies depending on the use
conditions and environment．

为 \begin{tabular}{c}
\multicolumn{4}{l}{ Horizontal installation（Unit：mm）} \\
\hline \multicolumn{3}{|c|}{ A } & B & C
\end{tabular}


Static loading moment

\begin{tabular}{c|c|c}
\multicolumn{2}{|c}{} & （Unit： \(\mathbf{N} \cdot \mathrm{m}\) ） \\
\hline MY & MP & MR \\
\hline 35 & 40 & 50 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Operation method \\
\hline SR1－X05 & Programming／ \\
l／O point trace／ \\
RCX320 & Remote command／ \\
RCX221／222 & Operation \\
RCX340 & using RS－232C \\
communication \\
\hline TS－X105 & I／O point trace／ \\
\hline TS－X205 & Remote command \\
\hline RDV－X205－RBR1 & Pulse train control \\
\hline
\end{tabular}

\section*{C6L}

 specifications)
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 3. See P. 634 for DIN rail mounting bracket.
Note 4. Select this selection when using the gateway function. For details, see P.96.


\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & \multicolumn{3}{|c|}{100} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 11}(\mathrm{~mm})\)} & & /-0.02 & \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \({ }^{\text {12 }}\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 12 & 6 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec})\)} & 1000 & 720 & 360 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 12 & 20 & 40 \\
\hline & Vertical & & & 8 \\
\hline \multicolumn{2}{|l|}{Rated thrust ( N )} & 84 & 141 & 283 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{150 to 800 ( 50 mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+320} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+355} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & & \(0 \times \mathrm{H}\) & \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|c|}{CLASS \(10{ }^{\text {Nole } 3}\)} \\
\hline \multicolumn{2}{|l|}{Intake air ( \(\mathrm{N} / \mathrm{/min}\) )} & \multicolumn{3}{|c|}{30 to 90 Note 4} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When the stroke is longer than 600 mm , resonance of the ball screw may occur depending on the operation conditions (critica speed). In this case, reduce the speed setting on the program
by referring to the maximum speeds shown in the table below. Note 3. Per 1 cf ( \(0.1 \mu \mathrm{~m}\) base), when suction blower is used. \\
Note 4. The necessary intake amount varies depending on the use
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & & A & B & C \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { io } \\
& \mathbf{0} \\
& \mathbf{j}
\end{aligned}
\]} & 5 kg & 245 & 85 & 146 \\
\hline & 10kg & 131 & 39 & 69 \\
\hline & 12kg & 115 & 31 & 57 \\
\hline \multirow{4}{*}{} & 5 kg & 364 & 92 & 192 \\
\hline & 10kg & 207 & 43 & 92 \\
\hline & 15kg & 144 & 26 & 41 \\
\hline & 20kg & 112 & 18 & 40 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 0 \\
& 0 \\
& \stackrel{0}{1}
\end{aligned}
\]} & 10kg & 406 & 47 & 124 \\
\hline & 20kg & 225 & 20 & 54 \\
\hline & 30kg & 162 & 11 & 31 \\
\hline & 40kg & 168 & 7 & 20 \\
\hline
\end{tabular}


Vertical installation (Unit: mm)


Note. Distance from center of slider top to center of gravity of object being carried at a guide servic life of \(10,000 \mathrm{~km}\).
C8



Note 1. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable
Note 2. See P. 634 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.96.


\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & & 100 & \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.01} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \(\phi 15\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 10 & 5 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 1000 & 600 & 300 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 20 & 40 & 50 \\
\hline & Vertical & 4 & 8 & 16 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 84 & 169 & 339 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{150 to 1050 ( 50 mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+325} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+360} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W80 \(\times\) H75} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|c|}{CLASS \(10{ }^{\text {Note 3 }}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N८/min)} & \multicolumn{3}{|c|}{30 to 90 Note 4} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When the stroke is longer than 700 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below. \\
Note 3. Per 1 cf ( \(0.1 \mu \mathrm{~m}\) base), when suction blower is used. \\
Note 4. The necessary intake amount varies depending on the use conditions and environment.
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline RDV-X 2 & 05 \\
\hline  & \[
\begin{aligned}
& \text { Driver: Power capacity } \\
& \text { 05: 100W or less }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{ang \({ }^{\text {Note }}\)} \\
\hline  &  \\
\hline
\end{tabular}

\section*{RBR1 \\ - Regenerative unit}

C8L

Grounding terminal (M4) 198 (With brake)

\(\square\) Static loading moment

\begin{tabular}{c|c|c}
\multicolumn{2}{l}{} & \multicolumn{1}{c}{ (Unit: \(\mathrm{N} \cdot \mathrm{m}\) ) } \\
\hline MY & MP & MR \\
\hline 70 & 95 & 110 \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ Controller } \\
\hline Controller & Operation method \\
\hline SR1-X05 & \begin{tabular}{l} 
Programming / \\
l/O point trace /
\end{tabular} \\
\begin{tabular}{l} 
RCX320 \\
RCX221/222
\end{tabular} & \begin{tabular}{l} 
Remote command / \\
Operation \\
RCX340 \\
using RS-232C \\
communication
\end{tabular} \\
\hline TS-X105 & I/O point trace / \\
\hline TS-X205 & Remote command \\
\hline RDV-X205-RBR1 & Pulse train control \\
\hline
\end{tabular}



Note Recommended plate nut: E: Detail of T-groove

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effectiv & ve stroke & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & \multicolumn{2}{|l|}{\multirow[t]{12}{*}{\begin{tabular}{l}
Note 1. Stop positions are determined by the mechanical stoppers at both ends. \\
Note 2. Minimum bend radius of motor cable is R50. \\
Note 3. Weight of models with no brake. The weight of brake-attached models is 0.3 kg heavier than the models with no brake shown in the table. \\
Note 4. When the stroke is longer than 700 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.
\end{tabular}}} \\
\hline & L & 475 & 525 & 575 & 625 & 675 & 725 & 775 & 825 & 875 & 925 & 975 & 1025 & 1075 & 1125 & 1175 & 1225 & 1275 & 1325 & 1375 & & \\
\hline & A & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & & \\
\hline & B & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & & \\
\hline & C & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & 26 & & \\
\hline & D & 280 & 330 & 380 & 430 & 480 & 530 & 580 & 630 & 680 & 730 & 780 & 830 & 880 & 930 & 980 & 1030 & 1080 & 1130 & 1180 & & \\
\hline Weight & \((\mathrm{kg})^{\text {Note } 3}\) & 3.9 & 4.2 & 4.5 & 4.8 & 5.1 & 5.4 & 5.7 & 6.0 & 6.4 & 6.7 & 7.0 & 7.3 & 7.6 & 7.9 & 8.2 & 8.5 & 8.8 & 9.2 & 9.5 & & \\
\hline & Lead 20 & & & & & & & & & & & & & 900 & 800 & 700 & 650 & 600 & 550 & 500 & & \\
\hline Maximum & Speed setting & & & & & & & & & & & & & 90\% & 80\% & 70\% & 65\% & 60\% & 55\% & 50\% & & \\
\hline speed \({ }^{\text {Note } 4}\) & Lead 10 & & & & & & 600 & & & & & & 510 & 450 & 390 & 360 & 330 & 300 & 270 & 240 & & \\
\hline (mm/sec) & Lead 5 & & & & & & 300 & & & & & & 255 & 225 & 195 & 180 & 165 & 150 & 135 & 120 & & \\
\hline & Speed setting & & & & & & - & & & & & & 85\% & 75\% & 65\% & 60\% & 55\% & 50\% & 45\% & 40\% & & \\
\hline
\end{tabular}


\section*{C8LH}


Grounding terminal (M4)


Note Recommended plate nut
E: Detail of T-groove

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effectiv & ve stroke & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & \multirow[t]{2}{*}{\begin{tabular}{|l|l}
1050 \\
\hline 1439 \\
\hline
\end{tabular}} & \multirow[t]{12}{*}{\begin{tabular}{l}
Stop positions are determined by the mechanical stoppers at both ends. \\
. Minimum bend radius of motor cable is R50. \\
3. When the stroke is longer than 650 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.
\end{tabular}} \\
\hline & L & 539 & 589 & 639 & 689 & 739 & 789 & 839 & 889 & 939 & 989 & 1039 & 1089 & 1139 & 1189 & 1239 & 1289 & 1339 & 1389 & & \\
\hline & A & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & \\
\hline & B & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & 150 & 100 & \\
\hline & C & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & \\
\hline & D & 330 & 380 & 430 & 480 & 530 & 580 & 630 & 680 & 730 & 780 & 830 & 880 & 930 & 980 & 1030 & 1080 & 1130 & 1180 & 1230 & \\
\hline Weig & ht (kg) & 4.7 & 5.0 & 5.3 & 5.6 & 5.9 & 6.2 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9.0 & 9.3 & 9.7 & 10.0 & 10.3 & \\
\hline & Lead 20 & & & & & & & & & & & - & 900 & 800 & 700 & 650 & 600 & 550 & 500 & 450 & \\
\hline Maximum & Speed setting & & & & & & & & & & & - & 90\% & 80\% & 70\% & 65\% & 60\% & 55\% & 50\% & 45\% & \\
\hline speed \({ }^{\text {Note } 3}\) & Lead 10 & & & & & & & & & & & 510 & 450 & 390 & 360 & 330 & 300 & 270 & 240 & 210 & \\
\hline (mm/sec) & Lead 5 & & & & & & & & & & & 255 & 225 & 195 & 180 & 165 & 150 & 135 & 120 & 105 & \\
\hline & Speed setting & & & & & & & & & & & 85\% & 75\% & 65\% & 60\% & 55\% & 50\% & 45\% & 40\% & 35\% & \\
\hline
\end{tabular}

Ordering method

Note 1．If selecting 5 mm lead specifications then the origin point cannot be changed to the non－motor side
Note 2．The robot cable is standard cable（3L／5L／10L），but can be changed to flexible cable．See P 732 for details on robot cable
Note 3．See P． 634 for DIN rail mounting bracket
Note 4．Select this selection when using the gateway function．For details，see P．96．

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output（W）} & \multicolumn{3}{|c|}{100} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\)（mm）} & \multicolumn{3}{|c|}{＋／－0．01} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \(\phi 15\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead（mm）} & 20 & 10 & 5 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\)（mm／sec）} & 1000 & 500 & 250 \\
\hline \multirow[t]{2}{*}{Maximum payload（kg）} & Horizontal & 20 & 40 & 60 \\
\hline & Vertical & 4 & 10 & 20 \\
\hline \multicolumn{2}{|l|}{Rated thrust（N）} & 84 & 169 & 339 \\
\hline \multicolumn{2}{|l|}{Stroke（mm）} & \multicolumn{3}{|l|}{150 to 1050 （ 50 mm pitch）} \\
\hline \multirow[t]{2}{*}{Overall length （mm）} & Horizontal & \multicolumn{3}{|c|}{Stroke＋283} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke＋313} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross－section（mm）} & \multicolumn{3}{|c|}{W104 \(\times\) H85} \\
\hline \multicolumn{2}{|l|}{Cable length（m）} & \multicolumn{3}{|l|}{Standard： 3.5 ／Option：5， 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|c|}{CLASS \(10{ }^{\text {Note 3 }}\)} \\
\hline \multicolumn{2}{|l|}{Intake air（N \(\ell / \mathrm{min}\) ）} & \multicolumn{3}{|c|}{30 to 90 Note 4} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1．Positioning repeatability in one direction． \\
Note 2．When the stroke is longer than 750 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Note 3．Per 1cf（ \(0.1 \mu \mathrm{~m}\) base），when suction blower is used． \\
Note 4．The necessary intake amount varies depending on conditions and environment．
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Allowable overhang Note} & \multicolumn{3}{|l|}{Static loading moment} \\
\hline &  &  & & & &  & \[
4
\] &  & & & &  & & MY &  & \\
\hline \multicolumn{5}{|l|}{Horizontal installation（Unit：mm）} & \multicolumn{5}{|l|}{Wall installation（Unit：mm）} & \multicolumn{4}{|l|}{Vertical installation（Unit mm）} & \multicolumn{3}{|r|}{（Unit： \(\mathrm{N} \cdot \mathrm{m}\) ）} \\
\hline & & A & B & C & & & A & B & C & & & A & C & MY & MP & MR \\
\hline \multirow[t]{3}{*}{} & 5kg & 1875 & 530 & 510 & \multirow[t]{3}{*}{} & 5kg & 496 & 451 & 1826 & \multirow[t]{3}{*}{} & 1kg & 2461 & 2492 & 119 & 119 & 105 \\
\hline & 10kg & 1079 & 247 & 242 & & 10kg & 218 & 168 & 1002 & & 2kg & 1213 & 1244 & & & \\
\hline & 20kg & 628 & 106 & 107 & & 20kg & 78 & 27 & 497 & & 4kg & 585 & 617 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Controller}} \\
\hline 안 & 15 kg & 765 & 156 & 164 & \multirow[t]{3}{*}{옫} & 10kg & 230 & 170 & 1036 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 욷 } \\
& \text { 잉 }
\end{aligned}
\]} & 4kg & 627 & 658 & & & \\
\hline ర & 30kg & 425 & 62 & 66 & & 20kg & 80 & 29 & 506 & & 8kg & 280 & 312 & \multicolumn{3}{|l|}{Controller \({ }^{\text {Operation method }}\)} \\
\hline － & 40kg & 350 & 38 & 42 & & 30kg & 30 & 0 & 311 & & 10kg & 210 & 242 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline \text { SR1-X05 } \text { Note } \\
& \text { RCX320 } \\
& \text { RCX221/222 } \\
& \text { RCX340 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Programming／ I／O point trace／ Remote command／ Operation using RS－ 232C communication}} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { n } \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\]} & 30kg & 960 & 63 & 68 & \multirow[t]{3}{*}{} & 10kg & 234 & 170 & 2716 & \multirow[t]{3}{*}{} & 10kg & 213 & 244 & & & \\
\hline & 50 kg & 565 & 25 & 28 & & 20kg & 82 & 29 & 1206 & & 15 kg & 119 & 151 & & & \\
\hline & 60 kg & 470 & 16 & 17 & & 30kg & 31 & 0 & 711 & & 20kg & 72 & 104 & TS－X105 \({ }^{\text {Note }}\) & I／O poi & ／ \\
\hline \multicolumn{14}{|l|}{\multirow[t]{3}{*}{Note．Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\) ．}} & TS－X205 Note & Remo & mmand \\
\hline & & & & & & & & & & & & & & RDV－X205－RBR1 & Pulse & control \\
\hline & & & & & & & & & & & & & & \multicolumn{3}{|l|}{Note．Regenerative unit is required when the models used vertically and with 700 mm or larger stroke．} \\
\hline
\end{tabular}

C10




Note 1. If selecting 5 mm lead specifications then the origin point cannot be changed to the non-motor side
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible able See P. 732 for details on robot cable
Note 3. See P. 634 for DIN rail mounting bracket.
Note 4. Select this selection when using the gateway function. For details, see P.96.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & \multicolumn{3}{|c|}{200} \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{3}{|c|}{+/-0.01} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{3}{|c|}{Ball screw \(\mathbf{\$ 1 5}\)} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 10 & 5 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 1000 & 500 & 250 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 40 & 80 & 100 \\
\hline & Vertical & 8 & 20 & 30 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 170 & 341 & 683 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{3}{|l|}{150 to 1050 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{3}{|c|}{Stroke+349} \\
\hline & Vertical & \multicolumn{3}{|c|}{Stroke+379} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{3}{|c|}{W136 \(\times\) H96} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{3}{|l|}{Standard: 3.5 / Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{3}{|c|}{CLASS \(10{ }^{\text {Note } 3}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N८/min)} & \multicolumn{3}{|c|}{30 to \(90{ }^{\text {Note } 4}\)} \\
\hline
\end{tabular}

Note 1. Positioning repeatability in one direction.
Note 2. When the stroke is longer than 750 mm .
Note 2. When the stroke is longer than 750 mm , resonance of the ball
screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program
by referring to the maximum speeds shown in the table below.
Note 3. Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base), when suction blower is used.
nt varies depending on the use


\section*{C14H}

Approx. 250 204+/-3: When origin is on motor side


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 & 750 & 800 & 850 & 900 & 950 & 1000 & 1050 & Note 1. Stop positions are determined by the \\
\hline \multicolumn{2}{|r|}{L} & 499 & 549 & 599 & 649 & 699 & 749 & 799 & 849 & 899 & 949 & 999 & 1049 & 1099 & 1149 & 1199 & 1249 & 1299 & 1349 & 1399 & \begin{tabular}{l}
mechanical stoppers at both ends. \\
Note 2. Minimum bend radius of motor cable is
\end{tabular} \\
\hline \multicolumn{2}{|r|}{A} & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & 150 & 200 & 50 & 100 & R50. \\
\hline \multicolumn{2}{|r|}{M} & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 5 & 5 & Note 3. Weight of models with no brake. The weight \\
\hline \multicolumn{2}{|r|}{N} & 6 & 8 & 8 & 8 & 8 & 10 & 10 & 10 & 10 & 12 & 12 & 12 & 12 & 14 & 14 & 14 & 14 & 16 & 16 & er \\
\hline \multicolumn{2}{|l|}{Weight (kg) \({ }^{\text {Note } 3}\)} & 10.7 & 11.4 & 12.0 & 12.7 & 13.2 & 13.9 & 14.5 & 15.2 & 15.8 & 16.5 & 17.0 & 17.7 & 18.3 & 19.0 & 19.6 & 20.3 & 20.8 & 21.5 & 22.1 & table. \\
\hline \multirow[b]{4}{*}{Maximum speed \({ }^{\text {Note }} 4\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & Lead 20 & \multicolumn{12}{|c|}{1000} & 950 & 950 & 750 & 750 & 600 & 600 & 500 & \\
\hline & Lead 10 & \multicolumn{12}{|c|}{500} & 475 & 475 & 375 & 375 & 300 & 300 & 250 & \\
\hline & Lead 5 & \multicolumn{12}{|c|}{250} & 237 & 237 & 187 & 187 & 150 & 150 & 125 & \\
\hline & Speed setting & \multicolumn{12}{|c|}{-} & 95\% & 95\% & 75\% & 75\% & 60\% & 60\% & 50\% & \\
\hline
\end{tabular}

OOrdering method


\section*{C17}



\begin{abstract}
cable. See P. 732 for details on robot cable.
Note 2. See P. 634 for DIN rail mounting bracket
\end{abstract}

Note 3. Acceleration / deceleration is different depending the Positioner or Controller or Driver
Note 4. Select this selection when using the gateway function. For details, see P.96.


Basic specifications
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 600 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & +/-0.02 \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & Ball screw \({ }^{\text {2 } 25}\) \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 50 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 1000 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 50 \\
\hline & Vertical & 10 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 204 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & 1150 to 2050 (100 pitch) \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & Stroke+485 \\
\hline & Vertical & Stroke+515 \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & W168 \(\times\) H114 \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & Standard: 3.5 / Option: 5, 10 \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & CLASS \(10{ }^{\text {Note } 3}\) \\
\hline \multicolumn{2}{|l|}{Intake air (NQ/min)} & 30 to \(90{ }^{\text {Note 4 }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Static loading moment} \\
\hline \multicolumn{3}{|l|}{} \\
\hline & & (Unit: \\
\hline MY & MP & MR \\
\hline 1032 & 1034 & 908 \\
\hline
\end{tabular}

\section*{Controller} life of \(10,000 \mathrm{~km}\).

Horizontal installation (Unit: mm) Wall installation (Unit: mm) Vertical installation (Unit mm)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & A & B & C & & & A & B & C & & & A & C \\
\hline ¢ & 10kg & 4000 & 2687 & 3327 & 앙 & 10kg & 3436 & 2605 & 4000 & i & 2kg & 1200 & 1200 \\
\hline \% & 30kg & 3045 & 872 & 929 & \multirow[t]{2}{*}{-ס} & 30kg & 1169 & 790 & 3045 & \% & 5 kg & 3000 & 3000 \\
\hline \(\stackrel{0}{4}\) & 50kg & 2602 & 509 & 714 & & 50kg & 666 & 427 & 2602 & \(\stackrel{0}{\square}\) & 10kg & 2579 & 2579 \\
\hline
\end{tabular}

Controller \begin{tabular}{l} 
Operation method \\
\hline
\end{tabular} \begin{tabular}{l|l} 
SR1-X20-R & Programming/ \\
I/O point trace /
\end{tabular} \begin{tabular}{l|l} 
RCX320 & l/O point trace / \\
RCX221/222 & Remote command /
\end{tabular} \begin{tabular}{l|l} 
RCX221/222 \\
RCX340
\end{tabular}\(\quad \begin{aligned} & \text { Remetion using RS- } \\
& \text { Operation } \\
& \text { 232C communication }\end{aligned}\)

Note 1. Positioning repeatability in one direction.
ote 2. When the stroke is longer than 1850 mm , resonance of the ball
speed). In this case, reduce the speed setting on the program
by referring to the maximum speeds shown in the table below.
Note 3. Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base), when suction blower is used.
4. Tonditions and environment. varies depending on the use

TS-X220-R I/O point trace /
RDV-X220-RBR1

C17L

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Effective stroke} & 1150 & 1250 & 1350 & 1450 & 1550 & 1650 & 1750 & 1850 & 1950 & 2050 & Note 1. Stop positions are determined by the mechanical stoppers at both ends. \\
\hline \multicolumn{2}{|l|}{L} & 1635 & 1735 & 1835 & 1935 & 2035 & 2135 & 2235 & 2335 & 2435 & 2535 & ote 2. Minimum bend radius of motor cable is R \\
\hline \multicolumn{2}{|l|}{A} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & the models with no brake shown in the table. \\
\hline \multicolumn{2}{|l|}{M} & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & Note 4. When the stroke is longer than 1850 mm , resonance of the ball screw may occur depending \\
\hline \multicolumn{2}{|l|}{N} & 16 & 18 & 18 & 20 & 20 & 22 & 22 & 24 & 24 & 26 & on the operation conditions (critical speed). In this case, reduce the speed setting on the \\
\hline \multicolumn{2}{|l|}{Weight (kg) \({ }^{\text {Note } 3}\)} & 39.1 & 41.2 & 43.2 & 45.2 & 47.3 & 49.3 & 51.3 & 53.4 & 55.4 & 57.4 & \\
\hline \multirow[t]{2}{*}{Maximum speed
\[
(\mathrm{mm} / \mathrm{sec})^{\text {Nofe } 4}
\]} & Lead 50 & \multicolumn{7}{|c|}{1000} & 900 & & 0 & \\
\hline & Speed setting & \multicolumn{7}{|l|}{-} & 90\% & & \% & \\
\hline
\end{tabular}

OOrdering method


Note 1. Only the model with specifications with brake (vertical specifications) can select a lead of 10 mm .
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable
Note 3. See P. 634 for DIN rail mounting bracket.
Note 4. Acceleration / deceleration is different depending the Positioner or Controller or Driver.
Note 5. Select this selection when using the gateway function. For details, see P.96.


Basic specifications
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & & \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (mm)} & \multicolumn{2}{|c|}{+/-0.01} \\
\hline \multicolumn{2}{|l|}{Deceleration mechanism} & \multicolumn{2}{|c|}{Ball screw \$20} \\
\hline \multicolumn{2}{|l|}{Ball screw lead (mm)} & 20 & 10 \\
\hline \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 2}\) ( \(\mathrm{mm} / \mathrm{sec}\) )} & 1000 & 500 \\
\hline \multirow[t]{2}{*}{Maximum payload (kg)} & Horizontal & 120 & - \\
\hline & Vertical & 25 & 45 \\
\hline \multicolumn{2}{|l|}{Rated thrust (N)} & 510 & 1020 \\
\hline \multicolumn{2}{|l|}{Stroke (mm)} & \multicolumn{2}{|l|}{200 to 1250 (50mm pitch)} \\
\hline \multirow[t]{2}{*}{Overall length (mm)} & Horizontal & \multicolumn{2}{|c|}{Stroke+441} \\
\hline & Vertical & \multicolumn{2}{|c|}{Stroke+471} \\
\hline \multicolumn{2}{|l|}{Maximum outside dimension of body cross-section (mm)} & \multicolumn{2}{|c|}{W202 \(\times\) H117} \\
\hline \multicolumn{2}{|l|}{Cable length (m)} & \multicolumn{2}{|l|}{Standard: 3.5 / Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{2}{|c|}{CLASS \(10{ }^{\text {Note 3 }}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N८/min)} & \multicolumn{2}{|c|}{30 to \(90{ }^{\text {Note } 4}\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Note 1. Positioning repeatability in one direction. \\
Note 2. When the stroke is longer than 950 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below. \\
Note 3. Per 1cf ( \(0.1 \mu \mathrm{~m}\) base), when suction blower is used. \\
Note 4. The necessary intake amount varies depending on the use conditions and environment.
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Allowable overhang Note} & \multicolumn{3}{|l|}{Static loading moment} \\
\hline &  &  & \[
+\mathrm{C}
\] & &  &  & & &  &  & &  &  & \\
\hline \multicolumn{5}{|l|}{Horizontal installation (Unit: mm )} & \multicolumn{4}{|l|}{Wall installation (Unit: mm)} & \multicolumn{3}{|l|}{Vertical installation (Unit: mm )} & \multicolumn{3}{|r|}{(Unit: \(\mathrm{N} \cdot \mathrm{m}\) )} \\
\hline & & A & B & C & & A & B & C & & A & C & MY & MP & MR \\
\hline \multirow[t]{3}{*}{} & 50kg & 2602 & 869 & 1145 우 & 50kg & 1144 & 798 & 2602 사 & 15kg & 2711 & 2711 & 1101 & \multirow[t]{2}{*}{1103} & \multirow[t]{2}{*}{968} \\
\hline & 80kg & 2193 & 528 & 720 \% & 80kg & 717 & 456 & 2193 ס & 20kg & 2045 & 2045 & & & \\
\hline & 120kg & 1841 & 339 & \(505 \stackrel{\text { ¢ }}{ }\) & 120kg & 466 & 267 & 1841 ¢ & 25kg & 1647 & \multicolumn{4}{|l|}{1647} \\
\hline & & & & & & & & 안 & 20kg & 2182 & \multicolumn{4}{|l|}{2182} \\
\hline & & & & & & & & \% & 30kg & 1437 & \multicolumn{4}{|l|}{1437} \\
\hline & & & & & & & & & 45 kg & 939 & \multicolumn{4}{|l|}{939} \\
\hline \multicolumn{15}{|l|}{Note. Distance from center of slider top to center of gravity of object being carried at a guide service life of \(10,000 \mathrm{~km}\).} \\
\hline \multicolumn{15}{|c|}{Controller} \\
\hline \multicolumn{4}{|c|}{Controller} & \multicolumn{5}{|c|}{Operation method} & \multicolumn{6}{|l|}{\multirow[t]{4}{*}{Note. [The following arrangements require a regeneration unit.] - Using in the upright position.}} \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { SR1-X20 Note } \\
& \text { RCX320, RCX221/222, } \\
& \text { RCX340 }
\end{aligned}
\]} & \multicolumn{5}{|l|}{Programming / I/O point trace / Remote command Operation using RS-232C communication} & & & & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{TS-X220 Nole
\(\frac{\text { RDV-X220-RBR1 (Horizontal) }}{\text { RDV-X220-RBR2 (Vertical) }}\)}} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{I/O point trace / Remote command}} & & & & & & \\
\hline & & & & \multicolumn{2}{|l|}{Pulse train control} & & & & & & & & & \\
\hline
\end{tabular}

C20


Note 4. When the stroke is longer than 950 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the
maximum speeds shown in the table at the left.

0
Clean type Cable duct

\section*{Ordering method}

\begin{tabular}{|c|c|c|}
\hline Basic specifications & & \\
\hline & X axis & Y axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & C14H & C14 \\
\hline AC servo motor output (W) & 200 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (mm) & +/-0.01 & +/-0.01 \\
\hline Drive system & Ball screw \(\boldsymbol{\phi} 15\) & Ball screw \(\mathbf{\phi 1 5}^{\text {1 }}\) \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (mm/sec) & 1000 & 1000 \\
\hline Moving range (mm) & 150 to 1050 & 150 to 650 \\
\hline Robot cable length (m) & \multicolumn{2}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline Degree of cleanliness & \multicolumn{2}{|c|}{CLASS \(10{ }^{\text {Note } 5}\)} \\
\hline Intake air (N \(/\) /min) & \multicolumn{2}{|c|}{\(60^{\text {Note } 6}\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|cc}
\hline \multicolumn{3}{|c}{ Maximum payload } \\
\hline Y stroke (mm) & XY 2 axes \\
\hline \(\mathbf{1 5 0}\) & 20 \\
\hline \(\mathbf{2 5 0}\) & 17 \\
\hline \(\mathbf{3 5 0}\) & 15 \\
\hline \(\mathbf{4 5 0}\) & 13 \\
\hline \(\mathbf{5 5 0}\) & 11 \\
\hline \(\mathbf{6 5 0}\) & 9 \\
\hline
\end{tabular}

Note 2. Positioning repeatability in one direction.
Note 3. Leads not listed in the catalog are also available. Contact us for details
Note 4. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
ote 6. The 1 cf ( \(0.1 \mu \mathrm{~m}\) base), when suction blower is used.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multirow[t]{2}{*}{Note 1. The moving range when returning to origin and the stop position when stopping by mechanical stopper.} \\
\hline \multicolumn{2}{|l|}{L} & 628 & 728 & 828 & 928 & 1028 & 1128 & 1228 & 1328 & 1428 & 1528 & \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & & \multirow[t]{3}{*}{Note 2. When the X -axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left.} \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke ( \(\mathrm{mm} / \mathrm{sec}\) ) \({ }^{\text {Note } 2}\)} & X axis & \multicolumn{7}{|c|}{1000} & 800 & 650 & 550 & \\
\hline & Speed setting & \multicolumn{7}{|c|}{-} & 80\% & 65\% & 55\% & \\
\hline
\end{tabular}

\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c}
\hline X stroke & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) & \(\mathbf{6 5 0}\) & \(\mathbf{7 5 0}\) & \(\mathbf{8 5 0}\) & \(\mathbf{9 5 0}\) & \(\mathbf{1 0 5 0}\) \\
\hline \(\mathbf{L}\) & 628 & 728 & 828 & 928 & 1028 & 1128 & 1228 & 1328 & 1428 & 1528 \\
\hline \(\mathbf{K}\) & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \(\mathbf{2 0 0}\) & 100 \\
\hline \(\mathbf{M}\) & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 \\
\hline \(\mathbf{N}\) & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 \\
\hline Y stroke & 1. The moving range when returning to origin and the stop position when stopping \\
by mechanical stopper.
\end{tabular}

Basic specifications
\begin{tabular}{|c|c|c|c|c|}
\hline & X axis & Y axis & \[
\begin{aligned}
& \hline \text { Z axis: } \\
& \text { ZSC12 }
\end{aligned}
\] & Z axis：
ZSC6 \\
\hline Axis construction \({ }^{\text {Note } 1}\) & C14H & C14 & \multicolumn{2}{|c|}{－} \\
\hline AC servo motor output（W） & 200 & 100 & \multicolumn{2}{|c|}{60} \\
\hline Repeatability \({ }^{\text {Note } 2}\)（mm） & ＋／－0．01 & ＋／－0．01 & \multicolumn{2}{|c|}{＋／－0．02} \\
\hline Drive system & Ball screw \(\mathbf{\phi 1 5}^{15}\) & Ball screw \(\mathbf{\phi} 15\) & \multicolumn{2}{|l|}{Ball screw \(\mathbf{\$ 1 2}\)} \\
\hline Ball screw lead \({ }^{\text {Note } 3}\)（Deceleration ratio）（mm） & 20 & 20 & 12 & 6 \\
\hline Maximum speed \({ }^{\text {Note } 4}\)（mm／sec） & 1000 & 1000 & 1000 & 500 \\
\hline Moving range（mm） & 150 to 1050 & 150 to 650 & & \\
\hline Robot cable length（m） & \multicolumn{4}{|c|}{Standard：3．5 Option：5， 10} \\
\hline Degree of cleanliness & \multicolumn{4}{|c|}{CLASS \(10{ }^{\text {Note } 5}\)} \\
\hline Intake air（N \(\ell / \mathrm{min}\) ） & \multicolumn{4}{|c|}{\(90^{\text {Note } 6}\)} \\
\hline
\end{tabular}

Note 1．Use caution that the frame machining（installation holes，tap holes）differs from single－axis robots＇．
Note 2．Positioning repeatability in one direction．
Note 4．When the \(X\)－axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical
speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
Note 5 ．Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base），when suction blower is used．
Note 6．The necessary intake amount varies depending on the use conditions and environment．
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{|c}{ Maximum payload } & \\
\hline Y stroke \((\mathbf{m m})\) & ZSC12 & ZSC6 \\
\hline \(\mathbf{1 5 0}\) to \(\mathbf{6 5 0}\) & 3 & 5 \\
\hline
\end{tabular}

SXYxC 3 axes／ZSC T1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming／I／O point trace／ \\
Remote command \\
Operation using RS－232C \\
communication
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X stroke} & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multirow[t]{2}{*}{Note 1．The moving range when returning to origin and the stop position when stop by mechanical stopper．} \\
\hline \multicolumn{2}{|l|}{L} & 628 & 728 & 828 & 928 & 1028 & 1128 & 1228 & 1328 & 1428 & 1528 & \\
\hline \multicolumn{2}{|l|}{K} & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & 200 & 100 & \\
\hline \multicolumn{2}{|l|}{M} & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & \\
\hline \multicolumn{2}{|l|}{N} & 6 & 8 & 8 & 10 & 10 & 12 & 12 & 14 & 14 & 16 & \\
\hline \multicolumn{2}{|l|}{Y stroke} & 150 & 250 & 350 & 450 & 550 & 650 & & & & & \multirow[b]{4}{*}{Note 2．When the X －axis stroke is longer than 850 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．} \\
\hline \multicolumn{2}{|l|}{Z stroke} & 150 & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Maximum speed for each stroke（ \(\mathrm{mm} / \mathrm{sec}\) ）\({ }^{\text {Note } 2}\)} & X axis & & & & 1000 & & & & 800 & 650 & 550 & \\
\hline & Speed setting & & & & － & & & & 80\％ & 65\％ & 55\％ & \\
\hline
\end{tabular}



\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X axis & Y axis & \[
\begin{array}{|c|}
\hline \mathrm{Z} \text { axis } \\
\text { ZRSC12 }
\end{array}
\] & Z axis ZRSC6 & R axis \\
\hline Axis construction \({ }^{\text {Note } 1}\) & C14H & C14 & - & & R5 \\
\hline AC servo motor output (W) & 200 & 100 & 6 & 0 & 100 \\
\hline Repeatability \({ }^{\text {Note } 2}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & +/-0.01 & +/-0.01 & +/-0 & . 02 & +/-0.005 \\
\hline Drive system & Ball screw \(\mathbf{\phi 1 5}\) & Ball screw \(\mathbf{\phi} 15\) & Ball scr & w \(\phi 12\) & Harmonic gear \\
\hline Ball screw lead \({ }^{\text {Note } 3}\) (Deceleration ratio) (mm) & 20 & 20 & 12 & 6 & (1/50) \\
\hline Maximum speed \({ }^{\text {Note } 4}\) (XYZ: mm/sec) (R: \({ }^{\circ} \mathrm{sec}\) ) & 1000 & 1000 & 1000 & 500 & 1020 \\
\hline Moving range (XYZ: mm) (R: \({ }^{\text {) }}\) & 150 to 1050 & 150 to 650 & 15 & 0 & 360 \\
\hline Robot cable length (m) & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline Degree of cleanliness & \multicolumn{5}{|c|}{CLASS \(10^{\text {Note } 5}\)} \\
\hline Intake air (N/min) & \multicolumn{5}{|c|}{\(90^{\text {Note } 6}\)} \\
\hline
\end{tabular}

Note 1. Use caution that the frame machining (installation holes, tap holes) differs from single-axis robots'.
Note 2. Positioning repeatability in one direction.
Note 4. When the \(X\)-axis stroke is longer than 850 mm , resonance of the ball screw may occur depending on the operation conditions (critical
speed). In this case, reduce the speed setting on the program by referring to the maximum speeds shown in the table below.
Note 5 . Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base), when suction blower is used.
Note 6. The necessary intake amount varies depending on the use conditions and environment.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Maximum payload } & (kg) \\
\hline Y stroke (mm) & ZRSC12 & ZRSC6 \\
\hline \(\mathbf{1 5 0}\) & & \\
\hline \(\mathbf{2 5 0}\) & & \\
\hline 350 & \multirow{2}{*}{3} & 5 \\
\hline 450 & & \\
\hline \(\mathbf{5 5 0}\) & & 4 \\
\hline \(\mathbf{6 5 0}\) & & \\
\hline
\end{tabular}

SXYxC 4 axes / ZRSC T1

\begin{tabular}{c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & \multicolumn{1}{c}{ Operation method } \\
\hline RCX340 & \begin{tabular}{l} 
Programming / I/O point trace / \\
Remote command \(/\) \\
Operation using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}


\({ }^{\text {© }}{ }_{\text {M8 } \times 1.25 \text { Deph } 7}\)
Detail of section \(\mathrm{A} \quad\) Detail of user wiring/user tubing



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Basic specifications} \\
\hline & & X axis & Y axis & Z axis & R axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & Arm length (mm) & 71 & 109 & 100 & - \\
\hline & Rotation angle ( \({ }^{\circ}\) ) & +/-120 & +/-140 & - & +/-360 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 50 & 30 & 30 & 30 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\circ}\) )} & \multicolumn{2}{|c|}{+/-0.01} & +/-0.01 & +/-0.004 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \(/ \mathrm{sec}\) )} & \multicolumn{2}{|c|}{3.3} & 0.7 & 1700 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{4}{|c|}{1.0} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 0.1kg payload \({ }^{\text {Note } 2}\) (sec)} & \multicolumn{4}{|c|}{0.42} \\
\hline \multicolumn{2}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\) (kgm \({ }^{\mathbf{2}}\) )} & \multicolumn{4}{|c|}{0.01} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.1 \times 8\)} \\
\hline \multicolumn{2}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\$3 \(\times 2\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit, 2.Mechanical limit (X, Y, Zaxis)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg) (Excluding robot cable) \({ }^{\text {Note } 4}\)} & \multicolumn{4}{|c|}{6.5} \\
\hline \multicolumn{2}{|l|}{Robot cable weight} & \multicolumn{4}{|c|}{\(1.5 \mathrm{~kg}(3.5 \mathrm{~m}) \quad 2.1 \mathrm{~kg}(5 \mathrm{~m}) \quad 4.2 \mathrm{~kg}(10 \mathrm{~m})\)} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{4}{|c|}{CLASS 10 ( \(0.1 \mu \mathrm{~m}\) base)} \\
\hline \multicolumn{2}{|l|}{Intake air ( \(\mathrm{N} \ell / \mathrm{min}\) )} & \multicolumn{4}{|c|}{30} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c}
\hline \multicolumn{2}{|c|}{ Controller } \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 500 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When moving 25 mm in vertical direction and 100 mm in horizontal direction reciprocally.
Note 2. When moving 25 mm in vertical direction and 100 mm in horizontal direction reciprocally.
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
Note 4. The total robot weight is the sum of the robot body weight and the cable weight.


\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline & X axis & Y axis & Z axis & R axis \\
\hline Axis \(\quad\) Arm length (mm) & 111 & 109 & 100 & - \\
\hline specifications Rotation angle ( \({ }^{\circ}\) ) & +/-120 & +/-140 & - & +/-360 \\
\hline AC servo motor output (W) & 50 & 30 & 30 & 30 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & \multicolumn{2}{|c|}{+/-0.01} & +/-0.01 & +/-0.004 \\
\hline Maximum speed (XYZ: m/sec) (R: \(/ \mathrm{sec}\) ) & \multicolumn{2}{|c|}{3.4} & 0.7 & 1700 \\
\hline Maximum payload (kg) & \multicolumn{4}{|c|}{1.0} \\
\hline Standard cycle time: with 0.1 kg payload \({ }^{\text {Note } 2}\) (sec) & \multicolumn{4}{|c|}{0.45} \\
\hline R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\left(\mathrm{kgm}^{\mathbf{2}}\right.\) ) & \multicolumn{4}{|c|}{0.01} \\
\hline User wiring (sq \(\times\) wires) & \multicolumn{4}{|c|}{\(0.1 \times 8\)} \\
\hline User tubing (Outer diameter) & \multicolumn{4}{|c|}{\$3 \(\times 2\)} \\
\hline Travel limit & \multicolumn{4}{|c|}{1.Soft limit, 2.Mechanical stopper (X, Y, Z axes)} \\
\hline Robot cable length (m) & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline Weight (kg) (Excluding robot cable) \({ }^{\text {Note } 4}\) & \multicolumn{4}{|c|}{6.5} \\
\hline Robot cable weight & \multicolumn{4}{|c|}{\(1.5 \mathrm{~kg}(3.5 \mathrm{~m}) \quad 2.1 \mathrm{~kg}(5 \mathrm{~m}) \quad 4.2 \mathrm{~kg}\) (10m)} \\
\hline Degree of cleanliness & \multicolumn{4}{|c|}{CLASS 10 (0.1 \(\mu \mathrm{m}\) base)} \\
\hline Intake air (N/min) & \multicolumn{4}{|c|}{30} \\
\hline
\end{tabular}

Note 1 . This is the value at a constant ambient temperature.
Note 2. When reciprocating 100 mm in horizontal and 25 mm in vertical directions.



Arm length 250 mm O Maximum payload 4 kg
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Basic specifications} \\
\hline & & X axis & Y axis & Z axis & R axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & Arm length (mm) & 100 & 150 & 150 & - \\
\hline & Rotation angle ( \({ }^{\circ}\) ) & +/-129 & +/-134 & - & +/-360 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 200 & 150 & 50 & 100 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\circ}\) )} & \multicolumn{2}{|c|}{+/-0.01} & +/-0.01 & +/-0.004 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \(/ \mathrm{sec}\) )} & \multicolumn{2}{|c|}{4.5} & 1.1 & 1020 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{4}{|c|}{4} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 2kg payload (sec) \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.50} \\
\hline \multicolumn{2}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\) (kgm \({ }^{\mathbf{2}}\) )} & \multicolumn{4}{|c|}{0.05} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 10\)} \\
\hline \multicolumn{2}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 4\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit, 2.Mechanical stopper (X, Y, Z axes)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & \multicolumn{4}{|c|}{21.5} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{4}{|c|}{ISO CLASS 3 (ISO 14644-1) \({ }^{\text {Note 4 }+E S D ~}{ }^{\text {Note } 5}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N \(\mathrm{l} / \mathrm{min}\) )} & \multicolumn{4}{|c|}{\(30^{\text {Note } 6}\)} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{|l|l|c}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & \begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular} \\
using RS-232C \\
communication
\end{tabular} \\
\hline Note. The movement range can be limited by changing the positions \\
of X and Y axis mechanical stoppers. (The movement range is \\
set to the maximum at the time of shipment.) \\
See our robot manuals (installation manuals) for detailed \\
information.
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion)
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
Note 4. Class \(10(0.1 \mu \mathrm{~m})\) equivalen to ID-STD-209D



\begin{tabular}{l}
\begin{tabular}{|l|l|l}
\hline Controller \\
\hline Controller & Power capacity (VA) & Operation method
\end{tabular} \\
\hline RCX340
\end{tabular}

Note. The movement range can be limited by changing the positions of \(X\) and \(Y\) axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.)
See our robot manuals (installation manuals) for detailed
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.

Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Basic specifications} \\
\hline & & X axis & Y axis & Z axis & R axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & Arm length (mm) & 200 & 150 & 150 & - \\
\hline & Rotation angle ( \({ }^{\circ}\) ) & +/-129 & +/-134 & - & +/-360 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 200 & 150 & 50 & 100 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\circ}\) )} & \multicolumn{2}{|c|}{+/-0.01} & +/-0.01 & +/-0.004 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \(/ \mathrm{sec}\) )} & \multicolumn{2}{|c|}{5.6} & 1.1 & 1020 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{4}{|c|}{4} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 2kg payload (sec) \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.52} \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{4}{|c|}{0.05} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 10\)} \\
\hline \multicolumn{2}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 4\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit, 2.Mechanical stopper (X, Y, Z axes)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & \multicolumn{4}{|c|}{22} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{4}{|c|}{ISO CLASS 3 (ISO 14644-1) \({ }^{\text {Note 4 }}+\mathrm{ESD}^{\text {Note } 5}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N \(/\) /min)} & \multicolumn{4}{|c|}{\(30^{\text {Note } 6}\)} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
ote 4 .
解



RCX340－4 150： 150 mm

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline & X axis & Y axis & Z axis & R axis \\
\hline Axis \(\quad\) Arm length（mm） & 250 & 150 & 150 & － \\
\hline specifications Rotation angle（ \({ }^{\circ}\) ） & ＋／－129 & ＋／－144 & － & ＋／－360 \\
\hline AC servo motor output（W） & 200 & 150 & 50 & 100 \\
\hline Repeatability \({ }^{\text {Note } 1}\)（XYZ：mm）（R：\({ }^{\circ}\) ） & \multicolumn{2}{|c|}{＋／－0．01} & ＋／－0．01 & ＋／－0．004 \\
\hline Maximum speed（XYZ：m／sec）（R：\(/ \mathrm{sec}\) ） & \multicolumn{2}{|c|}{6.1} & 1.1 & 1020 \\
\hline Maximum payload（kg） & \multicolumn{4}{|c|}{4} \\
\hline Standard cycle time：with 2kg payload（sec）\({ }^{\text {Note } 2}\) & \multicolumn{4}{|c|}{0.50} \\
\hline R－axis tolerable moment of inertia \({ }^{\text {Note } 3}\)（ \(\mathrm{kgm}^{2}\) ） & \multicolumn{4}{|c|}{0.05} \\
\hline User wiring（sq \(\times\) wires） & \multicolumn{4}{|c|}{\(0.2 \times 10\)} \\
\hline User tubing（Outer diameter） & \multicolumn{4}{|c|}{\(\phi 4 \times 4\)} \\
\hline Travel limit & \multicolumn{4}{|c|}{1．Soft limit，2．Mechanical stopper（ \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes）} \\
\hline Robot cable length（m） & \multicolumn{4}{|c|}{Standard：3．5 Option：5， 10} \\
\hline Weight（kg） & \multicolumn{4}{|c|}{22.5} \\
\hline Degree of cleanliness & \multicolumn{4}{|c|}{ISO CLASS 3 （ISO 14644－1）\({ }^{\text {Note 4 }}+\) ESD \(^{\text {Note } 5}\)} \\
\hline Intake air（N \(\ell / \mathrm{min}\) ） & \multicolumn{4}{|c|}{\(33^{\text {Note } 6}\)} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c} 
& & Programming／ \\
RCX340 & \multirow{3}{*}{1000} & I／O point trace／ \\
& & \begin{tabular}{c} 
Remote command／ \\
Operation \\
using RS－232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note．The movement range can be limited by changing the position of \(X\) and \(Y\) axis mechanical stoppers．（The movement range is set to the maximum at the time of shipment．） See our robot manuals（installation manuals）for detailed information．
Note．To set the standard coordinates with high accuracy，use a standard coordinate setting jig（option）．Refer to the user＇s manual（installation manual）for more details．

Our robot manuals（installation manuals）can be
downloaded from our website at the address below： https：／／global．yamaha－motor．com／business／robot／

Note 1．This is the value at a constant ambient temperature．\((X, Y\) axes）
Note 2．When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction（rough－positioning arch motion）．
Note 3．The acceleration coefficient is set automatically in accordance with the tip weight and R －axis moment of inertia settings
5．ESD（Electrostaic Dischare）prevention is an
郎


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Basic specifications} \\
\hline & & X axis & Y axis & Z axis & R axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & Arm length (mm) & 250 & 250 & 150 & - \\
\hline & Rotation angle ( \({ }^{\circ}\) ) & +/-129 & +/-144 & - & +/-360 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 200 & 150 & 50 & 100 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\circ}\) )} & \multicolumn{2}{|c|}{+/-0.01} & +/-0.01 & +/-0.004 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \(/ \mathrm{sec}\) )} & \multicolumn{2}{|c|}{5.1} & 1.1 & 1020 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{4}{|c|}{4} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 2kg payload (sec) \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.66} \\
\hline \multicolumn{2}{|l|}{R-axis tolerable moment of inertia \({ }^{\text {Note } 3}\) ( \(\mathrm{kgm}^{2}\) )} & \multicolumn{4}{|c|}{0.05} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 10\)} \\
\hline \multicolumn{2}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 4\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit, 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & \multicolumn{4}{|c|}{25} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{4}{|c|}{ISO CLASS 3 (ISO 14644-1) \({ }^{\text {Note 4 }}+\) ESD \(^{\text {Note } 5}\)} \\
\hline \multicolumn{2}{|l|}{Intake air (N/min)} & \multicolumn{4}{|c|}{\(30^{\text {Note } 6}\)} \\
\hline
\end{tabular}
\(\left.\begin{array}{l}\hline \text { Controller } \\ \hline \text { Controller } \\ \hline \text { Power capacity (VA) }\end{array} \begin{array}{c}\text { Operation method }\end{array} \left\lvert\, \begin{array}{c}\text { Programming / } \\ \text { I/O point trace / } \\ \text { Remote command / } \\ \text { Operation } \\ \text { using RS-232C } \\ \text { communication }\end{array}\right.\right]\)

Note 1. This is the value at a constant ambient temperature. (X,Y axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically
Note 4. Class \(10(0.1 \mu \mathrm{~m})\) equivalent to FED-STD-209D
Note 5. ESD (ElectroStatic Discharge) prevention is an option. Please contact our distributor.
Note 6. The necessary intake amount varies depending on the use conditions and environment



YK500XC


200: 200mm 300: 300mm

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X axis & Y axis & \multicolumn{2}{|c|}{Z axis} & R axis \\
\hline Axis \(\quad\) Arm length (mm) & 250 & 250 & 200 & 300 & - \\
\hline specifications Rotation angle ( \({ }^{\circ}\) ) & +/-120 & +/-142 & & & +/-180 \\
\hline AC servo motor output (W) & 400 & 200 & & & 100 \\
\hline Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\circ}\) ) & \multicolumn{2}{|c|}{+/-0.02} & & & +/-0.005 \\
\hline Maximum speed (XYZ: m/sec) (R: \(/ \mathrm{sec}\) ) & \multicolumn{2}{|c|}{4.9} & & & 876 \\
\hline Maximum payload (kg) & \multicolumn{5}{|c|}{10} \\
\hline Standard cycle time: with 2kg payload (sec) & \multicolumn{5}{|c|}{0.53} \\
\hline R -axis tolerable moment of inertia \({ }^{\text {Note } 2}\) ( \(\mathrm{kgm}^{2}\) ) & \multicolumn{5}{|c|}{0.12} \\
\hline User wiring (sq \(\times\) wires) & \multicolumn{5}{|c|}{\(0.2 \times 20\)} \\
\hline User tubing (Outer diameter) & \multicolumn{5}{|c|}{\(\phi 6 \times 3\)} \\
\hline Travel limit & \multicolumn{5}{|c|}{1.Soft limit, 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes)} \\
\hline Robot cable length (m) & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline Weight (kg) & \multicolumn{5}{|c|}{31} \\
\hline Degree of cleanliness & \multicolumn{5}{|c|}{CLASS \(10{ }^{\text {Note } 3}\)} \\
\hline Intake air (N \(\ell / \mathrm{min}\) ) & \multicolumn{5}{|c|}{\(60{ }^{\text {Note 4 }}\)} \\
\hline
\end{tabular}

Controller
Controller Power capacity (VA) Operation method
Programming I/O point trace /
Remote command/ Operation using RS-232C

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information
\begin{tabular}{|c|}
\hline Our robot manuals (installation manuals) can be \\
downloaded from our website at the address below: \\
https://global.yamaha-motor.com/business/robot/
\end{tabular}


Arm length 600 mm O Maximum payload 4 kg
Ordering method



\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & X axis & Y axis & Z axis & R axis \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Axis \\
specifications
\end{tabular}} & Arm length (mm) & 350 & 250 & 150 & - \\
\hline & Rotation angle ( \({ }^{\circ}\) ) & +/-129 & +/-144 & - & +/-360 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 200 & 150 & 50 & 100 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\text {) }}\)} & & & +/-0.01 & +/-0.004 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \%/sec)} & & & 1.1 & 1020 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{4}{|c|}{4} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 2 kg payload (sec) \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.71} \\
\hline \multicolumn{2}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note }} \mathbf{( \mathbf { k g m } ^ { 2 } )}\)} & \multicolumn{4}{|c|}{0.05} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{4}{|c|}{\(0.2 \times 10\)} \\
\hline \multicolumn{2}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 4\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit, 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{4}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & \multicolumn{4}{|c|}{26} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{4}{|c|}{} \\
\hline \multicolumn{2}{|l|}{Intake air ( \(\mathrm{N} /\) /min)} & \multicolumn{4}{|c|}{\(30^{\text {Note } 6}\)} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. When reciprocating 25 mm in vertical direction and 300 mm in horizontal direction (rough-positioning arch motion).
Note 3. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
Note 4. Class \(10(0.1 \mu \mathrm{~m})\) equivalent to FED-STD-209D
Note 5. ESD (ElectroStatic Discharge) prevention is an option. Please contact our distributor.
Note 6. The necessary intake amount varies depending on the use conditions and environment


\section*{YK600XGLC}


\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Axis specification} & & X axis & Y axis & \multicolumn{2}{|c|}{Z axis} & \multirow[t]{2}{*}{R axis} \\
\hline & Arm length (mm) & 350 & 250 & 200 & 300 & \\
\hline & Rotation angle ( \({ }^{\circ}\) ) & +/-120 & +/-145 & & & +/-180 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 400 & 200 & & & 100 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\text {) }}\)} & \multicolumn{2}{|c|}{+/-0.02} & & & +/-0.005 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \(\% / \mathrm{sec}\) )} & \multicolumn{2}{|c|}{5.6} & & & 876 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{5}{|c|}{10} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 2kg payload (sec)} & \multicolumn{5}{|c|}{0.56} \\
\hline \multicolumn{2}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 2}\left(\mathrm{kgm}^{2}\right)\)} & \multicolumn{5}{|c|}{0.12} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{5}{|c|}{\(0.2 \times 20\)} \\
\hline \multicolumn{2}{|l|}{User tubing (Outer diameter)} & \multicolumn{5}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{5}{|c|}{1.Soft limit, 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & \multicolumn{5}{|c|}{33} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{5}{|c|}{CLASS \(10{ }^{\text {Note } 3}\)} \\
\hline \multicolumn{2}{|l|}{Intake air ( \(\mathrm{N} / \mathrm{/min}\) )} & \multicolumn{5}{|c|}{\(60^{\text {Note } 4}\)} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings
Note 3. Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base), when suction blower is used.
Note 4. The necessary intake amount varies depending on the use conditions and environment

\section*{Controller}
\begin{tabular}{c|c|c}
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & \multirow{2}{|c|}{\begin{tabular}{c} 
Programming / \\
I/O point trace / \\
Remote command / \\
Operation
\end{tabular}} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information.
Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/


YK700XC
 Specify various controller setting items．RCX340 P P． 678

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X axis & Y axis & \multicolumn{2}{|c|}{Z axis} & R axis \\
\hline Axis \(\quad\) Arm length（mm） & 350 & 350 & 200 & 400 & － \\
\hline specifications Rotation angle（ \({ }^{\circ}\) ） & ＋／－120 & ＋／－145 & & & ＋／－180 \\
\hline AC servo motor output（W） & 800 & 400 & & & 200 \\
\hline Repeatability \({ }^{\text {Note } 1}\)（XYZ：mm）（R：\({ }^{\circ}\) ） & \multicolumn{2}{|c|}{＋／－0．02} & & & ＋／－0．005 \\
\hline Maximum speed（XYZ：m／sec）（R：\(/ \mathrm{sec}\) ） & \multicolumn{2}{|c|}{6.7} & & & 600 \\
\hline Maximum payload（kg） & \multicolumn{5}{|c|}{20} \\
\hline Standard cycle time：with 2kg payload（sec） & \multicolumn{5}{|c|}{0.57} \\
\hline R －axis tolerable moment of inertia \({ }^{\text {Note } 2}\)（ \(\mathrm{kgm}^{2}\) ） & \multicolumn{5}{|c|}{0.32} \\
\hline User wiring（sq \(\times\) wires） & \multicolumn{5}{|c|}{\(0.2 \times 20\)} \\
\hline User tubing（Outer diameter） & \multicolumn{5}{|c|}{\＄6 \(\times 3\)} \\
\hline Travel limit & \multicolumn{5}{|c|}{1．Soft limit，2．Mechanical stopper（ \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes）} \\
\hline Robot cable length（m） & \multicolumn{5}{|c|}{Standard：3．5 Option：5， 10} \\
\hline Weight（kg） & \multicolumn{5}{|c|}{57} \\
\hline Degree of cleanliness & \multicolumn{5}{|c|}{CLASS \(10{ }^{\text {Note } 3}\)} \\
\hline Intake air（NQ／min） & \multicolumn{5}{|c|}{\(60^{\text {Note 4 }}\)} \\
\hline
\end{tabular}

Note 3．Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base），when suction blower is used．
Note 4．The necessary intake amount varies depending on the use conditions and environment．

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Basic specifications} \\
\hline & & X axis & Y axis & & & R axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & Arm length (mm) & 450 & 350 & 200 & 400 & - \\
\hline & Rotation angle ( \({ }^{\text {a }}\) ) & +/-120 & +/-145 & \multicolumn{2}{|c|}{-} & +/-180 \\
\hline \multicolumn{2}{|l|}{AC servo motor output (W)} & 800 & 400 & \multicolumn{2}{|c|}{400} & 200 \\
\hline \multicolumn{2}{|l|}{Repeatability \({ }^{\text {Note } 1}\) (XYZ: mm) (R: \({ }^{\text {) }}\)} & \multicolumn{2}{|c|}{+/-0.02} & & & +/-0.005 \\
\hline \multicolumn{2}{|l|}{Maximum speed (XYZ: m/sec) (R: \%/sec)} & \multicolumn{2}{|c|}{7.3} & & & 600 \\
\hline \multicolumn{2}{|l|}{Maximum payload (kg)} & \multicolumn{5}{|c|}{20} \\
\hline \multicolumn{2}{|l|}{Standard cycle time: with 2kg payload (sec)} & \multicolumn{5}{|c|}{0.57} \\
\hline \multicolumn{2}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note2 }} \mathbf{( \mathbf { k g m } ^ { 2 } )}\)} & \multicolumn{5}{|c|}{0.32} \\
\hline \multicolumn{2}{|l|}{User wiring (sq \(\times\) wires)} & \multicolumn{5}{|c|}{\(0.2 \times 20\)} \\
\hline User tubing & (Outer diameter) & \multicolumn{5}{|c|}{\$ \(6 \times 3\)} \\
\hline \multicolumn{2}{|l|}{Travel limit} & \multicolumn{5}{|c|}{1.Soft limit, 2.Mechanical stopper ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes)} \\
\hline \multicolumn{2}{|l|}{Robot cable length (m)} & \multicolumn{5}{|c|}{Standard: 3.5 Option: 5, 10} \\
\hline \multicolumn{2}{|l|}{Weight (kg)} & \multicolumn{5}{|c|}{58} \\
\hline \multicolumn{2}{|l|}{Degree of cleanliness} & \multicolumn{5}{|c|}{CLASS \(10{ }^{\text {Nole } 3}\)} \\
\hline \multicolumn{2}{|l|}{Intake air ( \(\mathrm{N} / \mathrm{/min}\) )} & \multicolumn{5}{|c|}{\(60^{\text {Note } 4}\)} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. ( \(\mathrm{X}, \mathrm{Y}\) axes)
Note 2. The acceleration coefficient is set automatically in accordance with the tip weight and R -axis moment of inertia settings.
Note 3. Per \(1 \mathrm{cf}(0.1 \mu \mathrm{~m}\) base), when suction blower is used.
Note 4. The necessary intake amount varies depending on the use conditions and environment.

\section*{Controller}
\begin{tabular}{c|c|c}
\hline Controller & Power capacity (VA) & Operation method \\
\hline & & \begin{tabular}{c} 
Programming / \\
I/O point trace /
\end{tabular} \\
RCX340 & 2000 & \begin{tabular}{c} 
Remote command / \\
Operation \\
using RS-232C \\
communication
\end{tabular} \\
\hline
\end{tabular}

Note. The movement range can be limited by changing the positions of X and Y axis mechanical stoppers. (The movement range is set to the maximum at the time of shipment.) See our robot manuals (installation manuals) for detailed information.

\footnotetext{
Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/
}


YK1000XC

YK1000XC

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X axis & Y axis & \multicolumn{2}{|c|}{Z axis} & R axis \\
\hline Axis \(\quad\) Arm length（mm） & 550 & 450 & 200 & 400 & － \\
\hline specifications Rotation angle（ \({ }^{\circ}\) ） & ＋／－120 & ＋／－145 & & & ＋／－180 \\
\hline AC servo motor output（W） & 800 & 400 & & & 200 \\
\hline Repeatability \({ }^{\text {Note } 1}\)（XYZ：mm）（R：\({ }^{\circ}\) ） & \multicolumn{2}{|c|}{＋／－0．02} & & & ＋／－0．005 \\
\hline Maximum speed（XYZ：m／sec）（R：\(/ \mathrm{sec}\) ） & \multicolumn{2}{|c|}{8.0} & & & 600 \\
\hline Maximum payload（kg） & \multicolumn{5}{|c|}{20} \\
\hline Standard cycle time：with 2kg payload（sec） & \multicolumn{5}{|c|}{0.60} \\
\hline R －axis tolerable moment of inertia \({ }^{\text {Note } 2}\)（ \(\mathrm{kgm}^{2}\) ） & \multicolumn{5}{|c|}{0.32} \\
\hline User wiring（sq \(\times\) wires） & \multicolumn{5}{|c|}{\(0.2 \times 20\)} \\
\hline User tubing（Outer diameter） & \multicolumn{5}{|c|}{\＄6 \(\times 3\)} \\
\hline Travel limit & \multicolumn{5}{|c|}{1．Soft limit，2．Mechanical stopper（ \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes）} \\
\hline Robot cable length（m） & \multicolumn{5}{|c|}{Standard：3．5 Option：5， 10} \\
\hline Weight（kg） & \multicolumn{5}{|c|}{59} \\
\hline Degree of cleanliness & \multicolumn{5}{|c|}{CLASS \(10{ }^{\text {Note } 3}\)} \\
\hline Intake air（N \(/\)／min） & \multicolumn{5}{|c|}{\(60^{\text {Note } 4}\)} \\
\hline
\end{tabular}
． 1 ．This is the value at a constant ambient temperature．（ \(\mathrm{X}, \mathrm{Y}\) axes）
Note 2．The acceleration coefficient is set automatically in accordance with the tip weight and R －axis moment of inertia settings，
ore 1 ．Per 1 cf \(0.1 \mu \mathrm{~m}\) base），when suction blower is used
Note 4．The necessary intake amount varies depending on the use conditions and environment



\section*{CONTROLLER FEATURE DESCRIPTION}

\section*{LCMR200 / GX series}


\section*{Single-axis}

\section*{Robot controller \\ LCC140}

Linear conveyor module ......... LCM100
P.620
Single-axis robot positioner

Stepping motor single-axis robots ... TRANSERVO Note 1 0.626

Note 1. SG07 is only applicable to TS-SH.


Single-axis robot positioner
Single-axis robot .................FLIP-x
Linear motor single-axis .... PHASER
PR2
Single-axis robot positioner
Single-axis robot .................FLIP-x
Linear motor single-axis .... PHASER
PR2
Single-axis robot positioner
Single-axis robot .................FLIP-x
Linear motor single-axis .... PHASER
PR2
Single-axis robot positioner
Single-axis robot .................FLIP-x
Linear motor single-axis .... PHASER
PR2
C. 626

\begin{tabular}{l|l}
\hline Operating method & \begin{tabular}{l} 
I/O point tracing/Remote command/ \\
Operation using RS-232C communication
\end{tabular} \\
\hline Points & 255 points \\
\hline Input power & \begin{tabular}{l} 
Control power supply \(\mathrm{DC} 24 \mathrm{~V}+/-10 \%\) \\
Main power supply DC24V \(+/-10 \%\)
\end{tabular} \\
\hline Origin search method & \begin{tabular}{l} 
TS-S2 : Incremental \\
TS-SH \\
: Absolute \\
Incremental
\end{tabular} \\
\hline Field networks & \begin{tabular}{l} 
CC-Link, DeviceNet \\
PROFINET, EtherNet/IP \({ }^{\text {TM }}\), \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Operating method & |/O point tracing/Remote command/Operation using RS-232C communication \\
\hline Points & 255 points \\
\hline Input power & Control power supply
AC100 specification:
Single phase 100 to \(115 \mathrm{VAC}+/-10 \%\)
AC200V specification:
Single phase 200 to \(230 \mathrm{VAC}+/-10 \%\)
Main power supply
AC100V specification:
Single phase 100 to
AC200V specification:
Single phase 200 to \(230 \mathrm{VAC}+/-10 \%\)
Sing \\
\hline Origin search method & TS-X
TS-P : Absolute, Incremental \\
\hline Field networks & CC-Link, DeviceNet \({ }^{\text {TM }}\), EtherNet/IP \({ }^{\text {TM }}\), PROFINET \\
\hline
\end{tabular}

\begin{tabular}{l|l}
\hline Operating method & \begin{tabular}{l} 
Programming///O point tracing/ \\
Remote command/Operation using RS-232C \\
communication
\end{tabular} \\
\hline Points & 10,000 points \\
\hline Input power & \begin{tabular}{l} 
Control power supply: \\
Single phase 200 to \(230 \mathrm{~V} \mathrm{AC}+/-10 \%\) maximum \\
Main power supply: \\
Single phase 200 to \(230 \mathrm{~V} \mathrm{AC}+/-10 \%\) maximum
\end{tabular} \\
\hline Origin search method & Incremental \\
\hline Field networks & CC-Link, DeviceNet \({ }^{\text {TM }, ~ E t h e r N e t / I P ~}{ }^{\text {TM }}\) \\
\hline
\end{tabular}


\section*{Single-axis robot driver}

TG-SD
Stepping motor single-axis robots ...TRANSERVO
18.636

\section*{Single-axis robot driver \\ RDV-X/RDV-P}
[RDV-X] Single-axis robot .............. FLIP-X
[RDV-P] Linear motor single-axis..... PHASER
Single-axis robot controller
Single-axis robot...................T4L/T5L
Clean single-axis ..............C4L/C5L
P.C4G

\section*{Single-axis}
Single-axis robot controller

1 to 2 axis
Multi-axis robot controller
Single-axis robot.....................FIP-x
Linear motor single-axis .....................
Cartesian robot ...................... YP-X
Pick \& place.....................

\section*{10650}

Multi-axis robot controller

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{Single-axis robot......................FLIP-X
Linear motor single-axis .........PHASER
Cartesian robot .....................XY-X
Pick \& place.....................YP-X} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{R. 070}

Multi-axis robot controller

Single-axis robot...................... FLIP-X
Cartesian robot ........................XY-X
Pick \& place.....................YP-X
Pick \& place YP-X

\subsection*{0.370}

\section*{1 to 4 axis}
\begin{tabular}{l|l}
\hline Operating method & \begin{tabular}{l} 
Programming/Remote command/ \\
Operation using RS-232C communication
\end{tabular} \\
\hline Points & 10000 points \\
\hline Input power & \begin{tabular}{l} 
Control power supply: \\
Single phase 200 to 230V AC \(+/-10 \%\) maximum \\
Main power supply:: \\
Single phase 200 to 230V AC \(+/-10 \%\) maximum
\end{tabular} \\
\hline Origin search method & Incremental, Semi-absolute \\
\hline Field networks & CC-Link, DeviceNet \({ }^{\top \mathrm{M}}\), PROFIBUS \\
\hline
\end{tabular}

Field networks


Programming/Remote command/ Operation using RS-232C communication 30000 points Control power supply Single phase 200 to \(230 \mathrm{~V} \mathrm{AC}+/-10 \%\) maximum
Main power supply: Single phase 200 to \(230 \mathrm{~V} \mathrm{AC}+/-10 \%\) maximum Absolute, Incremental CC-Link, DeviceNet \({ }^{\text {TM }}\), EtherNet/IP \({ }^{\text {TM }}\) CC-Link, DeviceNet \({ }^{\text {TM }}\), EtherNet/IP
Ethernet, PROFIBUS, PROFINET, Ethernet, PR
EtherCAT

\begin{tabular}{l|l}
\hline Operating method & \begin{tabular}{l} 
Programming/Remote command/ \\
Operation using RS-232C communication
\end{tabular} \\
\hline Points & 30000 points \\
\hline Input power & \begin{tabular}{l} 
Control power supply: \\
Single phase 200 to \(230 \mathrm{~V} \mathrm{AC}+/-10 \%\) maximum \\
Main power supply: \\
Single phase 200 to 230V AC \(+/-10 \%\) maximum
\end{tabular} \\
\hline Origin search method & Absolute, Incremental \\
\hline Field networks & \begin{tabular}{l} 
CC-Link, DeviceNet \({ }^{\text {TM }}\), EtherNet/IPTM \\
Ethernet, PROFIBUS, PROFINET, \\
EtherCAT
\end{tabular} \\
\hline
\end{tabular}

\section*{CONTROLLER SPECIFICATION SHEET}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Category} & \multicolumn{2}{|l|}{Robot controller} & \multicolumn{4}{|c|}{Robot positioner} & \multicolumn{3}{|c|}{Robot driver} \\
\hline \multicolumn{3}{|l|}{Name} & YHX & LCC140 & TS-S2 & TS-SH & TS-X & TS-P & TS-SD & RDV-X & RDV-P \\
\hline \multicolumn{3}{|l|}{External view} &  &  &  &  &  &  & 足 &  &  \\
\hline \multicolumn{3}{|l|}{Operating method} & \[
\begin{gathered}
\text { YHX } \\
\text { Standard profile }
\end{gathered}
\] & \begin{tabular}{|c} 
Programming/ \\
I/O point tracing/ \\
Remote command/ \\
Operation \\
using RS-232C \\
communication
\end{tabular} & \multicolumn{4}{|c|}{I/O point tracing/Remote command/ Operation using RS-232C communication} & \multicolumn{3}{|c|}{Pulse train control} \\
\hline \multirow{10}{*}{} & \multicolumn{2}{|l|}{LCMR200} & - & - & - & - & - & - & - & - & - \\
\hline & \multicolumn{2}{|l|}{LCM100} & - & \(\bullet\) & - & - & - & - & - & - & - \\
\hline & GX & & \(\bullet\) & - & - & - & - & - & - & - & - \\
\hline & \multicolumn{2}{|l|}{TRANSERVO} & - & - & - Note 2 & \(\bullet\) & - & - & - & - & - \\
\hline & \multirow[t]{2}{*}{FLIP-X} & T4L/T5L/C4L/C5L & - & - & - & - & - & - & - & - & - \\
\hline & & FLIP-X other than above & - & - & - & - & - & - & - & - & - \\
\hline & \multicolumn{2}{|l|}{PHASER} & - & - & - & - & - & \(\bullet\) & - & - & \(\bullet\) \\
\hline & \multicolumn{2}{|l|}{XY-X} & - & - & - & - & - & - & - & - & - \\
\hline & \multicolumn{2}{|l|}{YK-X} & - & - & - & - & - & - & - & - & - \\
\hline & \multicolumn{2}{|l|}{YP-X} & - & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Control power supply} & \multirow{10}{*}{Check the details page of the YHX controller.} & \multirow[b]{2}{*}{Single phase 200 to 230 V AC +/-10\% maximum ( \(50 / 60 \mathrm{~Hz}\) )} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DC24V +/-10\% maximum}} & \multicolumn{2}{|l|}{- AC100V specifications \({ }^{\text {Noe } 1}\) (105/110 driver) Single phase 100 to 115 V AC +/-10\% maximum ( \(50 / 60 \mathrm{~Hz}\) )} & & \multicolumn{2}{|l|}{Single phase 200 to 230 V AC \(+10 \%\) to -15\% ( \(50 / 60 \mathrm{~Hz}+/-5 \%\) )} \\
\hline & \multicolumn{2}{|l|}{Main power supply} & & & & & \multicolumn{2}{|l|}{- AC200V specifications ( \(205 / 210 / 220\) driver) single phase 200 to 230 V AC +/-10\% maximum (50/60Hz)} & maximum & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Single phase / 3-phase } \\
200 \text { to } 230 \mathrm{~V} \\
+10 \% \text { to }-15 \% \\
(50 / 60 \mathrm{~Hz}+/-5 \%)
\end{gathered}
\]} \\
\hline \multicolumn{3}{|l|}{Number of controllable axes} & & Single-axis & \multicolumn{4}{|c|}{Single-axis} & \multicolumn{3}{|c|}{Single-axis} \\
\hline \multicolumn{3}{|l|}{Origin search method} & & Incremental & Incremental & Absolute/ Incremental & Absolute Incremental & Incremental/ Semi-absolute & \multicolumn{3}{|c|}{Incremental} \\
\hline \multicolumn{3}{|l|}{Maximum number of programs} & & 100 & \multicolumn{4}{|c|}{(program not required)} & - & & \\
\hline \multicolumn{3}{|l|}{Maximum number of steps per program} & & 999 steps & \multicolumn{4}{|c|}{(program not required)} & - & \multicolumn{2}{|c|}{-} \\
\hline \multicolumn{3}{|l|}{Points} & & 10,000 points & \multicolumn{4}{|c|}{255 points} & - & \multicolumn{2}{|c|}{-} \\
\hline \multicolumn{3}{|l|}{Multitasks} & & 4 & - & - & - & - & - & \multicolumn{2}{|c|}{-} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I/O points}} & Dedicated I/O & & 8 points/4 points & 16 points/16 points & \[
\begin{aligned}
& 16 \text { points/16 } \\
& \text { points }
\end{aligned}
\] & \[
\begin{aligned}
& 16 \text { points/16 } \\
& \text { points }
\end{aligned}
\] & \[
\begin{aligned}
& 16 \text { points/16 } \\
& \text { points }
\end{aligned}
\] & - & \multicolumn{2}{|c|}{-} \\
\hline & & General I/O & & 16 points/16 points & - & - & - & - & - & \multicolumn{2}{|c|}{-} \\
\hline \multicolumn{2}{|l|}{\multirow{7}{*}{Field network support}} & CC-Link & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - \\
\hline & & Device, 'et & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - \\
\hline & & Ether, 'et/IP' & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - \\
\hline & & Ethernet & - & - & - & - & - & - & - & - & - \\
\hline & &  & - & - & - & - & - & - & - & - & - \\
\hline & & \[
\frac{0.010}{}
\] & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - \\
\hline & & EtherCAT. & - & - & - & - & - & - & - & - & - \\
\hline \multicolumn{3}{|l|}{CE marking} & - & - & \(\bullet\) \\
\hline \multicolumn{3}{|l|}{Programming box} & \[
\begin{array}{|c|}
\text { YHX-PP } \\
\text { (with enable switch) }
\end{array}
\] & \(\underset{\text { (with enable switch) }}{\mathrm{HPB} / \mathrm{HPB}-\mathrm{D}}\) & \multicolumn{4}{|c|}{HT1 / HT1-D (with enable switch)} & - & \multicolumn{2}{|c|}{-} \\
\hline \multicolumn{3}{|l|}{Support software for PC} & YHX-Studio for Standard Profile & POPCOM \({ }^{+}\) & \multicolumn{4}{|c|}{TS-Manager} & TS-Manager & \multicolumn{2}{|l|}{RDV-Manager} \\
\hline \multicolumn{3}{|l|}{Detailed info page} & P.í1) & P. 520 & \multicolumn{4}{|c|}{P.526} & P63i & \multicolumn{2}{|r|}{PR40} \\
\hline
\end{tabular}

\footnotetext{
Note 1. 20A specifications provide only 200V.
Note 2. Exclude SG07
Note 3. Maximum number of general-purpose I/O points when a total of two option boards OP. 1 and OP. 2 (one each) are installed.
Note 4. Maximum number of general-purpose I/O points when option OP.DIO boards (4 boards) are installed.
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Robot controller} \\
\hline ERCD & SR1-X & SR1-P & RCX320 & \[
\begin{gathered}
\text { RCX221 } \\
\text { RCX221HP }
\end{gathered}
\] & \[
\begin{gathered}
\text { RCX222 } \\
\text { RCX222HP }
\end{gathered}
\] & RCX340 \\
\hline  &  &  &  &  &  &  \\
\hline Pulse train control/ Programming/ I/O point tracing/ Operation using RS232C communication & \multicolumn{2}{|l|}{Programming///O point tracing/ Remote command/ Operation using RS-232C communication} & \multicolumn{4}{|c|}{Programming/Remote command/ Operation using RS-232C communication} \\
\hline - & - & - & - & - & - & - \\
\hline - & - & - & - & - & - & - \\
\hline - & - & - & - & - & - & - \\
\hline - & - & - & - & - & - & - \\
\hline \(\bullet\) & - & - & - & - & - & - \\
\hline - & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) \\
\hline - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) \\
\hline - & - & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) \\
\hline - & - & - & - & - & - & \(\bullet\) \\
\hline - & - & - & \(\bullet\) & - & \(\bullet\) & \(\bullet\) \\
\hline \begin{tabular}{l}
DC24V \\
+/-10\% maximum
\end{tabular} & \multicolumn{2}{|l|}{```
05/10 driver
    Single phase 100 to 115V/200 to 230V AC
    +/-10% maximum (50/60Hz)
20 driver
Single phase 200 to 230V AC
+/-10% maximum (50/60Hz)
```} & \multicolumn{4}{|c|}{Single phase 200 to 230 V AC +/-10\% maximum ( \(50 / 60 \mathrm{~Hz}\) )} \\
\hline Single-axis & \multicolumn{2}{|l|}{Single-axis} & 2 axes maximum Max. number of robots 4 & 2 axes maximum & 2 axes maximum & Max. number of robots 4 Max. number of controllable axes 16 \\
\hline Incremental & Absolute/ Incremental & Incremental/ Semi-absolute & Absolute/Incremental/ Semi-absolute & Incremental/ Semi-absolute & Absolute/ Incremental & Absolute/Incremental/ Semi-absolute \\
\hline 100 & \multicolumn{2}{|c|}{100} & 100 & 100 & 100 & 100 \\
\hline 1024 steps & \multicolumn{2}{|c|}{3000 steps} & 9999 steps & 9999 steps & 9999 steps & 9999 steps \\
\hline 1000 points & \multicolumn{2}{|c|}{1000 points} & 30000 points & 10000 points & 10000 points & 30000 points \\
\hline 4 & \multicolumn{2}{|c|}{4} & 16 & 8 & 8 & 16 \\
\hline 8 points/3 points & \multicolumn{2}{|c|}{8 points/4 points} & 8 points/9 points & 10 points/12 points & 10 points/12 points & 8 points/9 points \\
\hline 6 points/6 points & \multicolumn{2}{|c|}{16 points/16 points} & 96 points/64 points (Max.) \({ }^{\text {Noie } 4}\) & 40 points/24 points(Max.) \({ }^{\text {Noie3 }}\) & 40 points/24 points(Max.) \({ }^{\text {Note } 3}\) & 96 points/64 points (Max.) \({ }^{\text {Note } 4}\) \\
\hline - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) \\
\hline - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) \\
\hline - & - & - & \(\bullet\) & - & - & \(\bullet\) \\
\hline - & - & - & \(\bullet\) & - & - & - \\
\hline - & - & - & - & \(\bullet\) & - & \(\bullet\) \\
\hline - & - & - & \(\bullet\) & - & - & \(\bullet\) \\
\hline - & - & - & \(\bullet\) & - & - & \(\bullet\) \\
\hline - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) \\
\hline \multicolumn{3}{|c|}{HPB / HPB-D (with enable switch)} & PBX /PBX-E (with enable switch) & \multicolumn{2}{|l|}{RPB / RPB-E (with enable switch)} & PBX /PBX-E (with enable switch) \\
\hline \multicolumn{3}{|c|}{\(\mathrm{POPCOM}^{+}\)} & RCX-Studio 2020 & \multicolumn{2}{|l|}{\(\mathrm{VIP}^{+}\)} & RCX-Studio 2020 \\
\hline P. 40 & \multicolumn{2}{|c|}{B.is2} & 4651 & \multicolumn{2}{|r|}{0.670} & B \(1 / 8\) \\
\hline \multicolumn{7}{|l|}{Controller operating methods} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{ll}
- Point trace & : Host device specifies a binary point number and \\
teaching point data. \\
- Remote command & : Controller issues a wide range of commands and \\
- Pulse train & Controller operates robot by pulse train from position \\
- Online instructions & concentrate on robot control. \\
- PC can send various commands and data directly
\end{tabular}} & \begin{tabular}{l}
t moves to the specified point \\
to the robot via CC-Link or De er unit. Controller needs no p \\
the robot controller via RS232
\end{tabular} & \begin{tabular}{l}
when a start signal is input. C \\
viceNet \({ }^{\text {TM }}\) word functions. Host ograms or point data. Pulse tran \\
C or Ethernet and receive stat
\end{tabular} & \begin{tabular}{l}
ontroller does not need a prog device can freely use robot co rain operation is convenient to \\
us information and data.
\end{tabular} & gram and operates just by ontroller functions as needed. allow the host device to \\
\hline
\end{tabular}

\section*{YHX}

Dedicated for LCMR200 / GX series

\section*{YHX-HD Configuration parts}

\section*{Control unit}

Host controller unit

This unit can control multiple robots by combining with the linear conveyor. Although the unit is compact, it is multifunctional and has an enhanced interface.

\section*{Safety connector}

\section*{Host YQLink}

Used for building up an external safety circuit while connecting with the safety dedicated port of a host controller.
\begin{tabular}{c|c|}
\hline Model & YHX-CN-SAFE \\
\hline Parts No. & KEK-M4432-00 \\
\hline
\end{tabular}

\section*{Mode connector}
\begin{tabular}{|c|c|c|}
\hline 1 & LCD & Indicates the status of the controller. \\
\hline 2 & PoE & PoE compatible giga bit Ethernet connector. \\
\hline 3 & GbE & PoE non-compatible giga bit Ethernet connector. \\
\hline 4 & IN & LAN connector for connecting with master devices of field network communications connector (EtherNet/IP, EtherCAT, PROFINET) \\
\hline 5 & OUT & LAN connector for connecting with other slave devices of field network communications connector (EtherNet/IP, EtherCAT, PROFINET) \\
\hline 6 & OP & Connector for field network communications adaptors (CC-Link) \\
\hline 7 & USB 2.0 & Connector compatible with USB 2.0 \\
\hline 8 & USB 3.0 & Connector compatible with USB 3.0 \\
\hline 9 & HMI & Connector for connecting with a programming pad, display and other devices \\
\hline 10 & SAFETY & Connect with external PLC, safety devices and the like. \\
\hline 11 & MODE & \begin{tabular}{l}
CPU OK output \\
Programming pad AUTO/MANUAL select switch contact output
\end{tabular} \\
\hline 12 & \multicolumn{2}{|l|}{Connector for connection between units (control signal/Power)} \\
\hline
\end{tabular}

\section*{Host}

Used for building up an external safety circuit while using the mode switch output port of a host controller unit.
\begin{tabular}{c|l}
\hline Model & YHX-CN-MODE \\
\hline Parts No. & KEK-M4432-10 \\
\hline
\end{tabular}

\section*{HMI short circuit connector}

Used when a programming pad is not connected with a host controller. Note that if not connected, robots do not operate because the controller enters the state of emergency stop.
\begin{tabular}{c|c}
\hline Model & YHX-CN-HMIS \\
\hline Parts No. & KEK-M4429-00 \\
\hline
\end{tabular}

Controller
\(\rightarrow\) Power unit D. Power
Driver power unit

\begin{tabular}{c|l|l}
\hline 1 & POWER & Blue: 24V DC control power supply is available. \\
\hline 2 & CHARGE & Orange: 200V AC main power supply is available and Charge \({ }^{*}\) \\
\hline 3 & DC INPUT & Control power supply connector (24V DC) \\
\hline 4 & BATT & ABS battery connector \\
\hline 5 & R.UNIT & Connector for connecting regenerative unit \\
\hline 6 & AC INPUT & Main power supply connector (Single phase / 3-phase 200 to 230V AC) \\
\hline 7 & YQLink & \begin{tabular}{l}
YQLink communications connector \\
Connects with IO units and linear conveyor modules.
\end{tabular} \\
\hline 8 & 1 & Grounding terminal \\
\hline 9 & Connector for connection between units (control signal/Power) \\
\hline 10 & Connector for connection between units (high voltage power source for driving motors)
\end{tabular}
This unit supplies power to each unit. Be sure to use it together with the host controller unit or a YQLink expansion unit. Use the dedicated cables to connect with linear conveyor modules.
\begin{tabular}{c|l|l}
\hline Model & YHX-DPU \\
\hline Parts No. & KEK-M5880-0A \\
\hline
\end{tabular}
Control power supply connector
Used when supplying the control power supply.

\section*{Connector for CC-Link}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ CC-Link connector } \\
\hline Model & YHX-CN-CCL \\
\hline Parts No. & KEK-M4872-C0 \\
\hline
\end{tabular}

\begin{tabular}{c|c}
EtherNet/IP adapter (slave) \\
\hline Model & YHX-NWS-ENIP \\
\hline Parts No. & KEK-M440A-E0 \\
\hline
\end{tabular}

\section*{PROFINET slave}
\begin{tabular}{c|l}
\hline Model & YHX-NWS-PFNET \\
\hline Parts No. & KEK-M440A-N0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ CC-Link slave (with adapter and connector) } \\
\hline Model & YHX-NWS-CCL \\
\hline Parts No. & KEK-M440A-C0 \\
\hline
\end{tabular}
<Cautionary notes on field networks>
The YHX controllers are not equipped with a field network board. Entering the activation code, which is issued for each host controller, into the host controller unit enables field network functions.
The activation code certificate comes with a host controller unit.
* If purchasing a field network only later on, inform us of the serial number of the host controller unit because it is necessary to issue the activation code.
*When the CC-Link option is selected, the CC-Link adapter \(\times 1\), CC-Link connector \(\times 2\), and CC-Link branch connector \(\times 1\) are supplied with the product. When the CC-Link terminating connector is needed, order it separately.

Use the touch panel screen for various operation. Equipped with safety functions (emergency stop button and enable switch) and a USB connector.
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|l|}{ Programming pad } \\
\hline Model & YHX-PP \\
\hline Parts No. & KEK-M5110-0A \\
\hline
\end{tabular}

Programming pad cable

\section*{Host}

Used when connecting a programming pad.
\begin{tabular}{lc|l}
\hline \multirow{2}{*}{6 m} & Model & YHX-PP-6M \\
\cline { 2 - 3 } & Parts No. & KEK-M5362-61 \\
\hline
\end{tabular}

\section*{Development environment software YHX Studio for Standard Profile}

\section*{Order model:YHX-SW-STUDIO-SP (кек-М4990-10)}
* No USB key is attached.
\begin{tabular}{l|l|l}
\hline & OS & Windows 7 SP1/8/8.1/10 (64-bit version only for all) \\
\cline { 2 - 3 } & CPU & Equivalent to Intel Core (TM) i5-6200U 2.30 GHz or better. \\
\cline { 2 - 3 } & Memory & 8 GB or larger \\
\cline { 2 - 3 } \begin{tabular}{l}
PC operating \\
environment
\end{tabular} & Hard disc drive capacity & \begin{tabular}{l}
2 GB or more of empty space for destination of installing \\
the YHX Studio.
\end{tabular} \\
\cline { 2 - 3 } & Communications port & Ethernet \\
\cline { 2 - 3 } & Display & \(1920 \times 1080\) or higher resolution is recommended. \\
\cline { 2 - 3 } & Other & Ethernet cable (Category 5 or better) \\
\hline Applicable controllers & YHX Host controller unit \\
\hline Applicable robots & Robots connectable to YHX \\
\hline
\end{tabular}

Microsoft, Windows and Windows 7 are the registered trademarks or the trademarks of Microsoft Corporation in the United States. Other firms' names and product names appearing in this catalog are registered trademarks or the trademarks of the respective firms or products concerned.

YHX Studio for Standard Profile is software that is used when the YHX host controller unit of the YAMAHA robot controller YHX series is set up.

Regenerative unit set

\section*{Regenerative unit \\ Regenerative unit}

Order model: YHX-RU1 (KEK-M4107-OA)
\begin{tabular}{l}
Regenerative unit \\
\hline Model \\
\hline Parts No. \\
\hline \multicolumn{2}{|c}{ YHX-RU } \\
\hline
\end{tabular} \begin{tabular}{l}
Reg-M5850-0A \\
\hline
\end{tabular} \begin{tabular}{l}
D. Power Regerative unit connection cable \\
Used when connecting a regenerative unit. \\
\hline 0.5 m Model \\
\hline Parts No. \\
\hline
\end{tabular}

Regenerative unit

\section*{Regenerative unit (For expansion)}

Order model: YHX-RU2 (KEK-M4107-0B)

\footnotetext{
* For details about how to determine the regenerative unit quantity of the single-axis robot GX series, see P. 615 .
}

\section*{YQLink expansion unit set}

Order model:YHX-YQL-SET (KEK-M4406-0B)

This unit cancels the physical restrictions of the universal controller for its expansion.
\begin{tabular}{c|l}
\hline Model & YHX-YQL \\
\hline Parts No. & KEK-M4406-0A \\
\hline
\end{tabular}

\section*{Safety connector}

\section*{Host YQLink}

Used for building up an external safety circuit while connecting with the safety dedicated port of a host controller.
\begin{tabular}{c|c}
\hline Model & YHX-CN-SAFE \\
\hline Parts No. & KEK-M4432-00 \\
\hline
\end{tabular}

\section*{Other options}

\section*{Battery holder box}

Order model:YHX-BATT-HLD
D Power
Used to store the ABS batteries.
Up to eight batteries can be stored.
\begin{tabular}{c|l}
\hline Model & YHX-BATT-HLD \\
\hline Parts No. & KEK-M53G7-00 \\
\hline
\end{tabular}

\section*{Battery holder connection cable}

\section*{Order model: YHX-BATT-15C}
opower
Used when the battery holder box is connected.
\begin{tabular}{c|l}
\hline Model & YHX-BATT-15C \\
\hline Parts No. & KEK-M53G4-00 \\
\hline
\end{tabular}

\section*{CC-Link terminating connector}

Order model: YHX-CN-CCTM
\begin{tabular}{c|l}
\hline Model & YHX-CN-CCTM \\
\hline Parts No. & KEK-M4874-00 \\
\hline
\end{tabular}

\section*{STOP connector}

\section*{Order model: YHX-CN-STOIN}

\section*{Drivers}

Used to shut off the drive power of each driver unit.
\begin{tabular}{c|l}
\hline Model & YHX-CN-STOIN \\
\hline Parts No. & KEK-M5869-10 \\
\hline
\end{tabular}

\section*{Connector for brake power}

\section*{Order model: YHX-CN-BU}

\section*{Drivers}

Used when the brake power is supplied externally The driver is not needed when the brake power unit is used
\begin{tabular}{l|l|l}
\hline \multirow{2}{*}{1 m} & Model & YHX-CN-BU \\
\cline { 2 - 3 } & Parts No. & KEK-M4427-00 \\
\hline
\end{tabular}

\section*{Driver for single-axis robot}
\begin{tabular}{|c|c|}
\hline -Control unit & Drivers \\
\hline Host controller unit 10A/30A & \\
\hline
\end{tabular}

The customer assembles the necessary number of driver units between the host controller unit and driver power unit to use them.

\section*{Order model:}
 annot be used

\section*{YHX-A10-SET / YHX-A30-SET Configuration parts}

\section*{Stop short circuit connector}

\section*{Drivers}

Used when it is not necessary to shut off the power supply to each driver unit separately.
\begin{tabular}{c|l}
\hline Model & YHX-CN-STOEN \\
\hline Parts No. & KEK-M5869-00 \\
\hline
\end{tabular}

\section*{Fan unit (30A specifications only)}

\section*{Drivers}

Cools down a driver unit. Attached at the bottom of a driver unit to send wind to heat sinks. A driver unit made to the 30 A specification is shipped out with a fan unit.
\begin{tabular}{c|l}
\hline Model & YHX-AMP-FU \\
\hline Parts No. & KEK-M6195-00 \\
\hline
\end{tabular}

\section*{Brake unit}

A unit for releasing braking effort of the robot* \({ }^{*}\) with a brake. Enables robot brake control without an external electrical wiring Installed at the bottom of a driver unit.
\begin{tabular}{c|l}
\hline Model & YHX-AMP-BU \\
\hline Parts No. & KEK-M5317-00 \\
\hline
\end{tabular}

avio
24 V DC power supply is not connected.

\section*{Procedure to determine the regenerative unit quantity (Single-axis robot GX series)}

The number of regenerative units to be connected to the D. Power is determined depending on the configuration of the single-axis robot GX series operated by each Drivers connected to this D. Power

When the following conditions are satisfied, one regenerative unit needed.
1. The total motor capacity of vertically installed single-axis robots is \(\mathbf{4 0 0} \mathbf{W}\) or more.
2. The vertically installed single-axis robots include the following.

GX07: Lead is 5 mm and stroke is 1000 mm or more.
GX10: Lead is 5 mm and stroke is 500 mm or more.
GX10: Lead is 10 mm and stroke is 500 mm or more.
- GX10: Lead is 20 mm and stroke is 1200 mm or more.
3. The horizontally installed single-axis robots include the following.

GX16: Lead is 20 mm and stroke is 500 to 800 mm .
- GX20: Lead is 20 mm and stroke is 550 to 800 mm .
4. The horizontally installed single-axis robots satisfy the following conditions.

The total number of GX12, GX16, and GX20 robots is 3 or more.
- The total number of GX16 and GX20 robots is 2 or more.

When the single-axis robot with an operating duty \(\left(^{*}\right)\) of \(50 \%\) or more is used for 1 axis or more, two regenerative units are needed.
1. The total number of vertically installed GX10, GX12, GX16, and GX20 robots is 8 axes or more.
2. The total number of vertically installed GX12, GX16, and GX20 robots is 7 axes or more.
3. The total number of vertically installed GX16 and GX20 robots is 4 axes or more.
4. The vertically installed GX20 robots are connected to 4 axes or more.
5. The total number of horizontally installed GX10, GX12, GX16, and GX20 robots is 6 axes or more.
* The operating duty is calculated by the following formula.
\[
\text { Operating duty }=\text { Total robot movement time } \div 1 \text { cycle time } \times 100[\%]
\]

For the robot that reciprocates in one cycle, the total forward and backward movement time becomes the "total robot movement time".

\section*{External view of each unit}

Driver unit 10A
YHX-A10 KEK-M5800-0A

Driver unit 30A YHX-A30 KEK-M5800-1A

Regenerative unit
YHX-RU KEK-M5850-0A

Driver power unit
YHX-DPU KEK-M5880-0A

YQLink expansion unit YHX-YQL KEK-M4406-0A

Fan unit
YHX-AMP-FU KEK-M6195-00

迎 1 did

\section*{Basic specifications}

Host
Host controller unit
\begin{tabular}{c|c|l}
\multirow{2}{*}{ Japanese } & Model & YHX-HCU \\
\cline { 2 - 3 } & Parts No. & KEK-M4200-OA \\
\hline \multirow{2}{*}{ English } & Model & YHX-HCU-E \\
\cline { 2 - 3 } & Parts No. & KEK-M4200-1A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Host controller unit \\
\hline \multirow[b]{2}{*}{Power supply} & \multirow[b]{2}{*}{Control power supply} & Voltage: 21.6 to 26.4V DC (24V +/-10\%) \\
\hline & & Current: 3.5 A (Including PoE) \\
\hline \multirow[t]{4}{*}{Connector} & External I/F & \begin{tabular}{l}
Giga bit Ethernet \\
- Compatible with PoE yet 1 port (23W) \\
- Not compatible with PoE yet 1 port \\
Field network (Slave) Select one from the following 4 kinds. \\
- EtherCAT \\
- EtherNet/IP \\
- PROFINET \\
USB \\
- USB 2.0 1 Port (Bus power 0.5 A) \\
- USB 3.01 port (Bus power 1.0 A)
\end{tabular} \\
\hline & HMI & Connector for connecting programming pad \\
\hline & SAFETY & Emergency stop contact output Enable switch contact output Emergency stop input \\
\hline & MODE & \begin{tabular}{l}
CPU OK output \\
Programming pad AUTO/MANUAL select key switch output
\end{tabular} \\
\hline Indicator & LCD & \(128 \times 64\) dots, Yellow \\
\hline \multicolumn{2}{|c|}{Dimensions} & \(41.6 \times 150 \times 125\) (mm) \\
\hline \multicolumn{2}{|c|}{Weight} & 750 g \\
\hline \multicolumn{2}{|l|}{Protection structure / Protection rating} & IP20 / class 1 \\
\hline
\end{tabular}

\section*{D. power}

Driver power unit
\begin{tabular}{c|l}
\hline Model & YHX-DPU \\
\hline Parts No. & KEK-M5880-0A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Driver power unit \\
\hline \multirow{4}{*}{Power supply} & \multirow[b]{2}{*}{Control power supply} & Voltage: 21.6 to 26.4 V DC (\(24 \mathrm{~V}+/-10 \%\)) \\
\hline & & Current: 0.5A \\
\hline & \multirow[b]{2}{*}{Main power supply} & Input: Single phase / 3-phase 180 to 253V AC / (200 to 230V AC +/-10\%), \(50 / 60 \mathrm{~Hz}\) \\
\hline & & Power supply capacity: Single phase 3.5 kVA 3 -phase 6 kVA \\
\hline \multicolumn{2}{|l|}{Connection motor capacity} & Single phase within 1.6 kW , 3-phase within 3.0kW / Driver unit within 16 units (16 axes) \\
\hline \multirow{3}{*}{Connector} & Regenerative & Regenerative unit connector \\
\hline & External I/F & YQLink \\
\hline & ABS Battery & ABS Battery connector \\
\hline \multicolumn{2}{|c|}{Dimensions} & \(63.2 \times 150 \times 125\) (mm) \\
\hline \multicolumn{2}{|c|}{Weight} & 1050 g \\
\hline \multicolumn{2}{|l|}{Protection structure / Protection rating} & IP20 / class 1 \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\multicolumn{2}{|c|}{ Item } \\
\multicolumn{1}{c}{ Regenerative unit } \\
\hline Power supply & \multicolumn{1}{c}{ Input } \\
\hline Connector & 254 to 357V DC (Controller DCBUS connected) \\
\hline Dimensions & Regenerative connector (For connecting regenerative unit/ For adding regenerative unit) \\
\hline Weight & \(62.5 \times 180 \times 110(\mathrm{~mm})\) \\
\hline Protection structure / Protection rating & 1450 g \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l}
\multicolumn{2}{|c|}{ Item } & \multicolumn{1}{c}{ YQLink expansion unit } \\
\hline \multirow{2}{*}{ Power supply } & \multirow{2}{*}{ Control power supply } & Voltage: 21.6 to 26.4V DC \((24 \mathrm{~V}+/-10 \%)\) Voltage: 21.6 to 26.4V DC \((24 \mathrm{~V}+/-10 \%)\) \\
\cline { 3 - 3 } & & Current: 0.3 A \\
\hline \multirow{2}{*}{ Connector } & External I/F & YQLink \\
\cline { 2 - 3 } & SAFETY & Emergency stop input \\
\hline \multicolumn{2}{c|}{ Dimensions } & \(31.6 \times 150 \times 125(\mathrm{~mm})\) \\
\hline \multicolumn{2}{c}{ Weight } & 380 g \\
\hline \multicolumn{2}{c}{ Protection structure / Protection rating } & IP20 / class 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Driver unit 10A/30A \\
\hline \multirow[b]{2}{*}{Power supply} & \multirow[b]{2}{*}{Control power supply} & Voltage: 21.6 to 26.4V DC (24V +/-10\%) \\
\hline & & Current: 0.8A (Including brake unit power supply) \\
\hline \multirow{7}{*}{Connector} & ENC.A & Encoder input \\
\hline & ENC.B & Encoder input (Dedicated use) \\
\hline & STOP & Gate off input, 2 points Gate status output, 1 point \\
\hline & MOTOR & Motor drive power supply output Brake power supply output \\
\hline & ABS Battery & ABS Battery connector \\
\hline & Fan unit connector & Accessory fan unit connection \\
\hline & Brake unit connector & Brake unit is connectable. \\
\hline \multicolumn{2}{|c|}{Dimensions} & \(31.6 \times 150 \times 125\) (mm) \\
\hline \multicolumn{2}{|r|}{Weight} & 10A : 560g / 30A : 570g (Including accessory fan unit) \\
\hline \multicolumn{2}{|l|}{Protection structure / Protection rating} & IP20 / class \\
\hline
\end{tabular}

Regenerative unit

\section*{Regenerative unit}
\begin{tabular}{c|l}
\hline Model & YHX-RU \\
\hline Parts No. & KEK-M5850-0A \\
\hline
\end{tabular}

\section*{YQLink}

YQLink expansion unit
\begin{tabular}{c|l}
\hline Model & YHX-YQL \\
\hline Parts No. & KEK-M4406-0A \\
\hline
\end{tabular}

\section*{Driver}

\section*{Driver unit}

\section*{Servo motor specifications (10A)}
\begin{tabular}{c|l}
\hline Model & YHX-A10 \\
\hline Parts No. & KEK-M5800-0A
\end{tabular}

\section*{Driver unit}

Servo motor specifications (30A)

\section*{External view of YHX unit combination}

Combination of host controller（HCU），driver unit（A30），and driver power unit（DPU）

Combination of host controller（HCU）and driver power unit（DPU）

Dedicated controller for LCM100

This is a dedicated controller for the LCM100 linear conveyor module. In addition to controlling movement, positioning, and input/output signals, it can also perform operations related to slider insertion and ejection.

Main functions > P. 27

Basic specifications

Note. For 2MT, be sure to select an appropriate network option.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & \multicolumn{2}{|c|}{LCC140} \\
\hline \multirow{15}{*}{DeviceNet \({ }^{\text {TM }}\) unit} & Applicable DeviceNet \({ }^{\text {TM }}\) specifications & \multicolumn{2}{|l|}{Volume 1 Release2.0, Volume 2 Release2.0} \\
\hline & DeviceNet \({ }^{\text {TM }}\) Conformance test & \multicolumn{2}{|l|}{Compliant with CT24} \\
\hline & Device profile/Device type number & \multicolumn{2}{|l|}{Generic Device (keyable) / 2B Hex} \\
\hline & Vendor name/Vendor ID & \multicolumn{2}{|l|}{YAMAHA MOTOR CO.,LTD. / 636} \\
\hline & Product code & \multicolumn{2}{|l|}{21} \\
\hline & Product revision & \multicolumn{2}{|l|}{1.0} \\
\hline & EDS file name & \multicolumn{2}{|l|}{Yamaha LCC1(DEV).eds} \\
\hline & MAC ID setting & \multicolumn{2}{|l|}{0 to 63 (Set using HPB or POPCOM \({ }^{+}\).)} \\
\hline & Communication speed setting & \multicolumn{2}{|l|}{\(500 \mathrm{~K} / 250 \mathrm{~K} / 125 \mathrm{Kbpss}\) (Set using HPB or POPCOM \({ }^{+}\).)} \\
\hline & Communication data & \multicolumn{2}{|l|}{Predefined Master/Slave Connection Set: Group 2 only server Dynamic connection support (UCMM): None Support for divided transmission of explicit message: Yes} \\
\hline & \multirow{3}{*}{Network length} & \multicolumn{2}{|l|}{\(100 \mathrm{~m} / 500 \mathrm{Kbps}, 250 \mathrm{~m} / 250 \mathrm{Kbps}, 500 \mathrm{~m} / 125 \mathrm{Kbps}\)} \\
\hline & & \multicolumn{2}{|l|}{6 m or less} \\
\hline & & 39 m or less/500Kbps, 78 m or less/ & m or less/125Kbps \\
\hline & Monitor LED & \multicolumn{2}{|l|}{None} \\
\hline & Number of DeviceNet \({ }^{T M}\) I/O points/number of occupied channels & General-purpose input 32 points General-purpose output 32 points Dedicated input 16 points Dedicated output 16 points Input register 8 words Output register 8 words & Input: 24byte Output: 24byte \\
\hline \multirow{14}{*}{EtherNet/IPTM unit} & Applicable software version & \multicolumn{2}{|l|}{LCC140: Ver. 64.07 or higher HPB/HPB-D: Ver. 24.06 or higher POPCOM + : Ver. 2.1.0 or higher} \\
\hline & Applicable EtherNet/IP \({ }^{\text {TM }}\) specifications & \multicolumn{2}{|l|}{Volume 1: Common Industrial protocol(CIP \({ }^{\text {TM }}\)) Edition 3.14 Volume 2: EtherNet/IPTM Adaptation of CIP \({ }^{\text {TM }}\) Edition 1.15} \\
\hline & EtherNet/IP \({ }^{\text {TM }}\) Conformance test & \multicolumn{2}{|l|}{Compliant with CT11} \\
\hline & Device profile/Device type number & \multicolumn{2}{|l|}{Generic Device (keyable) / 2B Hex} \\
\hline & Vendor name/Vendor ID & \multicolumn{2}{|l|}{YAMAHA MOTOR CO.,LTD. / 636} \\
\hline & Product code & \multicolumn{2}{|l|}{23} \\
\hline & Product revision & \multicolumn{2}{|l|}{1.1} \\
\hline & EDS file name & \multicolumn{2}{|l|}{Yamaha_LCC1(EIP2).eds} \\
\hline & Communication speed & \multicolumn{2}{|l|}{10Mbps / 100Mbps} \\
\hline & Connector specifications & \multicolumn{2}{|l|}{RJ-45 connector (8-pole modular connector), 2 ports} \\
\hline & Applicable cable specifications & \multicolumn{2}{|l|}{STP cable (double shield) with CAT 5e or higher} \\
\hline & Maximum cable length & \multicolumn{2}{|l|}{100m} \\
\hline & Monitor LED & \multicolumn{2}{|l|}{Module Status(MS), Network Status(NS), Link/Activity:Port1-2} \\
\hline & Number of EtherNet/IPTM I/O points/number of occupied channels & General-purpose input 32 points General-purpose output 32 points Dedicated input 16 points Dedicated output 16 points Input register 8 words Output register 8 words & Input: 24byte Output: 24byte \\
\hline
\end{tabular}

\section*{Dimensions}

Part names

\section*{Installation conditions}
- Reserve a space for the controller in the vicinity of the module.
- Install the controller perpendicularly to the wall.
- Reserve enough margins around the controller (20 mm or more on each side) and ensure sufficient ventilation.
(See fig. at right.)
- Environmental temperature: 0 to \(40^{\circ} \mathrm{C}\)

- Environmental humidity: 35 to \(85 \%\) RH (no condensation)

\section*{Reference for power supply capacity and heat generation quantity}

The power capacity and heat generation quantity required for the linear conveyor may vary depending on the module type or operation duty. Prepare the power supply and investigate the control panel size, controller layout, and cooling method while referring to the table below.
- Reference values for actual operation (per LCC140 controller)
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{ Module type } & Number of & \multicolumn{3}{|c|}{ Power supply capacity } & Heat generation quantity (during operation) \\
\cline { 3 - 5 } & motors & Control power supply & During waiting & During slider operation & During slider operation \\
\hline LCM100-4M & 4 & 35 VA & 60 VA & 350 VA & 20 W \\
\hline LCM100-3M & 3 & 35 VA & 54 VA & 271 VA & 16 W \\
\hline LCM100-2MT & 2 & 35 VA & 48 VA & 193 VA & 11 W \\
\hline
\end{tabular}

The power capacity and heat generation quantity values stated in the table show the maximum values of LCC140 and they do not exceed these values. Since the operation duty of each motor of the linear conveyor is low due to operating characteristics, the power capacity required for actual operation becomes about \(1 / 4\) to \(1 / 3\) of the maximum capacity value.
- Maximum capacity values (per LCC140 controller)
\begin{tabular}{c|c|c}
\hline Model & Power supply capacity & Heat generated \\
\hline LCM100 & 1200 VA & 70 W \\
\hline
\end{tabular}

\section*{Option parts LCC140}

Options
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & LCC140 \\
\hline & & & & TS-X \\
\hline & & & & TS-P \\
\hline Power connector + wiring & -17 & & & SR1-X \\
\hline connection lever & 01000 & Model & KAS-M5382-00 & SR1-P \\
\hline \multirow[t]{4}{*}{One set of parts per LCC140 is required.} & \multirow[t]{4}{*}{\[
\pm 2=0,0
\]} & & & RCX320 \\
\hline & & & & RCX221 \\
\hline & & & & RCX222 \\
\hline & & & & RCX340 \\
\hline
\end{tabular}

\section*{HPB dummy connector}

When performing the operation with the programming box HPB removed, connect this dummy connector to the HPB connector. One connector per LCC140 is required.

Model \(\quad\) KDK-M5163-00

Not wired (plug + shell kit) \(\quad\) Wired Note
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Model } & Not wired & KDK-M5370-10 \\
\cline { 2 - 3 } & Wired \({ }^{\text {Note }}\) & KDK-M5370-00 \\
\hline
\end{tabular}

Note. The wired connector is that the wiring for the emergency stop cancel was performed inside the connector. Select this model when performing the operation check or debugging with single linear conveyor.

\section*{SAFETY connector}

One connector per LCC140 is required.

\section*{LINK cable}
([Number of modules] - 1) cables per line are required.

\section*{Terminator connector}

When connecting modules, two connectors per line are required

\begin{tabular}{l|l|l}
\multirow{3}{*}{ Model } & 1 m & KDK-M5361-10 \\
\cline { 2 - 3 } & 3 m & KDK-M5361-30 \\
\cline { 2 - 3 } & 5 m & KDK-M5361-50 \\
\hline
\end{tabular}

Model \(\quad\) KDK-M5361-00

\section*{Dust cover (for LINK connector)}

This dust cover is attached to the insertion port, into which the the LINK cable terminator

\begin{tabular}{l|l}
\hline Model & KDK-M658K-00 (for MDR20 pin) \\
\hline
\end{tabular}
LCC140
connector is not inserted.
Note. The dust cover is essential for the 2MT.
When using only one module without connections, two dust covers are required.

\section*{- Programming box \\ 4689}

\section*{HPB/HPB-D}

All operations, such as robot manual operation, program input or edit, teaching, and parameter setting can be performed with this programming box.

\begin{tabular}{l|c|ccc}
\hline & HPB & HPB-D & & \\
\cline { 3 - 4 } & LCC140 \\
\hline Model & KBB-M5110-01 & KBB-M5110-21 & & ERCD \\
\hline Enable switch & - & 3-position & & ERC1-X \\
\hline CE marking & \begin{tabular}{c}
Not \\
supported
\end{tabular} & Applicable & & SR1-P \\
\hline
\end{tabular}

\section*{Support software for PC CHSD POPCOM \({ }^{+}\)}

POPCOM is a simple to use application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

\begin{tabular}{l|l}
\\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline LCC140 \\
\hline ERCD \\
\hline SR1-X \\
\hline SR1-P \\
\hline
\end{tabular}

POPCOM+ environment
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows XP (32bit), Vista, 7, \(8 / 8.1\), \\
10 (Supported version: V.2.1.1 or later)
\end{tabular} \\
\hline CPU & Processor that meets or exceeds the suggested requirements for the OS being used. \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 50MB of available space required on installation drive. \\
\hline Disk operation & RS-232C \\
\hline Applicable controllers & SRCX to SR1, DRCX, TRCX, ERCX, ERCD, LCC140 Note 1 \\
\hline Note 1. LCC140 is applicable to Ver. 2.1.1 or later. \\
Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.
\end{tabular}

\section*{Data cables}

Communication cable for POPCOM + . Select from USB cable or D-sub cable

D-Sub
\begin{tabular}{l|l|l|l|}
\hline \multirow{3}{*}{ Model } & USB type (5m) & KBG-M538F-00 & LCC140 \\
& \begin{tabular}{l}
D-Sub type \\
9pin-9pin (5m)
\end{tabular} & KAS-M538F-10 & ERCD \\
& SR1-X \\
\hline
\end{tabular}

\section*{RFID}

\section*{RFID}
(manufactured by BALLUFF GmbH)
Reader/writer cable

\begin{tabular}{l|l|}
\hline \multirow{3}{*}{ Model } & \(3 \mathrm{~m}:\) KDK-M6300-00 \\
\cline { 2 - 3 } & \(5 \mathrm{~m}:\) KDK-M6300-10 \\
\cline { 2 - 3 } & \(10 \mathrm{~m}:\) KDK-M6300-20 \\
\hline
\end{tabular}

Note. Whether or not the RFID system can be used may vary depending on the destination place (country).
Before selecting a RFID system, please contact YAMAHA.
* This cable is a flexible cable

\section*{RFID \\ (manufactured by OMRON)}

\begin{tabular}{l|l}
Model & \(0.5 \mathrm{~m}+2 \mathrm{~m}:\) KDK-M6300-A0 \\
\hline
\end{tabular}

Antenna amplifier controller cable
may vary depending on the destination may vary depending on the destination place (country).
Before selecting a RFID system, please contact YAMAHA.
- Dust cover (for RFID)

This cover is attached to the insertion port if

\begin{tabular}{l|l}
\hline Model & KDK-M658K-10 (for MDR26 pin) \\
\hline
\end{tabular}
Note. Whether or not the RFID system can be used may vary depending on the destination place (country).
Before selecting a RFID system, please contact YAMAHA.

\section*{Maintenance parts}

Robot cable for LCM100

\begin{tabular}{l}
KDJ-M4751-30 (\(3 \mathrm{~m} \times 1 \mathrm{pc}\).) \\
\hline KDJ-M4751-50 \(5 \mathrm{~m} \times 1 \mathrm{pc}\).) \\
\hline \begin{tabular}{l}
KDJ-M4755-30 \\
(Flexible cable \(3 \mathrm{~m} \times 1 \mathrm{pc})\). \\
\hline \begin{tabular}{l}
KDJ-M4755-50 \\
(Flexible cable \(5 \mathrm{~m} \times 1 \mathrm{pc})\).
\end{tabular} \\
\hline
\end{tabular} l \\
\hline
\end{tabular}

LCC140
Model
KDJ-M4755-30
KDJ-M4755-50
(Flexible cable \(5 \mathrm{~m} \times 1 \mathrm{pc}\).)

Lithium battery for system backup

\begin{tabular}{l|l}
\hline Model & KDK-M4252-00 \\
\hline
\end{tabular}
LCC140

Replacement filter for LCC140
(5 pcs. in package)

\begin{tabular}{l|l}
\hline Model & KDK-M427G-00 \\
\hline
\end{tabular}

LCC140

\title{
TS-S2/TS-SH/TS-X/TS-P
}

\section*{CE compliance}
\(\square\) Basic specifications

\section*{TS-S2/TS-SH}
\begin{tabular}{|c|c|c|c|}
\hline & Item & TS-S2 & TS-SH \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
0 \\
0 \\
\hline 0 \\
\hline 0 \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}} & Number of controllable axes & \multicolumn{2}{|l|}{Single-axis} \\
\hline & Controllable robots & \multicolumn{2}{|l|}{TRANSERVO series} \\
\hline & Current consumption & 2.5A (Rating) 4.5A (Max.) & 3.5A (Rating) 6.5A (Max.) \\
\hline & Dimensions & W30 \(\times\) H162 \(\times\) D 82 mm & W30 \(\times\) H162 \(\times\) D123mm \\
\hline & Weight & Approx. 0.2 kg & Approx. 0.3 kg \\
\hline & Input power \({ }^{\text {C }}\) Control power supply & \multicolumn{2}{|l|}{DC24V +/-10\%} \\
\hline & supply Main power supply & \multicolumn{2}{|l|}{DC24V +/-10\%} \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \overline{0} \\
& \stackrel{0}{0} \\
& 0 \\
& 0 \\
& \stackrel{n}{x}
\end{aligned}
\]} & Control method & \multicolumn{2}{|l|}{Closed loop vector control method} \\
\hline & Operating method & \multicolumn{2}{|l|}{I/O point tracing (Positioning operation by specifying point number) / Remote command} \\
\hline & Operation types & \multicolumn{2}{|l|}{Positioning, merge-positioning, push, and jog operations} \\
\hline & Position detection method & Resolver & Resolver with multi-turn absolute function \\
\hline & Resolution & \multicolumn{2}{|l|}{20480 pulses/rev. or 4096 pulses/rev. depending on the robot} \\
\hline & Origin search method & Incremental & Absolute / Incremental \\
\hline \multirow{3}{*}{} & Points & \multicolumn{2}{|l|}{255 points} \\
\hline & Point type setting & \multicolumn{2}{|l|}{\begin{tabular}{l}
(1) Standard setting: Set speed and acceleration in percent of the respective maximum settings. \\
(2) Custom setting: Set speed and acceleration in SI units.
\end{tabular}} \\
\hline & Point teaching method & \multicolumn{2}{|l|}{Manual data input (coordinates input), Teaching, Direct teaching} \\
\hline 5 & I/O interface & \multicolumn{2}{|l|}{Selectable from the following: NPN, PNP, CC-Link, DeviceNet \({ }^{\text {TM }}\), EtherNet/IP \({ }^{\text {TM }}\), PROFINET} \\
\hline 旁 & Input & \multicolumn{2}{|l|}{\begin{tabular}{l}
Servo ON (SERVO), reset (RESET), start (START), interlock (/LOCK) origin search (ORG), manual mode (MANUAL), jog motion - (JOG-), jog motion + (JOG+), \\
Point number selection (PIN0 to PIN7)
\end{tabular}} \\
\hline ¢ & Output & \multicolumn{2}{|l|}{Servo status (SRV-S), alarm (/ALM), operation end (END), operation in-progress (BUSY), control outputs (OUT0 to 3), Point number output 0 to 7 (POUT0 to POUT7)} \\
\hline \(\stackrel{0}{x}\) & External communications & \multicolumn{2}{|l|}{RS-232C 1CH} \\
\hline ш & Safety circuit & \multicolumn{2}{|l|}{Emergency stop input, emergency stop contact output (1 system: When the HT1 is used.)} \\
\hline \(\stackrel{\circ}{\circ}\) & Handy terminal & \multicolumn{2}{|l|}{HT1, HT1-D (with enable switch)} \\
\hline ¢ & Support software for PC & \multicolumn{2}{|l|}{TS-Manager} \\
\hline \(\stackrel{\square}{5}\) & Operating temperature / Operating humidity & \multicolumn{2}{|l|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}, 35 \%\) to \(85 \% \mathrm{RH}\) (non-condensing)} \\
\hline \% & Storage temperature/ Storage humidity & \multicolumn{2}{|l|}{\(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}, 10 \%\) to \(85 \% \mathrm{RH}\) (non-condensing)} \\
\hline \(\stackrel{\text { O}}{0}\) & Atmosphere & \multicolumn{2}{|l|}{Indoor location not exposed to direct sunlight. No corrosive , flammable gases, oil mist, or dust particles} \\
\hline \(\frac{8}{20}\) & Anti-vibration & \multicolumn{2}{|l|}{All XYZ directions 10 to 57 Hz unidirectional amplitude 0.075 mm 57 to \(150 \mathrm{~Hz} 9.8 \mathrm{~m} / \mathrm{s}^{2}\)} \\
\hline \begin{tabular}{|c}
¢ \\
¢ \\
\hline
\end{tabular} & Protective functions & \multicolumn{2}{|l|}{Position detection error, temperature error, overload, overvoltage, low voltage, excessive position deviation, overcurrent, motor current error, motor cable faulty wiring, Excitation power failure error Note 1} \\
\hline
\end{tabular}

\footnotetext{
Note 1. The excitation power failure error is a protection function that is available only in TS-SH.
}

\section*{TS-X/TS-P}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{Item}} & \multicolumn{5}{|c|}{TS-X / TS-P} \\
\hline & & & \multicolumn{2}{|r|}{100 V AC input} & \multicolumn{3}{|c|}{200V AC input} \\
\hline \multirow{8}{*}{-} & \multicolumn{2}{|l|}{Driver model} & TS-X105 / TS-P105 & TS-X110 / TS-P110 & TS-X205 / TS-P205 & TS-X210 / TS-P210 & TS-X220 / TS-P220 \\
\hline & \multicolumn{2}{|l|}{Number of controllable axes} & \multicolumn{5}{|l|}{Single-axis} \\
\hline & \multicolumn{2}{|l|}{Controllable robots} & \multicolumn{5}{|l|}{TS-X: Single-axis robot FLIP-X series TS-P: Linear motor single-axis robot PHASER series} \\
\hline & \multicolumn{2}{|l|}{Power capacity} & 400VA & 600VA & 400VA & 600VA & 1400VA \\
\hline & \multicolumn{2}{|l|}{Dimensions} & \multicolumn{4}{|l|}{\(\mathrm{W} 58 \times \mathrm{H} 162 \times\) D131mm} & W70 \(\times\) H162 \(\times\) D131mm \\
\hline & \multicolumn{2}{|l|}{Weight} & \multicolumn{4}{|l|}{Approx. 0.9 kg} & Approx. 1.1kg \\
\hline & \multirow[t]{2}{*}{Input power supply} & Control power supply & \multicolumn{5}{|l|}{Single phase 100 to 115V AC +/-10\% 50/60Hz Single phase 200 to 230 V AC +/-10\% 50/60Hz} \\
\hline & & Main power supply & \multicolumn{5}{|l|}{Single phase 100 to 115 V AC +/-10\% 50/60Hz Single phase 200 to 230 V AC +/-10\% 50/60Hz} \\
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{Control method} & \multicolumn{5}{|l|}{Closed loop vector control method} \\
\hline & \multicolumn{2}{|l|}{Operating method} & \multicolumn{5}{|l|}{I/O point tracing (Positioning operation by specifying point number) / Remote command} \\
\hline & \multicolumn{2}{|l|}{Operation types} & \multicolumn{5}{|l|}{Positioning, merge-positioning, push, and jog operations} \\
\hline & \multicolumn{2}{|l|}{Position detection method} & \multicolumn{5}{|l|}{TS-X: Resolver with multi-rotation absolute function TS-P: Magnetic type linear scale} \\
\hline & \multicolumn{2}{|l|}{Resolution} & \multicolumn{5}{|l|}{TS-X: 16384 pulses/rev. TS-P: \(1 \mu \mathrm{~m}\)} \\
\hline & \multicolumn{2}{|l|}{Origin search method} & \multicolumn{5}{|l|}{TS-X: Absolute / Incremental TS-P: Incremental / Semi-absolute} \\
\hline \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{Number of points} & \multicolumn{5}{|l|}{255 points} \\
\hline & \multicolumn{2}{|l|}{Point type setting} & \multicolumn{5}{|l|}{\begin{tabular}{l}
(1) Standard setting:Set speed and acceleration in percent of the respective maximum settings. \\
(2) Custom setting: Set speed and acceleration in SI units.
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Point teaching method} & \multicolumn{5}{|l|}{Manual data input (coordinates input), Teaching, Direct teaching} \\
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{I/O interface} & \multicolumn{5}{|l|}{Selectable from the following: NPN, PNP, CC-Link, DeviceNet \({ }^{\text {TM }}\), EtherNet/IP \({ }^{\text {TM }}\), PROFINET} \\
\hline & \multicolumn{2}{|l|}{Input} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Servo ON (SERVO), reset (RESET), start (START), interlock (/LOCK) origin search (ORG), manual mode (MANUAL), jog motion - (JOG-), jog motion + (JOG+), \\
Point number selection (PIN0 to PIN7)
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Output} & \multicolumn{5}{|l|}{Servo status (SRV-S), alarm (/ALM), operation end (END), operation in-progress (BUSY), control outputs (OUT0 to 3), Point number output 0 to 7 (POUT0 to POUT7)} \\
\hline & \multicolumn{2}{|l|}{External communications} & \multicolumn{5}{|l|}{RS-232C 1CH} \\
\hline & \multicolumn{2}{|l|}{Power supply for brake} & \multicolumn{5}{|l|}{DC24V +/-10\% 300mA (prepared by the customer)} \\
\hline & \multicolumn{2}{|l|}{Safety circuit} & \multicolumn{5}{|l|}{Emergency stop input, main power input ready output, emergency stop contact output (1 system: When the HT1 is used.)} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { L } \\
& \text { 응 } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{Handy terminal} & \multicolumn{5}{|l|}{HT1, HT1-D (with enable switch)} \\
\hline & \multicolumn{2}{|l|}{Support software for PC} & \multicolumn{5}{|l|}{TS-Manager} \\
\hline \(\mathscr{}\) & \multicolumn{2}{|l|}{Operating temperature / Operating humidity} & \multicolumn{5}{|l|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}, 35 \%\) to \(85 \% \mathrm{RH}\) (non-condensing)} \\
\hline \% & \multicolumn{2}{|l|}{Storage temperature / Storage humidity} & \multicolumn{5}{|l|}{\(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}, 10 \%\) to \(85 \% \mathrm{RH}\) (non-condensing)} \\
\hline 衰 & \multicolumn{2}{|l|}{Atmosphere} & \multicolumn{5}{|l|}{Indoor location not exposed to direct sunlight. No corrosive, flammable gases, oil mist, or dust particles} \\
\hline \({ }_{0}\) & \multicolumn{2}{|l|}{Anti-vibration} & \multicolumn{5}{|l|}{All XYZ directions 10 to 57 Hz unidirectional amplitude 0.075 mm 57 to \(150 \mathrm{~Hz} 9.8 \mathrm{~m} / \mathrm{s}^{2}\)} \\
\hline - & \multicolumn{2}{|l|}{Protective functions} & \multicolumn{5}{|l|}{Position detection error, power module error, temperature error, overload, overvoltage, low voltage, excessive position deviation, overcurrent, motor current error} \\
\hline \(\stackrel{1}{0}\) & \multicolumn{2}{|l|}{Protective structure} & \multicolumn{5}{|l|}{IP20} \\
\hline
\end{tabular}

TS-S2

TS-X/TS-P (105/110/205/210)

TS-X/TS-P (220)

- Install the TS-S2/TS-SH/TS-X/TS-P inside the control panel.
- Install the TS-S2/TS-SH/TS-X/TS-P on a vertical wall.
- Install the TS-S2/TS-SH/TS-X/TS-P in a well ventilated location, with space on all sides of the TS-S2/TS-SH/TS-X/ TS-P (See fig. at right.).
- Ambient temperature : 0 to \(40^{\circ} \mathrm{C}\)
- Ambient humidity \(: 35\) to \(85 \% \mathrm{RH}\) (no condensation)

ITS-S2/TS-SH

TS-X/TS-P

\section*{Cautions on TS-S2 / TS-SH}

For the RF type sensor specifications, the controllers "TS-S2" and "TS-SH" become "TS-S2S" and "TS-SHS", respectively.

TS-S2 / TS-SH (Standard specifications)
"BK" label is affixed to the front of the controller.

TS-S2S / TS-SHS (Sensor specifications)
"SENSOR" label is affixed to the front of the controller. (Be aware that "TS-S2S" is affixed to the front of the controller.)
- Regenerative unit RGT/RGU-2

Basic specifications
\begin{tabular}{l|l}
\hline Item & \multicolumn{1}{c}{ RGT } \\
\hline Model & KCA-M4107-0A (including cable supplied with unit) \\
\hline Dimensions & \(\mathrm{W} 30 \times \mathrm{H} 142 \times\) D118mm (Not including installation stay) \\
\hline Weight & 470 g \\
\hline Regenerative voltage & Approx. 380V or more \\
\hline Regenerative stop voltage & Approx. 360V or less \\
\hline Accessory & Cable for connection with controller (300mm) \\
\hline
\end{tabular}

Note. Always leave an empty space (gap of about 20 mm) between this unit and the adjacent controller.
Also, always use the dedicated cable when connecting the controller.

- Basic specifications
\begin{tabular}{l|l}
\hline Item & \multicolumn{1}{c}{ RGU-2 TS-P } \\
\hline Model & KCA-M4107-2A (including cable supplied with unit) \\
\hline Dimensions & W40 \(\times \mathrm{H} 250 \times \mathrm{D} 157 \mathrm{~mm}\) \\
\hline Weight & 0.9 kg \\
\hline Regenerative voltage & Approx. 380V or more \\
\hline Regenerative stop voltage & Approx. 360V or less \\
\hline Accessory & Cable for connection with controller (300mm) \\
\hline
\end{tabular}

Note. Always leave an empty space (gap of about 20mm) between this unit and the adjacent controller. Also, always use the dedicated cable when connecting the controller.

\section*{Data overview}

Point data and parameter data settings must be specified in order to operate a robot from a TS series controller.
Point data
- Data structure

The point data used in positioning operations includes items such as the "RUN type",
"Position", and "Speed", etc.
Up to 255 points (P1 to P255) can be registered. There are two point data setting types: "Standard setting" type that automatically defines optimal positioning simply by specifying the payload and "Custom setting" type that allows setting the speed (\(\mathrm{mm} / \mathrm{s}\)) and acceleration (\(\mathrm{m} / \mathrm{s}^{2}\)) in SI units. Select the desired setting type according to the application.

Parameter data
Parameter data is divided into the following categories: "RUN parameters", "I/O parameters", "option parameters", and "servo
\begin{tabular}{|c|c|c|c|c|c|}
\hline Data & Point data & \multicolumn{4}{|c|}{P1 to P255} \\
\hline & & 1 & RUN type & 7 & Zone (-) \\
\hline & & 2 & Position & 8 & Zone (+) \\
\hline & & 3 & Speed & 9 & Near width \\
\hline & & 4 & Accel. & 10 & Jump \\
\hline & & 5 & Decel. & 11 & Flag \\
\hline & & 6 & Push & 12 & Timer \\
\hline
\end{tabular}

Sets the point data to be used in positioning. Select the desiredsetting type ("standard setting" or "custom setting") according to the application.
(1) Standard setting

Optimum positioning is provided simply by specifying the payload.
(2) Custom setting

Speed and acceleration can be set in SI units
 parameters".

Point data
Point data item list
\begin{tabular}{r|l|l}
\hline \multicolumn{2}{|c}{} & \multicolumn{1}{c}{ P1 to P255 } \\
\hline \multicolumn{2}{|c}{ Item } & \multicolumn{1}{c}{ Description } \\
\hline 1 & RUN type & Specifies the positioning operation pattern. \\
\hline 2 & Position & \begin{tabular}{l}
Specifies the positioning target position or movement \\
amount.
\end{tabular} \\
\hline 3 & Speed & Specifies the positioning speed. \\
\hline 4 & Accel. & Specifies the positioning acceleration. \\
\hline 5 & Decel. & \begin{tabular}{l}
Specifies the positioning deceleration (as a percent- \\
age of the acceleration).
\end{tabular} \\
\hline 6 & Push & \begin{tabular}{l}
Specifies the electrical current limit value for "Push" \\
operations.
\end{tabular} \\
\hline 7 & Zone (-) & \begin{tabular}{l}
Specifies the "personal zone" output range.
\end{tabular} \\
\hline 8 & Zone (+) & \begin{tabular}{l}
Specifies the "near width" zone (distance tolerance \\
relative to target position).
\end{tabular} \\
\hline 9 & Near width \\
\hline 10 & Jump & \begin{tabular}{l}
Specifies the next movement destination, or the next merge \\
operation merge destination point No. following positioning \\
completion.
\end{tabular} \\
\hline 11 & Flag & \begin{tabular}{l}
Specifies other information related to the positioning \\
operation.
\end{tabular} \\
\hline 12 & Timer & \begin{tabular}{l}
Specifies the waiting time (delay) after positioning \\
completion.
\end{tabular} \\
\hline
\end{tabular}

\section*{"Standard setting" and "custom setting"}

There are 2 setting types for point data ("standard setting" or "custom setting"). Select the desired setting type according to the application.
The maximum number of setting points for both setting types is 255 points (P1 to P255).
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Setting Type } & \multicolumn{1}{c}{ Description } \\
\hline Standard setting & \begin{tabular}{l}
Optimum positioning is provided simply by speci- \\
fying the payload. \\
This setting type is well-suited to assembly and \\
transport applications.
\end{tabular} \\
\hline Custom setting & \begin{tabular}{l}
Allows changing the speed and acceleration in SI \\
units so the desired positioning operation can be \\
set. \\
This setting type is suited for machining and \\
inspection systems.
\end{tabular} \\
\hline
\end{tabular}

NPN type input / output wiring diagram
TS-S2/TS-SH

TS-X

TS-P

\section*{Emergency stop circuit example}

TS-S2/TS-SH (power connector and host unit connection example)

Note. Always connect a surge absorber unit to the coil on the electromagnetic contactor

TS-X/TS-P (EXT connector and host unit connection example)

Note. Always connect a surge absorber unit to the coil on the electromagnetic contactor.

Installing an external safety circuit will satisfy safety category class 4 standards. See P. 748 for more information.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{- //O Specifications} \\
\hline Item & Description \\
\hline NPN & Input 16 points, \(24 \mathrm{VDC}+/-10 \%, 5.1 \mathrm{~mA} /\) point, positive common Output 16 points, 24VDC \(+/-10 \%, 50 \mathrm{~mA} /\) point, sink type \\
\hline PNP & Input 16 points, \(24 \mathrm{VDC}+/-10 \%, 5.5 \mathrm{~mA} /\) point, minus common Output 16 points, 24VDC \(+/-10 \%, 50 \mathrm{~mA} /\) point, source type \\
\hline CC-Link & CC-Link Ver.1.10 compatible, Remote station device (1 node) \\
\hline DeviceNet \({ }^{\text {TM }}\) & DeviceNet \({ }^{\text {TM }}\) Slave 1 node \\
\hline EtherNet/IP \({ }^{\text {TM }}\) & EtherNet/IP \({ }^{\text {TM }}\) adapter (2 ports) \\
\hline PROFINET & PROFINET Slave 1 node \\
\hline
\end{tabular}

Output circuit

- PNP type I/O circuit details

\section*{Output circuit}

\title{
Accessories and part options TS-S2/TS-SH/TS-X/TS-P
}

\section*{Standard accessories}

\author{
Power connector
}

\(\qquad\)

\section*{Power connector (AC100V specifications)}

Included when 100 V model is purchased

\section*{Power connector (AC200V specifications)}

Included when 200 V model is purchased

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & LCC140 \\
\hline & & TS-X \\
\hline & & TS-P \\
\hline & & SR1-X \\
\hline Model & KAS-M5382-00 & SR1-P \\
\hline & & RCX320 \\
\hline & & RCX221 \\
\hline & & RCX222 \\
\hline & & RCX340 \\
\hline
\end{tabular}

\section*{EXT connector}

For braking power and safety circuit connections.

Dummy connector

Model KCA-M5163-00

\section*{Absolute battery}
\begin{tabular}{l|l|l}
\multicolumn{3}{|c}{ Absolute battery basic specifications } \\
\hline \multicolumn{1}{|c|}{ Item } & For TS-X & For TS-SH \\
\hline Battery type & Lithium metallic battery \\
\hline Battery capacity & \(3.6 \mathrm{~V} / 1,650 \mathrm{mAn}\) & \(3.6 \mathrm{~V} / 2,700 \mathrm{mAh}\) \\
\hline Data holding time & \multicolumn{1}{l}{\begin{tabular}{l}
About 1 year \\
(in state with no power applied)
\end{tabular}} \\
\hline Dimensions & \(\phi 18 \times\) L60mm & \(\phi 17 \times\) L53mm \\
\hline Weight & 24 g & 21 g \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & KCA-M53G0-10 (For TS-X) & \\
\hline & KCA-M53G0-02 (For TS-SH) & TS-X \\
\hline \multirow[t]{4}{*}{Note. Th} & solute battery is subject to wear and s replacement. & TS-SH \\
\hline & e occurs with the memory then remain- & RCX320 \\
\hline & \begin{tabular}{l}
ery life is low so replace the absolute \\
. The battery replacement period
\end{tabular} & RCX340 \\
\hline & ds on usage conditions. But generally you replace the battery after about 1 year g the total time after connecting to the er and left without turning on the power. & \\
\hline
\end{tabular}

\section*{CC-Link connector (CC-Link specifications)}

Included when CC-Link model is purchased

\section*{Data cables}

Communication cable for TS-Manager. Select from USB cable or D-sub cable.
\(\underbrace{}_{\text {USB }}\)

Daisy chain and gateway connection cable

CC-Link termination connector (CC-Link specifications)

\begin{tabular}{l|c|c|}
\hline & TS-S2 \\
\hline Model & KCA-M4874-00 & TS-SH \\
\hline & TS-X \\
\hline
\end{tabular}

TS-Monitor (LCD monitor)
P 102
\begin{tabular}{l|l|l|l|}
\hline \multirow{2}{*}{ Model } & For TS-X & KCA-M5119-00 & \\
& TS-X \\
& For TS-P & KCA-M5119-10 & TS-P \\
\hline
\end{tabular}

DIN rail mounting bracket (This bracket is provided in TS-SH as standard equipment.)

\begin{tabular}{l|l}
\hline \multirow{2}{*}{ Model } & For TS-S2 \\
\cline { 2 - 2 } & KCC-M499A-00
\end{tabular}\(\quad\) TS-S2

\section*{TS－SD}
－CE compliance Only for pulse train control Dedicated for TRANSERVO
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Basic specifications} \\
\hline & Item & TS－S \\
\hline \multicolumn{2}{|r|}{Number of controllable axes} & Single－axis \\
\hline \multirow[t]{2}{*}{} & Controllable robots & TRANSERVO series \({ }^{\text {N }}\) \\
\hline & Current consumption & 3 A （Rating）4．5A（Max．） \\
\hline \multirow[t]{2}{*}{} & Dimensions & W \(30 \times \mathrm{H} 162 \times\) D82mm \\
\hline & Weight & Approx．0．2kg \\
\hline \multirow[t]{2}{*}{} & Input power Control power supply & DC24V＋／－10\％ \\
\hline & supply Main power supply & DC24V＋／－10\％ \\
\hline & Operating method & Pulse train control \\
\hline \multirow[t]{4}{*}{} & Control method & Closed loop vector control method \\
\hline & Position detection method & Resolver \\
\hline & Resolution & 20480 Prev， 4096 Prev \\
\hline & Origin search method & Incremental \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \bar{訁} \\
& \text { 言 } \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{Pulse train command input} & Line driver method ： 500 kpps or less \\
\hline & & Open collector method ： 100 kpps or less（DC5 to \(24 \mathrm{~V}+/-\) 10\％） \\
\hline & Input & Servo ON（SERVO），reset（RESET）origin search（ORG） \\
\hline 怖 & Output & Servo status（SRV－S），alarm（／ALM），positioning completion （IN－POS），return－to－origin end status（ORG－S） \\
\hline & External communications & RS－322C 1CH \\
\hline 言 & Support software for PC & TS－Manager \\
\hline & Operating temperature & \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) \\
\hline & Storage temperature & \(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\) \\
\hline & Operating humidity & \(35 \%\) to 85\％RH（non－condensing） \\
\hline & Storage humidity & 10\％to 85\％RH（non－condensing） \\
\hline & Atmosphere & Indoor location not exposed to direct sunlight．No corrosive flammable gases，oil mist，or dust particles \\
\hline & Anti－vibration & All XYZ directions 10 to 57 Hz unidirectional amplitude 0.075 mm 57 to \(150 \mathrm{~Hz} 9.8 \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline \％ & Protective functions & Position detection error，overheat，overload，overvoltage， low voltage，position deviation，control power voltage ar overcurrent，motor current error，CPU error，motor ine
disconnection，command speed over，pulse frequency disconnection，command speed over，pulse fequency ove \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Contolelse crobed & TRANSERVO \\
\hline cE maxing & \(\bigcirc\) Feid neworts \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Model Overview} \\
\hline & Name & TS-SD \\
\hline \multicolumn{2}{|r|}{Controllable robot} & Dedicated compact single-axis TRANSERVO \\
\hline \multirow[b]{2}{*}{Input power} & Control power supply & \multirow[b]{2}{*}{DC24V +/-10\% maximum} \\
\hline & Main power supply & \\
\hline \multicolumn{2}{|r|}{Operating method} & Pulse train control \\
\hline \multicolumn{2}{|l|}{Maximum number of controllable axes} & Single-axis \\
\hline \multicolumn{2}{|r|}{Origin search method} & Incremental \\
\hline
\end{tabular}

\section*{Ordering method}

\section*{- Controller only}

\section*{Robot + Controller}

Note. I/O cable (1 meter) comes supplied with unit.

\section*{Part names}

\section*{Dimensions}

\section*{Installation conditions}
- Install the TS-SD inside the control panel.
- Install the TS-SD on a vertical wall.
- Install the TS-SD in a well ventilated location, with space on all sides of the TS-SD (See fig. at right.).
- Ambient temperature: 0 to \(40^{\circ} \mathrm{C}\)
- Ambient humidity \(: 35\) to \(85 \%\) RH (no condensation)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{- I/O signal list} \\
\hline Type & Signal Name & Open collector & Line driver & Description \\
\hline \multirow{8}{*}{Inputs} & OPC & Open collector power supply input & (Connection prohibited. \({ }^{\text {Nole } 2}\)) & Input the power supply for the open collector. (DC5 to \(24 \mathrm{~V}+1 / 10 \%\)) \\
\hline & PULS1 & (Connection prohibited. \({ }^{\text {Note } 1}\)) & Command pulse input (+) & \multirow[t]{2}{*}{Input terminal for pulse train input commands. Select from 3 command forms by changing parameters.} \\
\hline & DIR1 & (Connection prohibited. \({ }^{\text {Note } 1}\)) & Command direction input (+) & \\
\hline & PULS2 & Command pulse input & Command pulse input (-) & \multirow[t]{2}{*}{\begin{tabular}{l}
- Phase A/Phase B input \\
- Pulse/Sign input \\
- CW/CCW input
\end{tabular}} \\
\hline & DIR2 & Command direction input & Command direction input (-) & \\
\hline & ORG & Return-to-origin & \(\leftarrow\) & Starts return-to-origin when ON and stops it when OFF. \\
\hline & RESET & Reset & \(\leftarrow\) & Alarm reset \\
\hline & SREVO & Servo ON & \(\leftarrow\) & ON: servo on; OFF: servo off. \\
\hline \multirow{4}{*}{Outputs} & ORG-S & Return-to-origin end status & \(\leftarrow\) & ON at return-to-origin end. \\
\hline & IN-POS & Positioning completion & \(\leftarrow\) & ON when accumulated pulse in deviation counter are within specified value range. \\
\hline & IALM & Alarm & \(\leftarrow\) & ON when normal. OFF when alarm occurs. \\
\hline & SRV-S & Servo status & \(\leftarrow\) & ON when servo is on. \\
\hline
\end{tabular}

Note 1. When using the open collector specifications, do not connect any signal to the PULS1 and DIR1 terminals. Doing so may cause the driver to malfunction or breakdown.
Note 2. When using the line driver specifications, do not connect any signal to the OPC terminal. Doing so may cause the driver to malfunction or breakdown.

\section*{Daisy chain function}

Connecting two or more TS series controllers and drivers in a daisy chain allows editing data on any one unit from a PC.
- Up to 16 units connectable
- Requires daisy chain coupler cables.

\title{
Accessories and part options TS－SD
}

\section*{Standard accessories}

Power connector

\section*{Options}

\section*{Support software TS－Manager}

TS－Manager environment
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows 2000，XP（32bit），Vista，7，8／8．1， \\
10 （Supported version：V．1．4．5 or later）
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Exceeding the environment recommended by the \\
OS being used
\end{tabular} \\
\hline Memory & \begin{tabular}{l}
Exceeding the environment recommended by the \\
OS being used
\end{tabular} \\
\hline Hard disk & \begin{tabular}{l}
Vacant capacity of more than 20MB in the installation \\
destination drive
\end{tabular} \\
\hline Communication port & Serial（RS－232C），USB \\
\hline Applicable controllers & TS series \\
\hline
\end{tabular}

Note．Windows is the registered trademark of US Microsoft Corporation in U．S．A．and other countries．

\section*{Data cables}

Communication cable for TS－Manager． Select from USB cable or D－sub cable．

\section*{Daisy chain and gateway connection cable}

\section*{（ \()\)}
\begin{tabular}{|c|c|c|}
\hline & & TS－S2 \\
\hline & & TS－SH \\
\hline Model & KCA－M532L－00（300mm） & TS－X \\
\hline & & TS－P \\
\hline & & TS－SD \\
\hline
\end{tabular}

\title{
RDV-X/RDV-P
}

Only for pulse train control

These are high-performance robot drivers for the FLIP-X series and PHASER series which support pulse train command input.

Basic specifications
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & \multicolumn{3}{|c|}{RDV-X} & \multicolumn{4}{|c|}{RDV-P} \\
\hline \multicolumn{3}{|l|}{Driver model} & RDV-X205 & RDV-X210 & RDV-X220 & RDV-P205 & RDV-P210 & RDV-P220 & RDV-P225 \\
\hline \multicolumn{3}{|l|}{Number of controllable axes} & \multicolumn{7}{|l|}{Single-axis} \\
\hline \multicolumn{3}{|l|}{Controllable robots} & \multicolumn{3}{|l|}{Single-axis robot FLIP-X} & \multicolumn{4}{|l|}{Linear motor single-axis robot PHASER} \\
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{Capacity of the connected motor} & \multicolumn{2}{|l|}{200 V 100 W or less 200 V 200 W or less} & 200 V 600 W or less & 200V 100W or less & 200V 200W or less & 200V 400W or less & 200V 750W or less \\
\hline & \multicolumn{2}{|l|}{Maximum power consumption} & 0.3 kVA & 0.5 kVA & 0.9 kVA & 0.3kVA & 0.5 kVA & 0.9 kVA & 1.3kVA \\
\hline & \multicolumn{2}{|l|}{Dimensions} & \multicolumn{2}{|l|}{W40×H160×D140mm} & W40xH160xD170mm & W40×H160×D14 & 40 mm & W40xH160xD170mm & W55xH160×D170mm \\
\hline & \multicolumn{2}{|l|}{Weight} & \multicolumn{2}{|l|}{0.7 kg} & 1.1 kg & 0.7 kg & & 1.1 kg & 1.2 kg \\
\hline & \multirow[t]{2}{*}{Input power supply} & Control power supply & \multicolumn{7}{|l|}{Single phase 200 to \(230 \mathrm{~V}+10 \%\) to \(-15 \%, 50 / 60 \mathrm{~Hz}+/-5 \%\)} \\
\hline & & Main power supply & \multicolumn{7}{|l|}{Single phase / 3-phase 200 to \(230 \mathrm{~V}+10 \%\) to \(-15 \%, 50 / 60 \mathrm{~Hz}+/-5 \%\)} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0 \\
& 0 \\
& .0 n \\
& x
\end{aligned}
\]} & \multicolumn{2}{|l|}{Position detection method} & \multicolumn{3}{|l|}{Resolver} & \multicolumn{4}{|l|}{Magnetic linear scale} \\
\hline & \multicolumn{2}{|l|}{Control system} & \multicolumn{7}{|l|}{Sine-wave PWM (pulse width modulation)} \\
\hline & \multicolumn{2}{|l|}{Control mode} & \multicolumn{7}{|l|}{Position control} \\
\hline & \multicolumn{2}{|l|}{Maximum speed \({ }^{\text {Note } 1}\)} & \multicolumn{3}{|l|}{5000rpm} & \multicolumn{4}{|l|}{\(3.0 \mathrm{~m} / \mathrm{s}\)} \\
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{Position command input} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Line driver signal (2M pps or less) \\
(1) Forward pulse + reverse pulse \\
(2) Sign pulse + Command pulse \\
(3) 90 -degree phase difference 2-phase pulse command \\
One of (1) to (3) is selectable.
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Input signal} & \multicolumn{7}{|l|}{\begin{tabular}{l}
24 V DC contact point signal input (usable for sink/source) (24V DC power supply incorporated) \\
(1) Servo ON \\
(2) Alarm reset \\
(3) Torque limit \\
(4) Forward overtravel \\
(5) Reverse overtravel \\
(6) Origin sensor Note 3 \\
(7) Return-to-origin \\
(8) Pulse train input enable \\
(9) Deviation counter clear
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Output signal} & \multicolumn{7}{|l|}{\begin{tabular}{l}
Open collector signal output (usable for sink/source) \\
(1) Servo ready \\
(2) Alarm \\
(3) Positioning completed \\
(4) Return-to-origin complete
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Relay output signal} & \multicolumn{3}{|l|}{Braking cancel signal (24 V 375 mA)} & \multicolumn{4}{|l|}{-} \\
\hline & \multicolumn{2}{|l|}{Position output} & \multicolumn{7}{|l|}{Phase A, B signal output: Line driver signal output Phase Z signal output: Line driver signal output / open collector signal output \(\mathrm{N} / 8192\) (\(\mathrm{N}=1\) to 8191), \(1 / \mathrm{N}(\mathrm{N}=1\) to 64) or \(2 / \mathrm{N}(\mathrm{N}=3\) to 64\()\)} \\
\hline & \multicolumn{2}{|l|}{Monitor output} & \multicolumn{7}{|l|}{Selectable items: \(2 \mathrm{ch}, 0\) to \(+/-5 \mathrm{~V}\) voltage output, speed detection value, torque command, etc.} \\
\hline \multirow{6}{*}{} & \multicolumn{2}{|l|}{Display} & \multicolumn{7}{|l|}{5-digit number indicator, Control power LED} \\
\hline & \multicolumn{2}{|l|}{External operator} & \multicolumn{7}{|l|}{\begin{tabular}{l}
PC software "RDV-Manager" monitoring function, parameter setting function, operation tracing function, trial operation function, etc. \\
USB2.0 is used. Windows Vista / 7 / 8 / 8.1 personal computer can be connected.
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Regenerative braking circuit} & \multicolumn{7}{|l|}{Included (but without braking resistor)} \\
\hline & \multicolumn{2}{|l|}{Dynamic brake \({ }^{\text {Note } 4}\)} & \multicolumn{6}{|l|}{Included (Operation conditions can be set.) (No DB resistor, connection: 2-phase short circuit)} & Included (Operation conditions can be set.) (with DB resistor, connection: 2-phase short circuit) \\
\hline & \multicolumn{2}{|l|}{Protective function \({ }^{\text {Note } 2}\)} & \multicolumn{7}{|l|}{Semi-enclosure type (IP20)} \\
\hline & \multicolumn{2}{|l|}{Protective functions} & \multicolumn{7}{|l|}{Over-current, overload, braking resistor overload, main circuit overvoltage, memory error, etc.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Item & \multicolumn{3}{|c|}{RDV-X} & \multicolumn{4}{|c|}{RDV-P} \\
\hline \multicolumn{2}{|l|}{Driver model} & RDV-X205 & RDV-X210 & RDV-X220 & RDV-P205 & RDV-P210 & RDV-P220 & RDV-P225 \\
\hline 0
0
0
0
0 & Support software for PC & \multicolumn{7}{|l|}{RDV-Manager} \\
\hline \multirow[t]{4}{*}{} & Operating temperature & \multicolumn{7}{|l|}{\(0^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\)} \\
\hline & Storage temperature \({ }^{\text {Note } 5}\) & \multicolumn{7}{|l|}{\(-10^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} \\
\hline & Operating humidity & \multicolumn{7}{|l|}{20\% to 90\%RH (non-condensing)} \\
\hline & Vibration \({ }^{\text {Note } 6}\) & \multicolumn{7}{|l|}{\(5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}) 10\) to 55 Hz} \\
\hline
\end{tabular}

Note 1. These data are parameters and calculation range in controlling the robot driver and do not indicate the capacity of the robot at the maximum speed.
Note 2. JIS C 0920 (IEC60529) is used as the base for the protection method.
Note 3. GXL-8FB (made by SUNX) or FL7M-1P5B6-Z (made by YAMATAKE) is used for the origin sensor. The power consumption of the origin sensor is 15 mA or less (at open output) and only 1 unit of the origin sensor is connected to each robot driver. (future specification)
Note 4. Use the dynamic brake for emergency stop. Note that the braking may be less effective depending on the robot model.
Note 5. The storage temperature is the temperature in the non-energized state including transportation.
Note 6. The JIS C 60068-2-6:2010 (IEC 60068-2-6:2007) test method is uses as the base.
Part names

Regenerative unit RBR1 / RBR2 basic specifications
\begin{tabular}{|c|c|c|c|}
\hline Item & RBR1 & RBR2 & \multirow{3}{*}{Note. The internal thermal contact point capacity is AC250V, 2A max. ON (b contact point) in the normal state.} \\
\hline Model & KBH-M5850-00 & KBH-M5850-10 & \\
\hline Capacity type & 120W & 200W & \\
\hline Resistance value & \(100 \Omega\) & 100 2 & e. The built-in thermal fuse prevents an erroneous use. (not resettable) \\
\hline Permissible braking frequency & 2.5\% & 7.5\% & Note. When the thermal relay has worked, reduce the regeneration energy by either \\
\hline Permissible continuous braking time & 12 sec . & 30 sec . & ote. With the regenerative unit, specifications and whether or not required m \\
\hline Weight & 0.27 kg & 0.97kg & vary depending on each robot and its operation conditions. \\
\hline
\end{tabular}

\section*{Installation conditions}
- Install the RDV-X/RDV-P on a vertical metal wall.
- Install the RDV-X/RDV-P in a well ventilated location, with space on all sides of the RDV-X/RDV-P.
- Ambient temperature: 0 to \(55^{\circ} \mathrm{C}\)
- Ambient humidity: 20 to \(90 \%\) RH (no condensation)
- When placing two or more robot drivers in one operating panel, install them as shown in the figure below.

Input / output signal connection diagram

* The above diagram shows a sink type output module using a power supply for internal input.
\begin{tabular}{ll|l|l}
List Of RDV-P / RDV \\
\hline & R-X terminal functions
\end{tabular}

Note 1. B24, BO and BK are available only with RDV-X, and not with RDV-P.

\section*{Accessories and part options}

RDV-X/RDV-P

Standard accessories

I/O connector (no brake wiring)

I/O connector (with brake wiring)

\begin{tabular}{l|l}
\hline Model & KBH-M4421-00
\end{tabular}
RDV-XPower supply connector

\section*{Options}

Support software RDV-Manager

16694

\begin{tabular}{l|l}
\hline Model & KEF-M4966-00 \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline RDV-X \\
\hline RDV-P \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{1}{c}{ Environment } & \\
\hline OS & Windows Vista SP1 (32bit) Note 1 \(, 7,8 / 8.1\) \\
\hline CPU & Pentium4 1.8GHz or more (Recommend) \\
\hline Memory & 1GB or more \\
\hline Hard disk & 1GB of available space required on installation drive. \\
\hline Disk operation & USB \\
\hline Applicable & RDV series \\
\begin{tabular}{l}
controllers
\end{tabular} \\
\begin{tabular}{l}
Note 1. SP1 (service pack 1) or higher. \\
Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.
\end{tabular} \\
\hline
\end{tabular}

\section*{Communication cable}

Communication cable to connect PC and a controller.

\begin{tabular}{l|l|l|}
\hline Model & KEF-M538F-01 & RDV-X \\
\hline
\end{tabular}

\section*{ERCD}

\section*{Dedicated for T4L / T5L / C4L / C5L}

\section*{- Ordering method}

Note 1. Switching between the normal mode and pulse train mode is done by use of the parameter.

Part names

Dimensions

Installation conditions
- Install the ERCD inside the control panel.
- Install the ERCD on a vertical wall.
- Install the ERCD in a well ventilated location, with space on all sides of the ERCD (See fig. below).
- Ambient temperature : 0 to \(40^{\circ} \mathrm{C}\)
- Ambient humidity \(: 35\) to \(85 \% \mathrm{RH}\) (no condensation)

\section*{\(\square\) Connector I／O signals}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{反高裳} & Terminal number & Signal name & Function \\
\hline & A－1 & ABS－PT & Move the point from the origin position \\
\hline & B－1 & INC－PT & Move the point from the current position \\
\hline \multirow{4}{*}{\[
2
\]} & A－2 & AUTO－R & Start automatic operation \\
\hline & B－2 & STEP－R & Start step operation \\
\hline & A－3 & ORG－S & Return to the origin \\
\hline & B－3 & RESET & Reset \\
\hline \multirow[t]{4}{*}{} & A－4 & SERVO & Return to servo on \\
\hline & B－4 & LOCK & Interlock \\
\hline & A－5 & DI 0 & General input 0 \\
\hline & B－5 & DI 1 & General input 1 \\
\hline \multirow[t]{4}{*}{} & A－6 & DI 2 & General input 2 \\
\hline & B－6 & DI 3 & General input 3 \\
\hline & A－7 & DI 4 & General input 4 \\
\hline & B－7 & DI 5 & General input 5 \\
\hline \multirow[b]{4}{*}{픈} & A－8 & （SVCE） & Service mode input \\
\hline & B－8 & DO 5 & General output 5 \\
\hline & A－9 & DO 0 & General output 0 \\
\hline & B－9 & DO 1 & General output 1 \\
\hline \multirow[b]{5}{*}{} & A－10 & DO 2 & General output 2 \\
\hline & B－10 & DO 3 & General output 3 \\
\hline & A－11 & DO 4 & General output 4 \\
\hline & B－11 & END & End normal execution \\
\hline & A－12 & BUSY & Executing the command \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \frac{3}{2} \\
& \frac{0}{6} \\
& \frac{0}{6}
\end{aligned}
\]} & B－12 & READY & Ready for operation \\
\hline & A－13 & FG & Frame ground \\
\hline & B－13 & FG & Frame ground \\
\hline & A－14 & GND & Signal ground \\
\hline \multirow{4}{*}{} & B－14 & GND & Signal ground \\
\hline & A－15 & NC & Reserved（use inhibited） \\
\hline & B－15 & NC & Reserved（use inhibited） \\
\hline & A－16 & NC & Reserved（use inhibited） \\
\hline \multirow{5}{*}{} & B－16 & NC & Reserved（use inhibited） \\
\hline & A－17 & PA＋ & Feedback pulse output \\
\hline & B－17 & PA－ & Feedback pulse output \\
\hline & A－18 & PB＋ & Feedback pulse output \\
\hline & B－18 & PB－ & Feedback pulse output \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& ? \\
& \frac{?}{2}
\end{aligned}
\]} & A－19 & PZ＋ & Feedback pulse output \\
\hline & B－19 & PZ－ & Feedback pulse output \\
\hline & A－20 & NC & Reserved（use inhibited） \\
\hline & B－20 & NC & Reserved（use inhibited） \\
\hline
\end{tabular}

Robot Language Table
\begin{tabular}{c|l}
\hline Command & \multicolumn{1}{|c}{ Description } \\
\hline MOVA & Moves to a point data position． \\
\hline MOVI & Moves from current position by amount of point data． \\
\hline MOVF & Moves until a specified DI input is received． \\
\hline JMP & Jumps to a specified label in the specified program． \\
\hline JMPF & \begin{tabular}{l}
Jumps to a specified label in a specified program according \\
to the input condition．
\end{tabular} \\
\hline JMPB & \begin{tabular}{l}
Jumps to a specified label when general－purpose input or \\
memory input is in the specified state．
\end{tabular} \\
\hline L & \begin{tabular}{l}
Defines the jump destination for a JMP or JMPF statement， \\
etc．
\end{tabular} \\
\hline CALL & Runs another program． \\
\hline DO & Turns general－purpose output or memory output on or off． \\
\hline WAIT & \begin{tabular}{l}
Waits until general－purpose input or memory input is in the \\
specified state．
\end{tabular} \\
\hline TIMR & \begin{tabular}{l}
Waits the specified amount of time before advancing to the \\
next step．
\end{tabular} \\
\hline P & Defines point variable． \\
\hline P＋ & Adds 1 to point variable． \\
\hline P－ & Subtracts 1 from point variable． \\
\hline SRVO & Turns servo on or off． \\
\hline STOP & Temporarily stops program execution． \\
\hline ORGN & Performs return－to－origin． \\
\hline TON & Runs a specified task． \\
\hline TOFF & Stops a specified task． \\
\hline
\end{tabular}

\section*{\(\square\) Input / output wiring diagram}

\(\square\) Pulse train input / output wiring diagram

\(\square\) Pulse train input form
\begin{tabular}{|c|c|c|c|}
\hline Logic & Command pulse form & CW direction & CCW direction \\
\hline \multirow{3}{*}{Positive logic} & Phase A / phase B & \[
\begin{aligned}
& \square \square \square \\
& \square \square \square
\end{aligned}
\] & \[
\begin{aligned}
& \square \square \square \\
& \square \square \square
\end{aligned}
\] \\
\hline & Pulse / code & \[
\stackrel{\square \square}{\boxed{\square}}
\] & \[
\square \square \square
\] \\
\hline & CW / CCW & \[
\stackrel{\square \square}{\square}
\] & \[
\sqrt{\square}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Logic & Command pulse form & CW direction & CCW direction \\
\hline Positive logic & Phase A / phase B & \[
\begin{aligned}
& \boxed{\square} \\
& \square \square
\end{aligned}
\] & \[
\begin{aligned}
& \square \square \square \\
& \square \square \square
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{Negative logic} & Pulse / code & \[
\square \square \square
\] & \[
\stackrel{\square \square}{\sqrt{\square}}
\] \\
\hline & CW / CCW & \[
\boxed{\square} \square
\] & \[
\sqrt{\square \boxed{\square}}
\] \\
\hline
\end{tabular}

Accessories and part options ERCD

Standard accessories

24V power connector (for EXT. CN)

I/O flat cable (CN1): 1m
Connects the standard parallel I/O to an external device. The end of the cable is cut and left as it is.

> \begin{tabular}{l|l} \hline Model & KAU-M4421-00 \\ \hline \end{tabular}

ERCD

\section*{I/O twisted-pair cable (CN2): 2m}

Connects the parallel I/O to an external device The end of the cable is cut and left as it is. Model KAU-M4421-10
Note. Select CN2 when using the pulse train input equipment.

\section*{Options}

\section*{Support software for PC RGGO POPCOM \({ }^{+}\)}

POPCOM + is a simple to use application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

\section*{Environment}
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows XP (32bit), Vista, 7, 8 / 8.1, \\
10 (Supported version: V.2.1.1 or later)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested requirements \\
for the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 50MB of available space required on installation drive. \\
\hline Disk operation & RS-232C \\
\hline \begin{tabular}{l}
Applicable \\
controllers
\end{tabular} & SRCX to SR1, DRCX, TRCX, ERCX, ERCD, LCC140 \({ }^{\text {Note 1 }}\) \\
\hline
\end{tabular}

Note 1. LCC140 is applicable to Ver. 2.1.1 or later
Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries

\section*{Data cables}

Communication cable for POPCOM \({ }^{+}\)
Select from USB cable or D-sub cable.
\begin{tabular}{l|l|l|l|}
\hline & USB type (5m) & KBG-M538F-00 & \\
Model & LCC140 \\
\cline { 2 - 3 } & \begin{tabular}{l}
D-Sub type \\
9pin-9pin (5m)
\end{tabular} & KAS-M538F-10 & \\
\hline
\end{tabular}

\title{
SR1-X/SR1-P
}

Robot controller with advanced functions

\section*{Basic specifications}

\begin{tabular}{|c|c|c|}
\hline Item & SR1-X & SR1-P \\
\hline . & HPB, HPB-D (with enable switch) & \\
\hline & POPCOM \({ }^{+}\) & \\
\hline \% Operating temperature & \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) & \\
\hline Storage temperature & \(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\) & \\
\hline " & \(35 \%\) to 85\%RH (non-condensing) & \\
\hline \% Absolute backup battery & Lithium metallic battery & - \\
\hline \% Absolute data backup period & 1 year (in state with no power applied) & - \\
\hline \(\stackrel{\text { © }}{ }\) Noise immunity & IEC61000-4-4 Level 3 & \\
\hline
\end{tabular}

\section*{Part names}

Note. Cable for monitor I/O (option) is required when using this connector.

\section*{Driver / regenerative unit selection table}

SR1-X
\begin{tabular}{|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{26}{|c|}{FLIP-X} \\
\hline & & & \[
\begin{aligned}
& \mathrm{T} 4 \mathrm{LH} / \\
& \text { C4LH }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{T} 5 \mathrm{LH} / \\
\mathbf{C} 5 \mathrm{LH}
\end{gathered}
\] & \[
\begin{aligned}
& \text { T6LI } \\
& \text { C6L }
\end{aligned}
\] & T9 & T9H & \[
\begin{aligned}
& \mathrm{F} 81 \\
& \mathrm{C} 8
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { F8LI } \\
\text { C8L }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{F} 8 \mathrm{LH} / \\
& \text { C8LH }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { F10 } \\
\text { C10 } \\
\hline
\end{array}
\] & F10H & \[
\begin{aligned}
& \text { F14I } \\
& \text { C14 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} 14 \mathrm{H} / \\
& \mathrm{C} 14 \mathrm{H}
\end{aligned}
\] & GF14XL & \[
\begin{array}{|l|l|}
\hline \text { F171 } \\
\text { C17 } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { F17LI } \\
\text { C17L }
\end{array}
\] & GF17XL & \[
\begin{array}{|l|}
\hline \mathbf{F} 201 \\
\mathbf{C 2 0} \\
\hline
\end{array}
\] & F20N & \[
\begin{gathered}
\text { N15/ } \\
\text { N15D }
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline \text { N18I } \\
\text { N18D }
\end{array}
\] & B10 & B14 & B14H & R5 & R10 & R20 \\
\hline \multirow{3}{*}{Driver selection} & \multirow{3}{*}{SR1-X} & 05 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & & \(\bigcirc\) & & & & & & & & & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \\
\hline & & 10 & & & & & \(\bigcirc\) & & & & & \(\bigcirc\) & & \(\bigcirc\) & \(\bigcirc\) & & & & & & & & & & & & & \(\bigcirc\) \\
\hline & & 20 & & & & & & & & & & & & & & \(\bigcirc\) & & & & & & \\
\hline \multirow[t]{2}{*}{Regenerative unit} & \multicolumn{2}{|l|}{No entry (None)} & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & (1) & (2) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & (1) & (2) & (1) & (2) & \(\bigcirc\) & (3) & & (6) & (3) & (4) & & & \(\bigcirc\) & \(\bigcirc\) & (5) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline & R (RG1 & & & & & (1) & (2) & & & & (1) & (2) & (1) & (2) & & (3) & - & (6) & (3) & (4) & \(\bigcirc\) & \(\bigcirc\) & & & (5) & & & \\
\hline
\end{tabular}
(1) Regenerative unit is needed if using in a perpendicular position and movement stroke (4) Regenerative unit is needed if using at maximum speeds exceeding 1000 mm per second. is 700 mm or more.
(2) Regenerative unit is needed if using in a perpendicular position.
(5) Regenerative unit is needed if using at maximum speeds exceeding 1250 mm per second.
(3) Regenerative unit is needed if using in a perpendicular position, using at maximum
speeds exceeding 1000 mm per second, or if using high leads (40).

\section*{SR1-P}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|c|}{PHASER} \\
\hline & & \[
\begin{aligned}
& \text { MF71 } \\
& \text { MF7D }
\end{aligned}
\] & \[
\begin{array}{|c|c|}
\hline \text { MF15/ } \\
\text { MF15D } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { MF20/ } \\
& \text { MF20D }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { MF30/ } \\
\text { MF30D } \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { MF75/ } \\
\text { MF75D }
\end{array}
\] \\
\hline \multirow{3}{*}{Driver selection} & \multirow{3}{*}{SR1-P 10} & & & & & \\
\hline & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & \\
\hline & & & & & - & - \\
\hline \multirow{3}{*}{Regenerative unit} & No entry (None) & \(\bullet\) & - & & & \\
\hline & R (RG1) & & & \(\bullet\) & \(\bullet\) & \\
\hline & R (RGU-2) & & & & & - \\
\hline
\end{tabular}

Dimensions

SR1-X/SR1-P 05-10

\(\cdot \square\)

SR1-X/SR1-P 20

\section*{Regenerative unit RG1 / RGU-2}

\section*{Basic specifications}
\begin{tabular}{l|l}
\hline Item & \multicolumn{1}{c}{ RG1 } \\
\hline Model & KBG-M4107-0A (Including accessory) \\
\hline Dimensions & W40 \(\times \mathrm{H} 210 \times\) D146mm \\
\hline Weight & 0.8 kg \\
\hline Regenerative voltage & Approx. 380V or more \\
\hline Regenerative stop voltage & Approx. 360V or less \\
\hline Accessory & Cable for connection with controller (300mm) \\
\hline
\end{tabular}

Note. Always leave an empty space (gap of about 20 mm) between this unit and the adjacent controller. Also, always use the dedicated cable when connecting the controller.

\section*{Basic specifications}
\begin{tabular}{l|l}
\hline Item & \multicolumn{1}{c}{ RGU-2 } \\
\hline Model & KS5-M4107-0A (Including accessory) \\
\hline Dimensions & W40 \(\times \mathrm{H} 250 \times\) D157mm \\
\hline Weight & 0.9 kg \\
\hline Regenerative voltage & Approx. 380V or more \\
\hline Regenerative stop voltage & Approx. 360V or less \\
\hline Accessory & Cable for connection with controller (300mm) \\
\hline
\end{tabular}

Note. Always leave an empty space (gap of about 20 mm) between this unit and the adjacent controller. Also, always use the dedicated cable when connecting the controller.

\section*{Installation conditions}
－Install the SR1－X／SR1－P inside the control panel．
－Install the SR1－X／SR1－P on a vertical wall．
－Install the SR1－X／SR1－P in a well ventilated location，with space on all sides of the SR1－X／SR1－P（See fig．at right．）．
－Ambient temperature \(: 0\) to \(40^{\circ} \mathrm{C}\)
－Ambient humidity \(: 35\) to \(85 \%\) RH（no condensation）

［NPN，PNP type］Input／Output list
\begin{tabular}{l|l|l}
\hline \begin{tabular}{c}
Terminal \\
number
\end{tabular} & Signal name & \multicolumn{1}{c}{\(\quad\) Function } \\
\hline 1 & DI．＋COM & Input supply＋common \\
\hline 2 & SERVO & Return to servo on \\
\hline 3 & INC－PT & Relative point transfer \\
\hline 4 & ABS－PT & Absolute point transfer \\
\hline 5 & STEP－R & Step run \\
\hline 6 & DI 0 & General input 0 \\
\hline 7 & DI 1 & General input 1 \\
\hline 8 & DI 2 & General input 2 \\
\hline 9 & DI 3 & General input 3 \\
\hline 10 & DI 4 & General input 4 \\
\hline 11 & DI 5 & General input 5 \\
\hline 12 & DI 6 & General input 6 \\
\hline 13 & DI 7 & General input 7 \\
\hline 14 & DO．＋COM & Output supply＋common \\
\hline 15 & DO．＋COM & Output supply＋common \\
\hline 16 & END & Execution result（Execution complete） \\
\hline 17 & BUSY & Executing the command \\
\hline 18 & DO 0 & General output 0 \\
\hline 19 & DO 1 & General output 1 \\
\hline 20 & DO 2 & General output 2 \\
\hline 21 & DO 3 & General output 3 \\
\hline 22 & DO 4 & General output 4 \\
\hline 23 & DO 5 & General output 5 \\
\hline 24 & DO 6 & General output 6 \\
\hline 25 & DO 7 & General output 7 \\
\hline
\end{tabular}

\section*{\(\square\) NPN type input／output circuit}

\begin{tabular}{l|l|l}
\hline \begin{tabular}{c}
Terminal \\
number
\end{tabular} & Signal name & \\
\hline 26 & DI．－COM & Input supply－common \\
\hline 27 & AUTO－R & Auto run \\
\hline 28 & RESET & Reset \\
\hline 29 & ORG－S & Return to the origin \\
\hline 30 & ALMRST & Alarm reset \\
\hline 31 & DI 8 & General input 8 \\
\hline 32 & DI 9 & General input 9 \\
\hline 33 & DI 10 & General input 10 \\
\hline 34 & DI 11 & General input 11 \\
\hline 35 & DI 12 & General input 12 \\
\hline 36 & DI 13 & General input 13 \\
\hline 37 & DI 14 & General input 14 \\
\hline 38 & DI 15 & General input 15 \\
\hline 39 & DO．－COM & Output supply－common \\
\hline 40 & DO．－COM & Output supply－common \\
\hline 41 & READY & Available to operate（Ready for operation） \\
\hline 42 & UTL & Utility output \\
\hline 43 & DO 8 & General output 8 \\
\hline 44 & DO 9 & General output 9 \\
\hline 45 & DO 10 & General output 10 \\
\hline 46 & DO 11 & General output 11 \\
\hline 47 & DO 12 & General output 12 \\
\hline 48 & DO 13 & General output 13 \\
\hline 49 & DO 14 & General output 14 \\
\hline 50 & DO 15 & General output 15 \\
\hline & & \\
\hline 4 &
\end{tabular}

\section*{PNP type input／output circuit}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\frac{5}{3} \stackrel{3}{6}
\]} & Terminal number & Signal name & Meaning \\
\hline & 1 & DI.COM & Input supply common \\
\hline & 2 & LOCK & Interlock \\
\hline \multirow{4}{*}{\[
2
\]} & 3 & SVCE & SERVICE mode \\
\hline & 4 & DO.COM & Output supply common \\
\hline & 5 & MPRDY & Main power ready \\
\hline & 6 & NC & NC \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{o} \\
& \mathrm{O} \\
& \mathrm{E}
\end{aligned}
\]} & 7 & NC & NC \\
\hline & 8 & NC & NC \\
\hline & 9 & NC & NC \\
\hline & 10 & NC & NC \\
\hline \multirow[t]{4}{*}{2
2
3
3
3
8} & 11 & EMG1 & Emergency stop 1 \\
\hline & 12 & EMG2 & Emergency stop 2 \\
\hline & 13 & NC & NC \\
\hline & 14 & NC & NC \\
\hline \multirow[t]{3}{*}{\(\stackrel{\pi}{4}\)} & & & \\
\hline & Robo & ot Language & Table \\
\hline & Command & & Description \\
\hline \multirow[t]{4}{*}{7
7
3
Nㅡㅇ} & MOVA M & Moves to a poi & int data position. \\
\hline & MOVI M & Moves from cu & urrent position by amount of point data. \\
\hline & MOVF M & Moves until a s & specified DI input is received. \\
\hline & JMP J & Jumps to a spe & ecified label in the specified program. \\
\hline \multirow[t]{2}{*}{\[
\frac{x_{0}^{0}}{\frac{0}{6}}
\]} & JMPF J & Jumps to a spe according to th & ecified label in a specified program he input condition. \\
\hline & JMPB & Jumps to a spe general-purpo state. & ecified label in a specified program when se input or memory input is in the specified \\
\hline \multirow[t]{3}{*}{} & L & Defines the jump statement. & mp destination for a JMP or JMPF \\
\hline & CALL R & Runs another p & program. \\
\hline & DO T & Turns general-pur & urpose output or memory output on or off. \\
\hline \multirow[t]{3}{*}{} & WAIT \({ }^{\text {the }}\) & Waits until gen the specified s & neral-purpose input or memory input is in state. \\
\hline & TIMR \({ }^{\text {W }}\) & Waits the spec the next step. & cified amount of time before advancing to \\
\hline & P D & Defines point & variable. \\
\hline \multirow[t]{4}{*}{\[
\frac{?}{8}
\]} & P+ A & Adds 1 to point & t variable. \\
\hline & P- S & Subtracts 1 from & m point variable. \\
\hline & SRVO T & Turns servo on & or off. \\
\hline & STOP T & Temporarily stop & ops program execution. \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 을 } \\
& \text { 릉 } \\
& \text { 윾 }
\end{aligned}
\]} & ORGN P & Performs retur & rn-to-origin. \\
\hline & TON R & Runs a specified & ed task. \\
\hline & TOFF S & Stops a specifi & ied task. \\
\hline & JMPP \({ }^{\text {J }}\) & Jumps to a spe condition mee & ecified label when the axis position ts the specified conditions. \\
\hline \multirow[t]{3}{*}{} & MAT D & Defines a matr & \\
\hline & MSEL S & Specifies a ma & atrix to move. \\
\hline & MOVM M & Moves to a spe & ecified pallet work position on matrix. \\
\hline \multirow[t]{3}{*}{} & JMPC J & Jumps to a spe variable C equ & ecified label when the counter array uals the specified value. \\
\hline & JMPD J & Jumps to a sp equals the spe & ecified label when the counter variable D cified value. \\
\hline & CSEL Sp & Specifies an ar & ray element for counter array variable C. \\
\hline \multirow[t]{4}{*}{} & C D & Defines counter & er array variable C. \\
\hline & C+ A & Adds a specified & ed value to counter array variable C. \\
\hline & C- S & Subtracts a spe & cified value from counter array variable C. \\
\hline & D D & Defines counter & er variable D. \\
\hline \multirow[t]{3}{*}{} & D+ A & Adds a specified & ed value to counter variable D. \\
\hline & D- S & Subtracts a sp & ecified value from counter variable D. \\
\hline & SHFT \({ }_{\text {P }}\) & Shifts the coor point data. & rdinate position by amount of specified \\
\hline \multirow[t]{2}{*}{} & IN & Stores bit infor or memory inp & rmation on specified general-purpose input ut into counter variable D. \\
\hline & OUT O & Outputs the va general-purpo & alue of counter variable D to specified se output or memory output. \\
\hline \(\bigcirc\) & LET \({ }^{\text {S }}\) & Shifts the coor point data. & dinate position by amount of specified \\
\hline
\end{tabular}

\section*{Standard accessories}

\section*{Power connector + wiring connection lever}

Safety connector

\begin{tabular}{|c|c|c|}
\hline Connector plug model & KBG-M4424-00 & SR1-X \\
\hline Connector cover model & KBG-M4425-00 & SR1-P \\
\hline
\end{tabular}

\section*{HPB dummy connector}

Attach this to the HPB connector during operation with the programming box HPB removed.

NPN / PNP connector

\section*{L type stay}

Use to install the controller.

\begin{tabular}{l|l}
\hline Model & KBG-M410H-00 \\
\hline Note. Model No. is for a single bracket (L type stay).
\end{tabular}

Absolute battery
Battery for absolute data back-up. (Not included with the SR1-P)

Model KAS-M53G0-12
Note 1. Weight of battery itself.
Note. The absolute battery is subject to wear and

Basic specifications
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ Absolute battery } \\
\hline Battery type & Lithium metallic battery \\
\hline Battery capacity & \(3.6 \mathrm{~V} / 2,700 \mathrm{mAh}\) \\
\hline \begin{tabular}{l}
Data holding \\
time
\end{tabular} & \begin{tabular}{l}
About 1 year \\
(in state with no power applied)
\end{tabular} \\
\hline Dimensions & \(\phi 17 \times\) L53mm \\
\hline Weight \({ }^{\text {Noter }}\) & 21 g \\
\hline
\end{tabular}

If trouble occurs with the memory then remaining
battery life is low so replace the absolute battery The battery replacement period dopends on us The battery replacement period depends on usage conditions. But generally you should replace the battery after about 1 year counting the total time after connecting to the co
without turning on the power.

\section*{Battery case}

This is the absolute battery holder.

- Cable for monitor I/O

Cable to connect I/O connector of SR1 monitor. The cable is 1.5 m long with its end cut and left as it is.
Required when using analog input / output and feedback pulse output.

\begin{tabular}{l|l|l|}
\hline Model & KBG-M4421-00 & SR1-X \\
\hline
\end{tabular}

\section*{- Support software for PC POPCOM \({ }^{+}\)}

POPCOM \({ }^{+}\)is a simple to use application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

Environment
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows XP (32bit), Vista, 7, 8 / 8.1, \\
10 (Supported version: V.2.1.1 or later)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested \\
requirements for the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 50MB of available space required on installation drive. \\
\hline Disk operation & RS-232C \\
\hline \begin{tabular}{l}
Applicable \\
controllers
\end{tabular} & SRCX to SR1, DRCX, TRCX, ERCX, ERCD, LCC140 Note 1 \\
\hline
\end{tabular}

Note 1. LCC140 is applicable to Ver. 2.1.1 or later.
Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.

Data cables
Communication cable for POPCOM \({ }^{+}\). Select from USB cable or D-sub cable.

USB
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{Model} & USB type (5m) & KBG-M538F-00 & 140 \\
\hline & \multirow[t]{3}{*}{D-Sub type 9pin-9pin (5m)} & \multirow{3}{*}{KAS-M538F-10} & \\
\hline & & & \\
\hline & & & SR1-P \\
\hline \multicolumn{3}{|l|}{Note. This USB cable supports Windows 2000/XP or later} & RCX320 \\
\hline \multicolumn{3}{|l|}{Note. Data cable jointly used for POPCOM \({ }^{+}\), VIP \({ }^{+}\), RCX-Studio Pro.} & RCX221 \\
\hline Note. U & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{USB driver for communication cable can also be downloaded from our website.}} & RCX222 \\
\hline & & & RCX340 \\
\hline
\end{tabular}

Programming box HPB/HPB-D
This device can perform all operations such as manual robot operation, program entry and edit, teaching and parameter settings.

\section*{YC-Link board (with connection cable)}
\begin{tabular}{l|c|c}
\hline & HPB & HPB-D \\
\hline Model & KBB-M5110-01 & KBB-M5110-21 \\
\hline \begin{tabular}{l}
Enable \\
switch
\end{tabular} & - & 3-position \\
\hline CE marking & Not supported & Applicable \\
\hline
\end{tabular}

Note. Use the converter cable if changing to the SR1-X, SR1-P from a system using SRCX, SRCP. (See P.743).

\section*{RCX320}

\section*{Robot controller with advanced functions}

\section*{A 2-axis model of the RCX340 controller has been launched finally. \\ The high-level equipment construction such as simultaneous control of multiple robots is achieved by the advanced functionality and flexible expandability.}

Main functions > P102
O
Programming box
PBX/PBX-E
PTOI
Sussudio 2020 Support software for PC RCX-Studio 2020
R695

\section*{Ordering method}

controllable axes
1.1 axes : Normal

No entry: None R: YHX-RU1

Please select desired selection items from the upper portion of the controller option A in order.
Note 1. [STD.DIO] Parallel I/O board standard specifications Dedicated input 8 points, dedicated output 9 points general-purpose input 16 points, general-purpose output 8 points
Do not mix with field bus (CC/DN/PB/EP/PT/ES).
Note 2. [EXP.DIO] Parallel I/O board expansion specifications General-purpose input 24 points, general-purpose output 16 points
Note 3. Only one DIO STD specification board can be selected Therefore, this board cannot be selected in OP.B to OP.D Note 4. Select either NPN or PNP in DIO.
.
Note 6. Select only one master or slave board for YC-Link/E For details, refer to "YC-Link/E ordering explanation" below.
Additionally, when ordering YC-Link/E, please specify what robot is connected to what number controller. Note 7. Select only one fieldbus in a controller (CC/DN/PB/ EP/PT/ES)
Note 8. The regenerative unit (option) is required when operating a model designated by YAMAHA or a load with a large inertia.
 without lighting WL: with RCXiVY2+,
with lighting
No entry: Non-selection \begin{tabular}{|l|}
\hline- -- Note \\
\hline NE : EXP.DIO(NPN) Note 2 Note 4 \\
\hline Note \\
\hline
\end{tabular} PE : EXP.DIO
TR: Tracking \({ }^{\text {Note }}\) YM1: YC-Link/E master Note 6 YS2 to 4:
YC-Link/E slave \({ }^{\text {Note } 6}\) EP: EtherNet/IPTM Note PB: PROFIBUS DN: DeviceNet \({ }^{\text {TM }}\) PN: PR : PROFINET \({ }^{\text {Note } 7}\) ES: EtherCAT \({ }^{\text {Note }}\)

\section*{YC-Link/E explanation}

Using the inter-controller communication "YC-Link/E", the RCX320 and RCX340 are connected and up to 14 axes (4 robots) can be expanded. The YC-Link/E can be executed by the program of only the master controller. This contributes to great reduction of the system startup time.

- The "RCX320" and "RCX340" controllers support both the master and slave specifications. - Up to four "RCX320" and "RCX340" controllers can be connected
- The network board is inserted into only the master controller (YM1)
* For customers who export robot controllers to Korea, connecting two or more RCX320 controllers using the YC-Link/E may not be compliant with the KCs system. Please contact us when considering such connections.

\section*{Dimensions}
- Power supply capacity and heat emission

The required power supply capacity and heat emission will vary depending on the robot type and number of axes.
Using the following table as a general guide consider the required power supply preparation and control panel size, controller installation, and cooling method.

When connected to 2 axis
(Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Axial current sensor value } & \begin{tabular}{c}
Power \\
capacity (VA)
\end{tabular} & \begin{tabular}{c}
Generated \\
heat amount (W)
\end{tabular} \\
\hline X axis & Y axis & 50 & 53 \\
\hline 05 & 05 & 500 & 58 \\
\hline 10 & 05 & 700 & 78 \\
\hline 20 & 05 & 1500 & 63 \\
\hline 10 & 10 & 900 & 83 \\
\hline 20 & 10 & 1700 & 100 \\
\hline 20 & 20 & 2400 & \\
\hline
\end{tabular}

Motor capacity vs. current sensor table
\begin{tabular}{c|c}
\hline \begin{tabular}{c}
Connected motor \\
capacity
\end{tabular} & Current sensor \\
\hline 100 W or less & 05 \\
\hline 200 W & 10 \\
\hline 400 W or more & 20 \\
\hline
\end{tabular}

Note. Motor output of the B14H is 200W but the current sensor is 05 .

Conditions where regenerative unit is needed on multi robots
- Motor capacity exceeds a total of 450 W .
- Motor capacity for perpendicular axis exceeds a total of 240W.
- The following conditions apply when perpendicular axis capacity is 240W or less. - perpendicular axis is 200 W .
- perpendicular axis is 100 W and stroke is 700 mm or more.
- there are 2 perpendicular axes at 100 W , and includes leads of 5 mm .
- B14H which maximum speed exceeds 1250mm per second.

Note. Even if axial current sensor values for each axis are interchanged no problem will occur

\section*{Regenerative unit YHX-RU1}
\begin{tabular}{lll}
Regenerative unit YHX-RU \\
\hline
\end{tabular}

\section*{Regenerative unit selection table}

Whether the regenerative unit is needed is automatically determined by the robot model.

- : Applicable \(\bigcirc\) Select per conditions

\section*{Installation conditions}
－Use the screws to secure the controller to the installation plate inside the control panel so that it is in a horizontal position．Be sure to use the metallic installation plate．
－Install the RCX320 in a well ventilated location， with space on all sides of the RCX320（See fig． at right．）．
－Ambient temperature
0 to \(40^{\circ} \mathrm{C}\)
－Ambient humidity

35 to \(85 \%\) RH （no condensation）

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|c}
\hline 1 / \mathrm{ONO} \\
(\mathrm{ID}=1)
\end{array}
\] & \[
\begin{gathered}
\text { I/O No. } \\
(\mathrm{ID}=2)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I} / \mathrm{O} \mathrm{No.} \\
(\mathrm{ID}=3)
\end{gathered}
\] & I／O No． （ID＝4） & Signal name \\
\hline
\end{tabular}

 2 DI 10 \begin{tabular}{l}
DI 40 \\
DI 70 \\
\hline
\end{tabular}
 3 ---
\begin{tabular}{c|c|c|c|c|l}
\hline \(\mathbf{4}\) & DI 11 & DI 41 & DI 71 & DI 121 & General－purpose input 11，41，71，121 \\
\hline \(\mathbf{5}\) & --- & --- & --- & --- & Reserved \\
\hline \(\mathbf{6}\) & --- & --- & --- & --- & Reserved \\
\hline \(\mathbf{7}\) & --- & -- & -- & -- & Reserved
\end{tabular}
8 D
\begin{tabular}{l|l|l|l|l|l|}
& DI 21 & DI 51 & DI 101 & DI 131 & General－purpose input 21，51，101，131 \\
\hline 1 & DI 22 & DI 52 & DI 102 & DI 132 & General－purpose input \(22,52,102,132\) \\
\hline
\end{tabular}
DI 23 DI 53 \begin{tabular}{l}
DI 103 \\
DI 133
\end{tabular} General－purpose input 23，53，103，133
DI 24 DI 54 \begin{tabular}{l}
DI 104 \\
DI 134
\end{tabular} General－purpose input 24，54，104，134
\begin{tabular}{|l|l|l|l|l|}
\hline DI 25 & DI 55 & DI 105 & DI 135 & General－purpose input \(25,55,105,135\) \\
\hline DI 26 & DI 56 & DI 106 & DI 136 & General－purpose input \(26,56,106,136\) \\
\hline
\end{tabular}
DI 27 DI 57 DI 107 DI 137 General－purpose input 27，57，107，137
－－－\(\quad\) Reserved
DO 10 DO 30 DO 50 DO 70 General－purpose output 10，30，50，70
DO 11 DO 31 DO 51 \(\begin{aligned} & \text { DO } 71 \\ & \text { General－purpose output 11，31，51，71 }\end{aligned}\)
DO 12 DO 32 DO 52 DO 72 General－purpose output 12，32，52，72
DO 13 DO 33 DO 53 \(\begin{aligned} & \text { DO } 73 \\ & \text { General－purpose output 13，33，53，73 }\end{aligned}\)
DO 14 DO 34 DO 54 DO 74 General－purpose output 14，34，54，74
DO 15 DO 35 DO 55 DO 75 General－purpose output 15，35，55，75
DO 16 DO 36 DO 56 DO 76 General－purpose output 16，36，56，76
DO 17 1 DO 37 DO 57 DO 77 General－purpose output 17，37，57，77
\begin{tabular}{|l|l|l|l|l|l}
& DI 12 & DI 42 & DI 72 & DI 122 & General－purpose input \(12,42,72,122\) \\
\hline
\end{tabular}
DI 14 \(\begin{aligned} & \text { DI } 44 \\ & \text { DI } 74 \\ & \text { DI } 124\end{aligned}\) General－purpose input 14，44，74，124
\begin{tabular}{l|l|l|l|l}
DI 15 & DI 45 & DI 75 & DI 125 & General－purpose input \(15,45,75,125\) \\
\hline & DI 16 & DI 46 & DI 76 & DI 126 \\
General－purpose input \(16,46,76,126\) \\
\hline
\end{tabular}
\begin{tabular}{l|c|c|c|c|c}
31 & DI 17 & DI 47 & DI 77 & DI 127 & General－purpose input \(17,47,77,127\) \\
\hline 2 & DI 30 & DI 60 & DI 110 & DI 140 & General－purpose input \(30,60,110,140\) \\
\hline
\end{tabular}
DI 31 DI 61 DI 111 DI 141 General－purpose input 31，61，111，141
\begin{tabular}{|c|c|c|c|c|}
& DI 32 & DI 62 & DI 112 & DI 142
\end{tabular} General－purpose input \(32,62,112,142\),
\begin{tabular}{|l|l|l|l|l}
DI 34 & DI 64 & DI 114 & DI 144 & General－purpose input \(34,64,114,144\) \\
\hline DI 35 & DI 65 & DI 115 & DI 145 & General－purpose input \(35,65,115,145\) \\
\hline
\end{tabular}
DI 36 \begin{tabular}{l}
DI 66 \\
DI 116 \\
DI 146 \\
General－purpose input \(36,66,116,146\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l}
DI 37 & DI 67 & DI 117 & DI 147 & General－purpose input \(37,67,117,147\) \\
\hline
\end{tabular}
Reserved
Reserved
DO 20 DO 40 DO 60 DO 100 General－purpose output \(20,40,60,100\)
DO 21 DO 41 DO 61 DO 101 General－purpose output 21，41，61，101
DO 22 DO 42 DO 62 DO 102 General－purpose output 22，42，62，102
DO 23 DO 43 DO 63 DO 103 General－purpose output 23，43，63，103
DO 24 DO 44 DO 64 DO 104 General－purpose output 24，44，64，104
DO 25 DO 45 DO 65 DO 105 General－purpose output 25，45，65，105
DO 26 DO 46 DO 66 DO 106 General－purpose output 26，46，66，106
\begin{tabular}{l|l|l|l|l|l}
& DO 27 & DO 47 & DO 67 & DO 107 & General－purpose output 27，47，67，107 \\
\hline
\end{tabular}
Note．The IDs are set using the parameter．
- Standard specification I/O connector pin assignment lists
\begin{tabular}{|c|c|c|}
\hline Pin & I/O No. & Name \\
\hline 1 & DI01 & Servo ON \\
\hline 2 & DI10 & SEQ enable \\
\hline 3 & DI03 & (Spare) \\
\hline 4 & CHK1 & Check input 1 \\
\hline 5 & DI05 & (Spare) \\
\hline 6 & DI06 & STOP \\
\hline 7 & DI07 & (Spare) \\
\hline 8 & DI20 & General-purpose input \\
\hline 9 & DI21 & General-purpose input \\
\hline 10 & DI22 & General-purpose input \\
\hline 11 & DI23 & General-purpose input \\
\hline 12 & DI24 & General-purpose input \\
\hline 13 & DI25 & General-purpose input \\
\hline 14 & DI26 & General-purpose input \\
\hline 15 & DI27 & General-purpose input \\
\hline 16 & DO00 & (Spare) \\
\hline 17 & DO01 & CPUOK \\
\hline 18 & DO10 & AUTO \\
\hline 19 & DO11 & ORGOK \\
\hline 20 & DO12 & SEQRUN \\
\hline 21 & DO13 & RUN \\
\hline 22 & DO14 & RESET \\
\hline 23 & DO15 & WARNING \\
\hline 24 & DO16 & (Spare) \\
\hline 25 & DO17 & (Spare) \\
\hline 26 & DI12 & RUN \\
\hline 27 & DI13 & (Spare) \\
\hline 28 & DI14 & ORIGIN (for INC axis) \\
\hline 29 & DI15 & RESET \\
\hline 30 & DI16 & ALMRST \\
\hline 31 & DI17 & ORIGIN(for ABS axis) \\
\hline 32 & DI30 & General-purpose input \\
\hline 33 & DI31 & General-purpose input \\
\hline 34 & DI32 & General-purpose input \\
\hline 35 & DI33 & General-purpose input \\
\hline 36 & DI34 & General-purpose input \\
\hline 37 & DI35 & General-purpose input \\
\hline 38 & DI36 & General-purpose input \\
\hline 39 & DI37 & General-purpose input \\
\hline 40 & CHK2 & Check input 2 \\
\hline 41 & DO02 & SERVO \\
\hline 42 & DO03 & ALARM \\
\hline 43 & DO20 & General-purpose output \\
\hline 44 & DO21 & General-purpose output \\
\hline 45 & DO22 & General-purpose output \\
\hline 46 & DO23 & General-purpose output \\
\hline 47 & DO24 & General-purpose output \\
\hline 48 & DO25 & General-purpose output \\
\hline 49 & DO26 & General-purpose output \\
\hline 50 & DO27 & General-purpose output \\
\hline
\end{tabular}

Basic functions
\begin{tabular}{|c|c|c|}
\hline Function & \multicolumn{2}{|l|}{Description} \\
\hline Operation modes & AUTO mode (Major functions: program creation, program execution, step execution, etc.) MANUAL mode (Major functions: jog movement, point data teaching, parameter editing, etc.) & \\
\hline Commands & \begin{tabular}{l}
Array declaration commands (DIM statement) \\
Assignment commands (Numeric assignment, character string assignment, point definition statements, etc.) \\
Movement commands (MOVE, DRIVE, PMOVE statements, etc.) \\
Conditional branching commands (IF, FOR, WHILE statements, etc.) \\
External output commands (DO, MO, LO, TO, SO statements) \\
Parameter commands (ACCEL, OUTPOS, TOLE statements, etc.) \\
Condition wait command (WAIT statement) \\
Task related commands (START, SUSPEND, CUT statements, etc.)
\end{tabular} & etc. \\
\hline Functions & \begin{tabular}{l}
Arithmetic functions (SIN, COS, TAN functions, etc.) \\
Character string functions (STR\$, LEFT\$, MID\$, RIGHT\$ functions, etc.) \\
Point functions (WHERE, JTOXY, XYTOJ functions, etc.) \\
Parameter functions (ACCEL, OUTPOS, TOLE statements, etc.)
\end{tabular} & etc. \\
\hline Variables & \begin{tabular}{l}
Simple variables (integer variables, real variables, character variables) Array variables (integer variables, real variables, character variables) Point variables \\
Shift variables \\
I/O variables
\end{tabular} & etc. \\
\hline Arithmetic operation & \begin{tabular}{l}
Arithmetic operators (+,-, *, /, MOD) \\
Logic operators (AND, OR, XOR) \\
Relational operators (\(=,<,>,<>,<=, ~>=\))
\end{tabular} & \\
\hline Monitor & \(1 / \mathrm{O}\) status monitor (200 ms intervals) & \\
\hline Online commands & \begin{tabular}{l}
Program operation commands (RUN, STOP, RESET, STEP, etc.) \\
Utility commands (COPY, ERA, INIT, etc.) \\
Data handling commands (READ, WRITE, etc.) \\
Robot language commands (independent-executable commands)
\end{tabular} & \\
\hline Data files & Program, point, parameter, shift, hand, all, error history & etc. \\
\hline Internal timer & Timer count variable (TCOUNTER), 1 ms interval & \\
\hline Program break points & Max. 32 points & \\
\hline
\end{tabular}

\section*{Emergency input signal connections}

\section*{Connection example of controller with normal specifications and PBX}

－Connection example of controller with CE specifications and PBX－E

\section*{\(\square\) Robot Language Table}
- General commands
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DIM & \begin{tabular}{l}
Declares the array variable name and the number of \\
elements.
\end{tabular} \\
\hline LET & Executes a specified assignment statement. \\
\hline REM & Expresses a comment statement. \\
\hline
\end{tabular}
- Arithmetic commands
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ABS & Acquires the absolute value of a specified value. \\
\hline ATN & Acquires the arctangent of the specified value. \\
\hline ATN2 & Acquires the arctangent of the specified X-Y coordinates. \\
\hline COS & Acquires the cosine value of a specified value. \\
\hline DEGRAD & Converts a specified value to radians (\(\leftrightarrow\) RADDEG). \\
\hline DIST & Acquires the distance between 2 specified points. \\
\hline INT & \begin{tabular}{l}
Acquires an integer for a specified value by truncating all \\
decimal fractions.
\end{tabular} \\
\hline LSHIFT & \begin{tabular}{l}
Shifts a value to the left by the specified bit count. \\
(\(\leftrightarrow\) RSHIFT)
\end{tabular} \\
\hline RADDEG & Converts a specified value to degrees. (\(\leftrightarrow\) DEGRAD) \\
\hline RSHIFT & \begin{tabular}{l}
Shifts a value to the right by the specified bit count. \\
(\(\leftrightarrow\) LSHIFT)
\end{tabular} \\
\hline SIN & Acquires the sine value for a specified value. \\
\hline SQR & Acquires the square root of a specified value. \\
\hline TAN & Acquires the tangent value for a specified value. \\
\hline
\end{tabular}

\section*{Date / time}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DATE \$ & Acquires the date as a "yy/mm/dd" format character string. \\
\hline TCOUNTER & \begin{tabular}{l}
Outputs count-up values at 1ms intervals starting from the \\
point when the TCOUNTER variable is reset.
\end{tabular} \\
\hline TIME \$ & \begin{tabular}{l}
Acquires the current time as an "hh:mm:ss" format character \\
string.
\end{tabular} \\
\hline TIMER & Acquires the current time in seconds, counting from midnight. \\
\hline
\end{tabular}

\section*{Character string operation}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CHR \$ & Acquires a character with the specified character code. \\
\hline LEFT \$ & \begin{tabular}{l}
Extracts a character string comprising a specified number of \\
digits from the left end of a specified character string.
\end{tabular} \\
\hline LEN & \begin{tabular}{l}
Acquires the length (byte count) of a specified character \\
string.
\end{tabular} \\
\hline MID \$ & \begin{tabular}{l}
Extracts a character string of a desired length from a \\
specified character string.
\end{tabular} \\
\hline ORD & \begin{tabular}{l}
Acquires the character code of the first character in a \\
specified character string.
\end{tabular} \\
\hline RIGHT \$ & \begin{tabular}{l}
Extracts a character string comprising a specified number of \\
digits from the right end of a specified character string.
\end{tabular} \\
\hline STR \$ & \begin{tabular}{l}
Converts a specified value to a character string (\(\leftrightarrow\) VAL). \\
\hline VAL
\end{tabular} \begin{tabular}{l}
Converts the numeric value of a specified character string to \\
an actual numeric value. (\(\leftrightarrow\) STR\$)
\end{tabular} \\
\hline
\end{tabular}

\section*{Point, coordinates, shift coordinates}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CHANGE & Switches the hand of a specified robot. \\
\hline HAND & Defines the hand of a specified robot. \\
\hline JTOXY & \begin{tabular}{l}
Converts joint coordinate data to Cartesian coordinate data of \\
a specified robot. (\(\leftrightarrow\) XYTOJ)
\end{tabular} \\
\hline LEFTY & \begin{tabular}{l}
Sets the hand system of a specified robot to the left-handed \\
system.
\end{tabular} \\
\hline LOCx & \begin{tabular}{l}
Specifies/acquires point data for a specified axis or shift data \\
for a specified element.
\end{tabular} \\
\hline PATH & Sets the movement path. \\
\hline Pn & Defines points within a program. \\
\hline PPNT & \begin{tabular}{l}
Creates point data specified by a pallet definition number and \\
pallet position number.
\end{tabular} \\
\hline RIGHTY & \begin{tabular}{l}
Sets the hand system of a specified robot to the right- handed \\
system.
\end{tabular} \\
\hline Sn & Defines the shift coordinates within the program. \\
\hline SHIFT & \begin{tabular}{l}
Sets the shift coordinate for a specified robot by using the \\
shift data specified by a shift variable.
\end{tabular} \\
\hline XYTOJ & \begin{tabular}{l}
Converts the point variable Cartesian coordinate data to the \\
joint coordinate data of a specified robot. (\(\leftrightarrow\) JTOXY).
\end{tabular} \\
\hline
\end{tabular}

\section*{Branching commands}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline EXIT FOR & Terminates the FOR to NEXT statement loop. \\
\hline FOR to & \begin{tabular}{l}
Executes the FOR to NEXT statement repeatedly until a \\
specified value is exceeded.
\end{tabular} \\
\hline NEXT & GOSUB to \\
RETURN & \begin{tabular}{l}
Jumps to a subroutine with the label specified by GOSUB \\
statement, and executes that subroutine.
\end{tabular} \\
\hline GOTO & Unconditionally jumps to the line specified by a label. \\
\hline IF & Allows control flow to branch according to conditions. \\
\hline \begin{tabular}{l}
ON to \\
GOSUB
\end{tabular} & \begin{tabular}{l}
Jumps to a subroutine with labels specified by a GOSUB \\
statement in accordance with the conditions, and executes \\
that subroutine.
\end{tabular} \\
\hline \begin{tabular}{l}
ON to \\
GOTO
\end{tabular} & \begin{tabular}{l}
Jumps to label-specified lines in accordance with the \\
conditions.
\end{tabular} \\
\hline \begin{tabular}{l}
SELECT \\
CASE to END \\
SELECT
\end{tabular} & Allows control flow to branch according to conditions. \\
\hline WHILE to & Controls repeated operations. \\
WEND
\end{tabular}

\section*{Error control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ERR / ERL & \begin{tabular}{l}
Acquires the error code number of an error which has \\
occurred / the line number where an error occurred.
\end{tabular} \\
\hline \begin{tabular}{l}
ON ERROR \\
GOTO
\end{tabular} & \begin{tabular}{l}
This command allows the program to jump to the error \\
processing routine specified by the label without stopping \\
the program, or it stops the program and displays the error \\
message.
\end{tabular} \\
\hline RESUME & Resumes program execution after error recovery processing. \\
\hline
\end{tabular}

Program control
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CALL & Calls a sub-procedure. \\
\hline HALT & Stops the program and performs a reset. \\
\hline HALTALL & Stops and resets all programs. \\
\hline HOLD & Temporarily stops the program. \\
\hline HOLDALL & Temporarily stops all programs. \\
\hline PGMTSK & \begin{tabular}{l}
Acquires the task number in which a specified program is \\
registered.
\end{tabular} \\
\hline PGN & \begin{tabular}{l}
Acquires the program number from a specified program \\
name.
\end{tabular} \\
\hline SGI & \begin{tabular}{l}
Assigns/acquires the value to a specified integer type static \\
variable.
\end{tabular} \\
\hline SGR & \begin{tabular}{l}
Assigns/acquires the value to a specified real type static \\
variable.
\end{tabular} \\
\hline SWI & \begin{tabular}{l}
Switches the program being executed, then begins execution \\
from the first line.
\end{tabular} \\
\hline TSKPGM & \begin{tabular}{l}
Acquires the program number which is registered in a \\
specified task.
\end{tabular} \\
\hline Task control \\
\hline Command & Description \\
\hline CHGPRI & Changes the priority ranking of a specified task. \\
\hline CUT & \begin{tabular}{l}
Terminates another task currently being executed or \\
temporarily stopped.
\end{tabular} \\
\hline EXIT TASK & Terminates its own task which is in progress. \\
\hline RESTART & Restarts another task during a temporary stop. \\
\hline START & \begin{tabular}{l}
Specifies the task number and priority ranking of a specified \\
program, and starts that program.
\end{tabular} \\
\hline SUSPEND & Temporarily stops another task which is being executed. \\
\hline
\end{tabular}

\section*{Robot operations}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DRIVE & Moves a specified axis of a specified robot to an absolute position. \\
\hline DRIVEI & Moves a specified axis of a specified robot to a relative position. \\
\hline MOTOR & Controls the motor power status. \\
\hline MOVE & Performs absolute movement of all axes of a specified robot. \\
\hline MOVEI & Performs relative movement of all axes of a specified robot. \\
\hline MOVET & \begin{tabular}{l}
Performs relative movement of all axes of a specified robot \\
when the tool coordinate is selected.
\end{tabular} \\
\hline ORIGIN & Performs return-to-origin. \\
\hline PMOVE & Executes the pallet movement command of a specified robot. \\
\hline PUSH & Executes a pushing operation in the axis unit. \\
\hline SERVO & \begin{tabular}{l}
Controls the servo ON/OFF of a specified axis or all axes of a \\
specified robot.
\end{tabular} \\
\hline
\end{tabular}

\section*{Status acquisition}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ABSRPOS & \begin{tabular}{l}
Acquires the machine reference value for specified robot \\
axes．（Valid only for axes whose return－to－origin method is \\
set as＂mark＂．）
\end{tabular} \\
\hline ARMCND & Acquires the current arm status of a specified robot． \\
\hline ARMSEL & \begin{tabular}{l}
Specifies／acquires the current＂hand system＂setting of a \\
specified robot．
\end{tabular} \\
\hline ARMTYP & \begin{tabular}{l}
Specifies／acquires the＂hand system＂setting of a specified \\
robot．
\end{tabular} \\
\hline CURTQST & \begin{tabular}{l}
Acquires the current torque value ratio of a specified axis to \\
the rated torque．
\end{tabular} \\
\hline MCHREF & \begin{tabular}{l}
Acquires the return－to－origin or absolute－search machine \\
reference value for specified robot axes．（Valid only for axes \\
whose return－to－origin method is set as＂sensor＂or＂stroke－ \\
end＂．）
\end{tabular} \\
\hline MTRDUTY & Acquires the motor load factor of the specified axis． \\
\hline PSHRSLT & Acquires the status at the end of the PUSH statement． \\
\hline PSHSPD & Specifies／acquires the push speed parameter． \\
\hline PSHTIME & \begin{tabular}{l}
Specifies／acquires the push time parameter．
\end{tabular} \\
\hline WAIT ARM & \begin{tabular}{l}
Waits until the axis operation of a specified robot is \\
completed．
\end{tabular} \\
\hline WHERE & \begin{tabular}{l}
Reads out the current position of the arm of a specified robot \\
in joint coordinates（pulse）．
\end{tabular} \\
\hline WHRXY & \begin{tabular}{l}
Reads out the current position of the arm of a specified robot \\
as Cartesian coordinates（mm，degrees）．
\end{tabular} \\
\hline
\end{tabular}

Status change
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ACCEL & \begin{tabular}{l}
Specifies／acquires the acceleration coefficient parameter of a \\
specified robot．
\end{tabular} \\
\hline ARCHP1 & \begin{tabular}{l}
Specifies／acquires the arch position 1 parameter of a \\
specified robot．
\end{tabular} \\
\hline ARCHP2 & \begin{tabular}{l}
Specifies／acquires the arch position 2 parameter of a \\
specified robot．
\end{tabular} \\
\hline ASPEED & \begin{tabular}{l}
Specifies／acquires the AUTO movement speed of a specified \\
robot．
\end{tabular} \\
\hline AXWGHT & \begin{tabular}{l}
Specifies／acquires the axis tip weight parameter of a specified \\
robot．
\end{tabular} \\
\hline CHANGE & Switches the hand of a specified robot． \\
\hline DECEL & \begin{tabular}{l}
Specifies／acquires the deceleration rate parameter of a \\
specified robot．
\end{tabular} \\
\hline HAND & Defines the hand of a specified robot． \\
\hline LEFTY & \begin{tabular}{l}
Sets the hand system of a specified robot to the left－handed \\
system．
\end{tabular} \\
\hline ORGORD & \begin{tabular}{l}
Specifies／acquires the axis sequence parameter for \\
performing return－to－origin and an absolute search operation \\
in a specified robot．
\end{tabular} \\
\hline OUTPOS & \begin{tabular}{l}
Specifies／acquires the＂OUT position＂parameter of a \\
specified robot．
\end{tabular} \\
\hline PDEF & \begin{tabular}{l}
Defines the pallet used to execute pallet movement \\
commands．
\end{tabular} \\
\hline PSHFRC & Specifies／acquires the＂Push force＂parameter． \\
\hline PSHJGSP & Specifies／acquires the push judge speed threshold parameter．
\end{tabular}

\section*{PATH control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline PATH & Specifies the PATH motion path． \\
\hline PATH END & Ends the path setting for PATH motion． \\
\hline PATH SET & Starts the path setting for PATH motion． \\
\hline PATH & Starts the PATH motion． \\
\hline START & \\
\hline
\end{tabular}

\section*{Torque control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CURTQST & \begin{tabular}{l}
Acquires the current torque value ratio of a specified axis to \\
the rated torque．
\end{tabular} \\
\hline CURTRQ & \begin{tabular}{l}
Acquires the current torque value of the specified axis of a \\
specified robot．
\end{tabular} \\
\hline PUSH & Executes a pushing operation in the axis unit． \\
\hline TORQUE & \begin{tabular}{l}
Specifies／acquires the maximum torque command value \\
which can be set for a specified axis of a specified robot．
\end{tabular} \\
\hline
\end{tabular}

\section*{Input／output control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DELAY & Waits for the specified period（units：ms）． \\
\hline DO & \begin{tabular}{l}
Outputs a specified value to the DO port or acquires the DO \\
status．
\end{tabular} \\
\hline LO & \begin{tabular}{l}
Outputs a specified value to the LO port to enable／disable \\
axis movement or acquires the LO status．
\end{tabular} \\
\hline MO & \begin{tabular}{l}
Outputs a specified value to the MO port or acquires the MO \\
status．
\end{tabular} \\
\hline OUT & \begin{tabular}{l}
Turns ON the bits of the specified output ports and terminates \\
the command statement．
\end{tabular} \\
\hline RESET & Turns the bit of a specified output port OFF． \\
\hline SET & Turns the bit at the specified output port ON． \\
\hline SI & \begin{tabular}{l}
Acquires a specified SI status． \\
status．
\end{tabular} \\
\hline SID & Acquires a specified serial input＇s word information status． \\
\hline SIW & \begin{tabular}{l}
Outputs a specified value to the SO port or acquires the SO \\
status．
\end{tabular} \\
\hline SO & \begin{tabular}{l}
Outputs a specified serial output＇s double－word information \\
or acquires the output status．
\end{tabular} \\
\hline SOD & \begin{tabular}{l}
Outputs a specified serial output＇s word information or \\
acquires the output status．
\end{tabular} \\
\hline SOW & \begin{tabular}{l}
Outputs a specified value to the TO port or acquires the TO \\
status．
\end{tabular} \\
\hline TO & \begin{tabular}{l}
Waits until the conditions of the DI／DO conditional expression \\
are met（with time－out）．
\end{tabular} \\
\hline WAIT &
\end{tabular}

\section*{Communication contro}
Command Description

CLOSE \(\quad\) Close the specified General Ethernet Port．
ETHSTS \(\quad\) Acquires the Ethernet port status．
GEPSTS Acquires the General Ethernet Port status．
OFFLINE \(\quad\) Sets a specified communication port to the＂offline＂mode．
ONLINE \(\quad\) Sets the specified communication port to the＂online＂mode．
OPEN \(\quad\) Opens the specified General Ethernet Port．
SEND Sends a file．

\section*{Power connector + wiring connection lever}

Safety connector
\begin{tabular}{ll}
\hline Model \(\quad\) KCX-M5370-00 & \(\left.\begin{array}{l}\text { RCX320 } \\
\text { RCX340 }\end{array}\right)\)
\end{tabular}

PBX terminator (dummy connector)
Attach this to the PBX connector during opera tion with the programming box PBX removed.

\begin{tabular}{|r|}
\hline RCX320 \\
\hline RCX221 \\
\hline RCX222 \\
\hline RCX340 \\
\hline
\end{tabular}

NPN / PNP connector \begin{tabular}{l}
Connector plug model KBH-M4424-00 \\
\hline Connector cover model KBH-M4425-00 \\
\hline
\end{tabular}

- Absolute battery

\begin{tabular}{|c|c|}
\hline Absolute battery installation condifions & \begin{tabular}{l}
1 batteries are required for each 1 axes. \\
1 battery......Data storage time of approximately 6 months (with no power applied) Note. No absolute battery is required for the incremental or semi-absolute axis.
\end{tabular} \\
\hline
\end{tabular}

Dust cover for COM connector
\begin{tabular}{l|l|l|}
\hline Model & KR7-M5395-10 & RCX320 \\
\hline
\end{tabular}

Dust cover for LAN connector
\begin{tabular}{l|l}
\hline Model & KCX-M658K-10 \\
\hline
\end{tabular}
- Dust cover for USB connector
\begin{tabular}{l|l}
\hline Model & KCX-M658K-00 \\
\hline
\end{tabular}

\section*{Programming box PBX/PBX-E}

This device can perform all operations such as manual robot operation, program entry and edit, teaching and parameter settings.
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Language & Cable length & Model & \[
\begin{array}{r}
\text { RCX320 } \\
\text { RCX340 }
\end{array}
\] \\
\hline \multirow{6}{*}{PBX} & \multirow[b]{2}{*}{Japanese} & 5 m & KCX-M5110-1J & \multirow[t]{2}{*}{RCX340} \\
\hline & & 12m & KCX-M5110-3J & \\
\hline & \multirow[b]{2}{*}{English} & 5 m & KCX-M5110-1E & \\
\hline & & 12m & KCX-M5110-3E & \\
\hline & \multirow[b]{2}{*}{Chinese} & 5 m & KCX-M5110-1C & \\
\hline & & 12m & KCX-M5110-3C & \\
\hline \multirow{6}{*}{PBX-E (with enable switch)} & \multirow[t]{2}{*}{Japanese} & 5 m & KCX-M5110-0J & \\
\hline & & 12m & KCX-M5110-2J & \\
\hline & \multirow[b]{2}{*}{English} & 5 m & KCX-M5110-0E & \\
\hline & & 12m & KCX-M5110-2E & \\
\hline & \multirow[t]{2}{*}{Chinese} & 5 m & KCX-M5110-0C & \\
\hline & & 12m & KCX-M5110-2C & \\
\hline & & & Model & \\
\hline \multicolumn{3}{|l|}{Display language switching USB for PBX} & KCX-M6498-00 & \\
\hline \multicolumn{2}{|l|}{USB cable} & & X-M657E-00 & \\
\hline
\end{tabular}

USB key
\begin{tabular}{l|l|l}
\hline Model & \begin{tabular}{l}
RCX-Studio 2020 \\
Basic (USB key Blue)
\end{tabular} & KCX-M4990-40 \\
\cline { 2 - 4 } & \begin{tabular}{l}
RCX-Studio 2020 \\
Pro (USB key Purple)
\end{tabular} & KCX-M4990-50
\end{tabular}

Support software for PC RCX-Studio 2020
This is support software for operating the RCX320 / RCX340 controller.
A USB key is supplied to the RCX-Studio 2020 to prevent robot operation mistakes.

Basic specifications
\begin{tabular}{l|l}
\hline Supported language & Japanese, English, Chinese \\
\hline OS \(^{\text {Note1 }}\) & Microsoft Windows 7 SP1(32/64bit) / 8.1 (32 bit / 64 bit) / 10 (32 bit / 64 bit) \\
\hline Execution environment & NET Framework 4.5 or more \\
\hline CPU & \begin{tabular}{l}
Recommended: Intel Core i5 2 GHz or more, Minimum: Intel Celeron 2 GHz \\
or more, 3D-SIM is invalid.: Intel Core 2 Duo 2 GHz or more
\end{tabular} \\
\hline Memory & \begin{tabular}{l}
Recommended: 8 GB or more, Minimum: 4 GB or more, \\
3D-SIM is invalid: 1 GB or more
\end{tabular} \\
\hline Hard disk capacity & 1GB of available space required on installation drive \\
\hline Communication Port & Communication cable: Serial communication port, Ethernet port, or USB port \\
\hline Others & \begin{tabular}{l}
Dedicated commutation cable (For D-Sub or USB) \\
Ethernet cable (category 5 or better) \\
USB port: 1 port (For USB key)
\end{tabular} \\
\hline Applicable robot controllers & RCX320 / RCX340 \\
\hline Applicable robot & YAMAHA robot that can be connected to the RCX340, RCX320. \\
\hline Note. Microsoft, Windows 7, Windows 8.1, and Windows 10 are either registered trademarks or trademarks of Microsoft Corporation in the United States \\
and/or other countries. \\
Other company names and product names listed in this manual may be the trademarks or registered trademarks of their respective companies.
\end{tabular}

[RCX320/RCX340]
Ethernet cable (category 5 or higher) is also supported.

Note. USB driver for communication cable can also be downloaded from our website.
\begin{tabular}{l|l|l|l|}
\hline & USB type (5m) & KBG-M538F-00 & LCC140 \\
Model & ERCD \\
& \begin{tabular}{l}
D-Sub type \\
\\
\\
\\
9pin-9pin (5m)
\end{tabular} & KAS-M538F-10 & \\
\hline & SR1-X \\
\hline & SR1-P \\
\hline
\end{tabular}
- Data cables

Communication cable for RCX-Studio 2020. Select from USB cable or D-sub cable.

YC-Link/E master board

YC-Link/E slave board

YC-Link/E cable (1m)

\title{
RCX221/RCX222
}

Robot controller with advanced functions

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{dinab} & \multicolumn{6}{|l|}{RCX221－XY－X} \\
\hline & \multicolumn{6}{|l|}{} \\
\hline CE makno & O Feald & \multicolumn{3}{|l|}{} & & \\
\hline \multicolumn{7}{|l|}{［ Model Overview} \\
\hline \multicolumn{2}{|c|}{Name} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\frac{\mathrm{RCX} 221 / \mathrm{RCX} 221 \mathrm{HP}}{\text { Cartesian robot XY－X／Single－axis robot FLP－XI }}\)}} & \multicolumn{2}{|l|}{RCX222RCX222HP} \\
\hline \multicolumn{2}{|r|}{Controlable robot} & & & & \multicolumn{2}{|l|}{Cartesian robot XY－X／Single－axis robot FLIP－X／Pick \＆place robot YP－X} \\
\hline \multicolumn{2}{|c|}{Power} & \multicolumn{5}{|c|}{Single phase：AC200V to 230V + －10\％maximum（50／60Hz）} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Operating method \\
Maximum number of controllable axes
\end{tabular}}} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{－Programming／Remote command／Operation using RS－232C communication}} \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{Maximum number of controllable axe Origin search method} & & hcremental／Semi & －absolute & \multicolumn{2}{|l|}{Absolutel／ncremental} \\
\hline \multicolumn{7}{|l|}{\(\square\) Ordering method} \\
\hline \multicolumn{4}{|l|}{RCX221／RCX221HP} & \multicolumn{3}{|l|}{RCX222／RCX222HP} \\
\hline RCX221 & & & & RCX222 & & \\
\hline Concoum－－ue & & － & muoumesmesm & & & －manomusmeame \\
\hline & 为 & & \begin{tabular}{|l|}
\hline No entry：None \\
\hline N1：OPP．DIO24／16（NPN） \\
\hline P1：OP．DIO24／16（PNP） \\
\hline
\end{tabular} & & & \begin{tabular}{|l|}
\hline No entry：None \\
\hline N1：OP．DIO24／16（NPN） \\
\hline P1：OP．DIO24／17（PNP） \\
\hline
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Note 1．Driver selection and regenerative unit selection depends on the robot type． \\
Note 2．The Specification selection table on following page． \\
by YAMAHA or a load with a
Note 3．Available only for the master．
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Note 1．Driver selection and regenerative unit selection depends on the robot type．
See Specification selection table on following page．
Note 2．The regenerative unit（option）is required when operating a model designated \\
Note 2．The regenerative unit（option）is required wh
by YAMAHA or a load with a large inertia．
Note 3．Available only for the master．
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & RCX221 & RCX221HP & RCX222 & RCX222HP \\
\hline & STD DIO & I／O input & \multicolumn{4}{|l|}{Dedicated input 10 points，General input 16 points} \\
\hline & STD．DIO & I／O output & \multicolumn{4}{|l|}{Dedicated Output12 points，General output 8 points} \\
\hline & \multicolumn{2}{|l|}{SAFETY} & \multicolumn{4}{|l|}{Emergency stop input（Relay contact），Service mode input（NPN／PNP specification is set according to STD． DIO setting）} \\
\hline & \multicolumn{2}{|l|}{Brake output} & \multicolumn{4}{|l|}{Relay contact} \\
\hline 言 & \multicolumn{2}{|l|}{Origin sensor input} & \multicolumn{4}{|l|}{Connectable to DC 24 V normally－closed contact sensor} \\
\hline \(\stackrel{5}{0}\) & \multicolumn{2}{|l|}{External communications} & \multicolumn{4}{|l|}{RS232C：1CH D－SUB9（female）RS422 ：1CH（RPB）} \\
\hline 号 & & Slots & \multicolumn{4}{|l|}{2 （inc．STD．DIO）} \\
\hline \(\stackrel{.}{\square}\) & & & \multicolumn{4}{|l|}{\begin{tabular}{l}
STD．DIO（NPN／PNP）： \\
Dedicated input 10 points，Dedicated output 12 points，General input 16 points，General output 8 points
\end{tabular}} \\
\hline \(\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}\) & & & \multicolumn{4}{|l|}{Optional input／output（NPN／PNP）：General input 24 points／General output 16 points} \\
\hline & Options & Type & \multicolumn{4}{|l|}{\begin{tabular}{l}
CC－Link： \\
Dedicated input 16 points，Dedicated output 16 points，General input 96 points，General output 96 points（ 4 nodes occupied）
\end{tabular}} \\
\hline & & & \multicolumn{4}{|l|}{\begin{tabular}{l}
DeviceNet \({ }^{\text {TM }}\) ： \\
Dedicated input 16 points，Dedicated output 16 points，General input 96 points，General output 96 points
\end{tabular}} \\
\hline & & & \multicolumn{4}{|l|}{\begin{tabular}{l}
PROFIBUS： \\
Dedicated input 16 points，Dedicated output16 points，General input 96 points，General output 96 points
\end{tabular}} \\
\hline ¢ & \multicolumn{2}{|l|}{Programming box} & \multicolumn{4}{|l|}{RPB，RPB－E（with enable switch）} \\
\hline － & \multicolumn{2}{|l|}{Support software for PC} & \multicolumn{4}{|l|}{VIP＋／VIP} \\
\hline の & \multicolumn{2}{|l|}{Operating temperature} & \multicolumn{4}{|l|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\)} \\
\hline － & \multicolumn{2}{|l|}{Storage temperature} & \multicolumn{4}{|l|}{\(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\)} \\
\hline ¢ & \multicolumn{2}{|l|}{Operating humidity} & \multicolumn{4}{|l|}{\(35 \%\) to 85\％RH（non－condensing）} \\
\hline ¢ & \multicolumn{2}{|l|}{Absolute backup battery} & \multicolumn{2}{|l|}{－} & \multicolumn{2}{|l|}{Lithium metallic battery \(3.6 \mathrm{~V} 5400 \mathrm{mAH}(2700 \mathrm{nAH} \times 2)\)} \\
\hline － & \multicolumn{2}{|l|}{Absolute data backup period} & \multicolumn{2}{|l|}{－} & \multicolumn{2}{|l|}{1 year（in state with no power applied）} \\
\hline \(\stackrel{\text { ¢ }}{\substack{0}}\) & \multicolumn{2}{|l|}{Noise immunity} & \multicolumn{4}{|l|}{IEC61000－4－4 Level3} \\
\hline \(\bigcirc\) & \multicolumn{2}{|l|}{Protecting structure} & \multicolumn{4}{|l|}{IP10} \\
\hline
\end{tabular}

RCX221

\section*{RCX222}

\section*{Part names}

Note. Photograph shows RCX222. The component names on the RCX221 are the same but it does not come with an absolute backup battery

\section*{Regenerative unit RG2}

Note. Depth (D) is 158 mm . Installs on the right side of the RCX221 (HP), RCX222 (HP). Cannot be installed as a separate unit.

\section*{\(\square\) Specification selection table}

The robot type automatically determines the normal specifications or HP specifications.

\section*{Power capacity}

Required power supply capacity varies according to the robot type and number of axes. Prepare a power supply using the following table as a general guide.

\section*{When connected to 2 axes (Cartesian}
robot or multi-axis robot)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Axial current sensor value} & \multirow[b]{2}{*}{Power capacity (VA)} \\
\hline X axis & Y axis & \\
\hline 05 & 05 & 500 \\
\hline 10 & 05 & 700 \\
\hline 10 & 10 & 900 \\
\hline 20 & 05 & 1500 \\
\hline 20 & 10 & 1700 \\
\hline 20 & 20 & 2000 \\
\hline 20 & 20 & 2400 (HP) \\
\hline
\end{tabular}

Note. Even if axial current sensor values for each axis are interchanged no problem will occur.

Motor capacity vs. current sensor table
\begin{tabular}{c|c}
\hline \begin{tabular}{c}
Connected motor \\
capacity
\end{tabular} & Current sensor \\
\hline 100 W or less & 05 \\
\hline 200 W & 10 \\
\hline 400 W or more & 20 \\
\hline
\end{tabular}

Note. Motor output of the B14H is 200W but the current sensor is 05 .

\section*{Conditions where regenerative} unit is needed on multi robots
- Motor capacity exceeds a total of 450W.
- Motor capacity for perpendicular axis exceeds a total of 240W.
- The following conditions apply when perpendicular axis capacity is 240 W or less. - perpendicular axis is 200W.
- perpendicular axis is 100 W and stroke is 700 mm or more.
- there are 2 perpendicular axes at 100 W , and includes leads of 5 mm .
- B14H which maximum speed exceeds 1250 mm per second.

\section*{Installation conditions}
- Install the RCX221/RCX222 inside the control panel.
- Install the RCX221/RCX222 on a flat, level surface.
- Install the RCX221/RCX222 in a well ventilated location, with space on all sides of the RCX221/RCX222
(See fig. at right.).
- Do not block the heat-sink on the side panel.
- Do not block the fan on the bottom of the controller.
- Ambient temperature : 0 to \(40^{\circ} \mathrm{C}\)
- Ambient humidity \(: 35\) to \(85 \%\) RH (no condensation)

Provide the same space dimensions for RCX222.

Example of input signal connection

Example of output signal connection

\section*{Emergency input signal connections}
- Connection when using the standard RPB with an external emergency stop circuit (1)

Connection when using the standard RPB with an external emergency stop circuit (2)

SAFETY connector signals
\begin{tabular}{c|l|l}
\hline \begin{tabular}{c}
Terminal \\
number
\end{tabular} & \multicolumn{1}{|c|}{ I/O No. } & \multicolumn{1}{c}{ Name } \\
\hline 1 & DI.COM & Dedicated input common \\
\hline 2 & INTERLOCK & Interlock signal \\
\hline 3 & SERVICE & SERVICE mode input \\
\hline 4 & DO.COM & Dedicated output common \\
\hline 5 & MPRDY & Main power supply ready \\
\hline 6 & SERVO OUT & Servo-on state output \\
\hline 7 & NC & No connection \\
\hline 8 & KEY1 & RPB key switch contact \\
\hline 9 & KEY2 & RPB key switch contact \\
\hline 10 & 24VGND & EMG 24V, GND \\
\hline
\end{tabular}
\begin{tabular}{c|l|l}
\hline \begin{tabular}{c}
Terminal \\
number
\end{tabular} & \multicolumn{1}{|c|}{ I/O No. } & \multicolumn{1}{c}{ Name } \\
\hline 11 & EMG24V & Power supply for emergency stop input \\
\hline 12 & EMGRDY & Emergency stop ready signal \\
\hline 13 & EMGIN1 & Emergency stop input 1 \\
\hline 14 & EMGIN2 & Emergency stop input 2 \\
\hline 15 & EMGIN3 & Emergency stop input 3 \\
\hline 16 & EMGIN4 & Emergency stop input 4 \\
\hline 17 & LCKIN1 & Enable switch input 1 \\
\hline 18 & LCKIN2 & Enable switch input 2 \\
\hline 19 & LCKIN3 & Enable switch input 3 \\
\hline 20 & LCKIN4 & Enable switch input 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { S혈 } \\
& 3
\end{aligned}
\]} & \multirow[t]{2}{*}{Terminal number} & \multirow[t]{2}{*}{Signal name} & \multicolumn{2}{|r|}{Name} \\
\hline & & & RCX221 & RCX222 \\
\hline & 1 & DI01 & Servo ON & \\
\hline & 2 & DI10 & Sequence program cont & \\
\hline & 3 & DI03 & Step run & \\
\hline \(\bigcirc\) & 4 & CHK1 & Check input 1 & \\
\hline & 5 & DI05 & I／O command run & \\
\hline & 6 & DI06 & Spare \({ }^{\text {Note } 1}\) & \\
\hline O & 7 & DI07 & Spare \({ }^{\text {Note } 1}\) & \\
\hline O & 8 & DI20 & General input 20 & \\
\hline \％ & 9 & DI21 & General input 21 & \\
\hline & 10 & DI22 & General input 22 & \\
\hline & 11 & DI23 & General input 23 & \\
\hline & 12 & DI24 & General input 24 & \\
\hline \％ & 13 & DI25 & General input 25 & \\
\hline & 14 & DI26 & General input 26 & \\
\hline Pr & 15 & DI27 & General input 27 & \\
\hline & 16 & DO00 & EMG monitor（emergenc & cy stop monitor） \\
\hline \(\times\) & 17 & DO01 & CPU OK & \\
\hline & 18 & DO10 & AUTO mode & \\
\hline & 19 & DO11 & Return－to－origin comple & \\
\hline 5 & 20 & DO12 & Sequence program in pross & rogress \\
\hline 䫆 & 21 & DO13 & Auto operation in progre & \\
\hline & 22 & DO14 & Program reset output & \\
\hline & 23 & DO15 & Battery alarm output \({ }^{\text {Noele }}\) & \\
\hline ， & 24 & DO16 & END & \\
\hline \(\times{ }^{\circ}\) & 25 & DO17 & BUSY & \\
\hline & 26 & DI12 & Auto operation start & \\
\hline & 27 & DI13 & AUTO mode switching & \\
\hline & 28 & DI14 & ABS reset（Not in use normally） & Return－to－origin \({ }^{\text {Note } 3}\) \\
\hline \(\times\) & 29 & DI15 & Program reset & \\
\hline & 30 & DI16 & MANUAL mode & \\
\hline & 31 & D117 & Return－to－origin（In use normaly） & ABS reset \({ }^{\text {Note } 4}\) \\
\hline \％ & 32 & DI30 & General input 30 & \\
\hline \(\times\) & 33 & DI31 & General input 31 & \\
\hline & 34 & DI32 & General input 32 & \\
\hline & 35 & DI33 & General input 33 & \\
\hline m & 36 & DI34 & General input 34 & \\
\hline 3 & 37 & DI35 & General input 35 & \\
\hline & 38 & DI36 & General input 36 & \\
\hline 8 & 39 & DI37 & General input 37 & \\
\hline 析 & 40 & CHK2 & Check input 2 & \\
\hline O & 41 & DO02 & Servo－on state & \\
\hline 亭 & 42 & DO03 & Alarm & \\
\hline & 43 & DO20 & General output 20 & \\
\hline 웅 & 44 & DO21 & General output 21 & \\
\hline 圭 & 45 & DO22 & General output 22 & \\
\hline \(\stackrel{1}{2}\) & 46 & DO23 & General output 23 & \\
\hline & 47 & DO24 & General output 24 & \\
\hline & 48 & DO25 & General output 25 & \\
\hline & 49 & DO26 & General output 26 & \\
\hline & 50 & DO27 & General output 27 & \\
\hline
\end{tabular}

\footnotetext{
Note 1．Use of DI06，DI07 is prohibited
Note 2．DO15 is a memory backup battery voltage drop alarm output．
Note 3．Set origin return for axes using incremental specifications and axes using semi－ absolute specifications．
Note 4．Set origin return on axes using absolute specifications．
}

Area check output can be assigned to DO20 to DO157．
（Area check output assignment differs depending on the controller software version．See the user＇s manual for details．）

Option I／O［connector name：OP．DIO1 signal table
\begin{tabular}{c|l|l}
\hline \begin{tabular}{c}
Terminal \\
number
\end{tabular} & \begin{tabular}{l}
Signal \\
name
\end{tabular} & \\
\hline 1 & - & Spare \\
\hline 2 & DI40 & General input \\
\hline 3 & - & Spare \\
\hline 4 & DI41 & General input \\
\hline 5 & - & Spare \\
\hline 6 & - & Spare \\
\hline 7 & - & Spare \\
\hline 8 & DI50 & General input \\
\hline 9 & DI51 & General input \\
\hline 10 & DI52 & General input \\
\hline 11 & DI53 & General input \\
\hline 12 & DI54 & General input \\
\hline 13 & DI55 & General input \\
\hline 14 & DI56 & General input \\
\hline 15 & DI57 & General input \\
\hline 16 & - & Spare \\
\hline 17 & - & Spare \\
\hline 18 & DO30 & General output \\
\hline 19 & DO31 & General output \\
\hline 20 & DO32 & General output \\
\hline 21 & DO33 & General output \\
\hline 22 & DO34 & General output \\
\hline 23 & DO35 & General output \\
\hline 24 & DO36 & General output \\
\hline 25 & DO37 & General output \\
\hline 26 & DI42 & General input \\
\hline 27 & DI43 & General input \\
\hline 28 & DI44 & General input \\
\hline 29 & DI45 & General input \\
\hline 30 & DI46 & General input \\
\hline 31 & DI47 & General input \\
\hline 32 & DI60 & General input \\
\hline 33 & DI61 & General input \\
\hline 34 & DI62 & General input \\
\hline 35 & DI63 & General input \\
\hline 36 & DI64 & General input \\
\hline 37 & DI65 & General input \\
\hline 38 & DI66 & General input \\
\hline 39 & DI67 & General input \\
\hline 40 & - & Spare \\
\hline 41 & - & Spare \\
\hline 42 & - & Spare \\
\hline 43 & DO40 & General output \\
\hline 44 & DO41 & General output \\
\hline 45 & DO42 & General output \\
\hline 46 & DO43 & General output \\
\hline 47 & DO44 & General output \\
\hline 48 & DO45 & General output \\
\hline 49 & DO46 & General output \\
\hline 50 & DO47 & General output \\
\hline & & \\
\hline 1
\end{tabular}

\section*{Robot Language Table}

\section*{General commands}
\begin{tabular}{|c|c|}
\hline Language & Function \\
\hline DECLARE & Declares that a label or sub-procedure is in an external program. \\
\hline DEF FN & Defines a function that is available to the user. \\
\hline DIM & Declares the name of an array variable and the number of elements. \\
\hline EXIT FOR & Terminates a FOR statement to NEXT statement loop. \\
\hline FOR to NEXT & Controls repetitive operations \\
\hline GOSUB to RETURN & Jumps to a subroutine with the label specified by a GOSUB statement and executes the subroutine. \\
\hline GOTO & Unconditionally jumps to the line specified by a label. \\
\hline HALT & Stops a program and resets it. \\
\hline HOLD & Pauses a program. \\
\hline IF & Allows control flow to branch according to conditions. \\
\hline LET & Executes a specified assignment statement. \\
\hline ON to GOSU & Jumps to a subroutine with each label specified by a GOSUB statement according to conditions and executes the subroutine. \\
\hline ON to GOTO & Jumps to each line specified by a label according to conditions. \\
\hline REM & All characters that follow REM or an apostrophe (') are viewed as comments. \\
\hline SELECT CASE to END SELECT & Allows control flow to branch according to conditions. \\
\hline SWI & Switches the currently executed program to a specified program, and executes from the first line after compiling. \\
\hline WHILE to WEND & Controls repetitive operations. \\
\hline Label statement & Defines "labels" in program lines. \\
\hline \multicolumn{2}{|l|}{Robot operation} \\
\hline Language & Function \\
\hline ABSRST & Performs return-to-origin along robot absolute motor axes. \\
\hline DRIVE & Performs an absolute movement of each axis in the main group. \\
\hline DRIVEI & Performs a relative movement of each axis in the main group. \\
\hline MOVE & Performs an absolute movement of the main robot axes. \\
\hline MOVEI & Performs a relative movement of the main robot axes. \\
\hline ORIGIN & Performs return-to-origin on an incremental mode axis or absolute search on a semi-absolute mode axis. \\
\hline PMOVE & Performs a pallet movement of the main robot axes. \\
\hline SERVO & Controls the servo ON/OFF of the specified axes in the main group or all axes (in main group and sub group). \\
\hline \multicolumn{2}{|l|}{I/O control} \\
\hline Language & Function \\
\hline DELAY & Waits for the specified length of time (ms). \\
\hline DO & Outputs the specified value to the DO ports. \\
\hline LO & Outputs the specified value to the LO port to prohibit axis movement or permit axis movement. \\
\hline MO & Outputs the specified value to the MO ports. \\
\hline OUT & Turns ON the bits of the specified output ports and the command statement ends. \\
\hline RESET & Turns OFF the bits of the specified output ports. \\
\hline SET & Turns ON the bits of the specified output ports \\
\hline SO & Outputs the specified value to the SO port. \\
\hline TO & Outputs the specified value to the TO port. \\
\hline WAIT & \begin{tabular}{l}
1. Waits until the condition in DI/DO conditional expression are met. \\
2. Waits until positioning on the robot axes is complete (within the tolerance range).
\end{tabular} \\
\hline
\end{tabular}

\section*{Coordinate control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline CHANGE & Switches the hand of the main robot. \\
\hline HAND & Defines the hand of the main robot. \\
\hline \begin{tabular}{c}
RIGHTY / \\
LEFTY
\end{tabular} & \begin{tabular}{l}
Selects whether the main robot will be "right-handed" \\
or "left-handed" when moving to a point specified on a \\
Cartesian coordinate system.
\end{tabular} \\
\hline SHIFT & \begin{tabular}{l}
Sets the shift coordinates for the main robot by using the \\
shift data specified by a shift variable.
\end{tabular} \\
\hline
\end{tabular}

\section*{Condition change}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline ACCEL & Changes the acceleration coefficient parameter of the main group. \\
\hline ARCH & Changes the arch position parameter of the main group. \\
\hline ASPEED & Changes the automatic movement speed of the main group. \\
\hline AXWGHT & Changes the axis tip weight parameter of the main group. \\
\hline DECEL & Changes the deceleration rate parameter of the main group. \\
\hline ORGORD & \begin{tabular}{l}
Sets the axis sequence parameter to perform return-to- \\
origin and absolute search in the main group.
\end{tabular} \\
\hline OUTPOS & Changes the OUT position parameter of the main group. \\
\hline PDEF & Defines the pallet used to execute a pallet movement command. \\
\hline SPEED & Changes the program speed for the main group. \\
\hline TOLE & Changes the tolerance parameter of the main group. \\
\hline WEIGHT & Changes the tip weight parameter of the main robot. \\
\hline
\end{tabular}

\section*{Communication control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline ONLINE / & \begin{tabular}{l}
Changes communication mode and initialize the \\
OFFLINE \\
communication port.
\end{tabular} \\
\hline SEND & Sends the read file data into a write file. \\
\hline
\end{tabular}

\section*{Screen control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline PRINT & Displays the value of specified variable on the MPB/RPB screen.
\end{tabular}

Key control
Language
Function
INPUT Assigns a value to the variable specified from the MPB/RPB.
Procedure
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline CALL & \begin{tabular}{l}
Calls up sub-procedures defined by the SUB and END \\
SUB statements.
\end{tabular} \\
\hline EXIT SUB & \begin{tabular}{l}
Terminates the sub-procedure defined by the SUB and \\
END SUB statements.
\end{tabular} \\
\hline SHARED & \begin{tabular}{l}
Does not permit variables declared with a program \\
written outside a subprocedure (SUB to END SUB) to be \\
passed on as dummy arguments, but allows them to be \\
referred to with a sub-procedure.
\end{tabular} \\
\hline
\end{tabular}

SUB to END SUB Defines a sub-procedure.

\section*{Task control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline CHGPRI & Changes the priority of the specified task. \\
\hline CUT & \begin{tabular}{l}
Terminates a task currently being executed or temporarily \\
stopped.
\end{tabular} \\
\hline EXIT TASK & Terminates its own task currently being executed. \\
\hline RESTART & Restarts a task that is temporarily stopped. \\
\hline START & \begin{tabular}{l}
Sets the task number and priority of the specified task \\
and starts that task.
\end{tabular} \\
\hline SUSPEND & Temporarily stops another task being executed. \\
\hline
\end{tabular}

\section*{Error control}

\section*{Language}

ON ERROR GOTO

\section*{RESUME}

ERL
ERR

\section*{PATH control}

\section*{Language}

PATH Sunction
PATH END Sets the PATH motion on the main robot axis.
Terminates the path setting for PATH motion.
Starts the path setting for PATH motion
PATH START Starts the PATH motion.

\section*{Torque control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline \begin{tabular}{c}
DRIVE \\
(with torque limit option) \()\)
\end{tabular} & \begin{tabular}{l}
Executes an absolute movement command on each axis \\
in the main group.
\end{tabular} \\
\hline TORQUE & \begin{tabular}{l}
Changes the maximum torque instruction for the \\
specified main group axis.
\end{tabular} \\
\hline TRQTIME & \begin{tabular}{l}
Sets the current limit time-out period on the specified \\
main group axis when using a torque limit setting option \\
in the DRIVE statement.
\end{tabular} \\
\hline TRQTIME & \begin{tabular}{l}
Sets the current limit time-out period on the specified \\
main group axis when using a torque limit setting option \\
in the DRIVE statement.
\end{tabular} \\
\hline
\end{tabular}

\title{
Accessories and part options RCX221/RCX222
}

Standard accessories

\section*{Power connector + wiring connection lever}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & LCC140 \\
\hline & & TS-X \\
\hline & & TS-P \\
\hline & & SR1-X \\
\hline Model & KAS-M5382-00 & SR1-P \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & RCX320 \\
\hline & & RCX221 \\
\hline & & RCX222 \\
\hline & & RCX340 \\
\hline
\end{tabular}

\section*{L type stay \\ (for installing front side, rear side.)}

Use to install the controller.

RCX221
RCX222
(Two are required to install one controller.)

RCX221
\begin{tabular}{l|l|l|}
\hline Model & KAS-M5370-00 & RCX221 \\
\hline
\end{tabular}

Safety connector

RCX222

\begin{tabular}{|c|c|c|}
\hline & & RCX221 \\
\hline Model & KAS-M533G-00 & RCX222 \\
\hline
\end{tabular}

Option I/O (OP.DIO) connector

\begin{tabular}{l|l}
\hline Model & KAS-M533G-10 \\
\hline
\end{tabular}
- Absolute battery

Battery for absolute data back-up.
(Not included with the RCX221)
Basic specifications
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ Absolute battery } \\
\hline Battery type & Lithium metallic battery \\
\hline Battery capacity & \(3.6 \mathrm{~V} / 2,700 \mathrm{mAh}\) \\
\hline Data holding time & \begin{tabular}{l}
About 1 year Note1 \\
(in state with no power applied)
\end{tabular} \\
\hline Dimensions & \(\phi 17 \times\) L53mm \\
\hline Weight \({ }^{\text {Note2 }}\) & 21 g \\
\hline
\end{tabular}

\begin{tabular}{l|l|l|}
\hline Model & KAS-M53G0-12 & \\
\hline Note 1. When using 2 batteries. & & SR1-X \\
\begin{tabular}{ll}
Note 2. Weight of battery itself. \\
Note. The absolute battery is subject to wear and
\end{tabular} & & RCX222 \\
\hline
\end{tabular}

Note 2. Weight of battery itself.
requires replacement.
If trouble occurs with the memory then remaining
battery life is low so replace the absolute battery
The battery replacement period depends on usage conditions. But generally you should replace age conditions. But generally you should replace the batter connecting to the controller and left without turning on the power.

Note. Absolute battery is not required for either of the 2 axes if using incremental or semi-absolute specifications.

\section*{Options}

\section*{Programming box} RPB/RPB-E
This device can perform all operations such as manual robot operation, program entry and edit, teaching and parameter settings.

\begin{tabular}{l|c|c}
\hline & RPB & RPB-E \\
& \\
\hline Model & KBK-M5110-10 & KBK-M5110-00 \\
\hline \begin{tabular}{l}
Enable \\
switch
\end{tabular} & - & RCX221 \\
\cline { 1 - 3 } \begin{tabular}{ll}
CE marking
\end{tabular} & Not supported & Applicable \\
\hline
\end{tabular}

\section*{Support software for PC R492 VIP+}

VIP+ is a simple to use application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

- Environment
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows 2000, XP (32bit), Vista, 7, \\
10 (Supported version: V.2.8.4 or later)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested \\
requirements for the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 40 MB of available space required on installation drive. \\
\hline Communication method & RS-232C \\
\hline Applicable robot controllers & RCX22x / 240 \\
\hline Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries. \\
Note. ADOBE and ADOBE READER are registered trademarks of Adobe Systems Incorporated.
\end{tabular}

\section*{Data cables}

Communication cable for VIP+.
Select from USB cable or D-sub cable.

Note. This USB cable supports Windows 2000/XP or later. Note. Data cable jointly used for POPCOM \({ }^{+}\), VIP + , RCX-Studio Pro and RCX-Studio 2020.
Note. USB driver for communication cable can also be downloaded from our website.

\title{
RCX340
}

Robot controller with advanced functions

\section*{Basic specifications}

\section*{}

\section*{Ordering method}

RCX340

 No entry: Non-selection NS : STD.DIO(NPN) Note 1 Note 4 4
NE : EXP.DIO(NPN) \({ }^{\text {Note 2 Note } 4} 4\) \begin{tabular}{|l|}
NE : EXP.DIO(NPN) Note 2 Note 4 \\
\hline PS : STD.DIO(PNP) \\
\hline PE : EXPDIO(PNP) Note 1 Note 4 \\
\hline 2Note 4 \\
\hline
\end{tabular} \begin{tabular}{l}
PS: STD.DIO(PNP) Note Note 4 \\
\hline PE : EXP.DIO(PNP) Note 2 Note 4 \\
\hline GR: Gripper
\end{tabular} \begin{tabular}{|l|}
\hline GR: Gripper \\
\hline TR: Tracking \\
\hline
\end{tabular} YM1 : YC-Link/E master Note 6 YS2 to 4: YC-Link/E slave Note 6 PB : EtherNet/IP \({ }^{\text {TM }}\) Nolit CC: CC-Link Note 7 \begin{tabular}{l}
CC: CC-Link Note 7 \\
\hline DN: DeviceNet \({ }^{\text {TM Note } 7}\) \\
\hline PT
\end{tabular} PT : PROFINET \({ }^{\text {Note } 7}\) ES: EtherCAT Note 7

Please select desired selection items from the upper portion of the controller option \(A\) in order.
Note 1. [STD.DIO] Parallel I/O board standard specifications
Dedicated input 8 points, dedicated output 9 points, general-purpose input 16 points, general-purpose output 8 points Do not mix with field bus (CC/DN/PB/EP/PT/ES).
Note 2. [EXP.DIO] Parallel I/O board expansion specifications
General-purpose input 24 points, general-purpose output 16 points
Note 3. Only one DIO STD specification board can be selected. Therefore, this board cannot be selected in OP.B to OP.D. Note 4. Select either NPN or PNP in DIO.
Note 5. Only one tracking board can be selected.
Note 6. Select only one master or slave board for YC-Link/E.
For details, refer to "YC-Link/E ordering explanation" below.
Additionally, when ordering YC-Link/E, please specify what robot is connected to what number controller
Note 7. Select only one fieldbus in a controller (CC/DN/PB/EP/PT/ES).

\begin{tabular}{l}
\(\begin{array}{c}\text { Controller option D } \\
\text { (OP.D) }\end{array}\) \\
No entry: Non-selection \\
\hline
\end{tabular} -- No: EXP.DIO(NPN) Note 2 Note 2 NE: EXP.DIO(NPN) Note 2 Note PE : EXP.DIO(PNP) \({ }^{\text {Note } 2 \text { Note } 4}\) GR: Gripper YM1 : YC-Link/E master Note YS2 to 4:
YC-Link/E slave \({ }^{\text {Note } 6}\) P : EtherNet/IP \({ }^{\text {TM }}\) Note PB: PROFIBUS Not DN: DeviceNet \({ }^{\text {TM }}\) Note 7 DN: DROFINET Note 7 ES: EtherCAT \({ }^{\text {Note }} 7\)

Controller op
(OP.E)

No entry: Non-selection WY: with RCXiVY without lighting with lighting

4: 4 pcs.
\begin{tabular}{l}
3: 3 pcs. \\
2: 2 pcs. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline 2: 2 pcs \\
\hline 1:1 pc. \\
\hline
\end{tabular}
\begin{tabular}{l}
1:1 pc. \\
\hline \(0: 0 \mathrm{pc}\). \\
\hline
\end{tabular}

\begin{tabular}{l|l|l}
\multicolumn{1}{c|}{ Item } & \\
\hline
\end{tabular}

Note. There are four slots in which option boards can be insted
YC-Link/E ordering explanation

Controller 2 Slave
YS2

Controller 3 Slave
YS3

Controller 4 Slave
YS4

\section*{Dimensions}

\section*{Power supply capacity and heat emission}

The required power supply capacity and heat emission will vary depending on the robot type and number of axes.
Using the following table as a general guide consider the required power supply preparation and control panel size, controller installation, and cooling method.
(1) When connected to SCARA robot
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Robot type} & \multirow[t]{2}{*}{Power capacity (VA)} & \multirow[t]{2}{*}{Generated heat amount (W)} \\
\hline Standard type & Clean type & Dust-proof \& drip-proof type & Ceiling-mount & Wall-mount / Inverse type & & \\
\hline YK120XG, YK150XG & - & - & - & - & 300 & 58 \\
\hline \[
\begin{aligned}
& \text { YK180XG, YK180X } \\
& \text { YK220X }
\end{aligned}
\] & YK180XC, YK220XC & - & - & - & 500 & 63 \\
\hline YK250XG, YK350XG YK400XG, YK500XGL YK600XGL, YK400XE-4 & YK250XCH, YK350XCH
YK400XCH, YK250XGC
YK350XGC, YK400XGC
YK500XGLC, YK600XGLC & YK250XGP, YK350XGP YK400XGP, YK500XGLP YK600XGLP & - & YK300XGS, YK400XGS & 1000 & 75 \\
\hline - & YK500XC, YK600XC & - & - & - & 1500 & 88 \\
\hline \begin{tabular}{l}
YK500XE-10, YK500XG \\
YK610XE-10, YK600XG \\
YK710XE-10, YK700XGL
\end{tabular} & - & YK500XGP, YK600XGP & & YK500XGS, YK600XGS & 1700 & 93 \\
\hline - & \[
\begin{aligned}
& \text { YK700XC, YK800XC } \\
& \text { YK1000XC }
\end{aligned}
\] & - & - & - & 2000 & 100 \\
\hline \begin{tabular}{l}
YK600XGH, YK700XG \\
YK800XG, YK900XG \\
YK1000XG, YK1200X
\end{tabular} & - & YK600XGHP, YK700XGP YK800XGP, YK900XGP YK1000XGP & \[
\begin{aligned}
& \text { YK350TW } \\
& \text { YK500TW }
\end{aligned}
\] & YK700XGS, YK800XGS YK900XGS, YK1000XGS & 2500 & 113 \\
\hline
\end{tabular}
(2) When connected to 2 axis (Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{|c|}{ Axial current sensor value Note }
\end{tabular} \begin{tabular}{c}
Power capacity \\
(VA)
\end{tabular}\(\quad\)\begin{tabular}{c}
Generated heat \\
amount (W)
\end{tabular}
(3) When connected to 3 axis (Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{3}{c|}{ Axial current sensor value Note } & \multirow{2}{*}{\begin{tabular}{c}
Power capacity \\
(VA)
\end{tabular}} & \begin{tabular}{c}
Generated heat \\
amount (W)
\end{tabular} \\
\hline X axis & Y axis & Z axis & 700 & 68 \\
\hline 05 & 05 & 05 & 900 & 73 \\
\hline 10 & 05 & 05 & 1200 & 80 \\
\hline 20 & 05 & 05 & 1000 & 75 \\
\hline 10 & 10 & 05 & 1300 & 83 \\
\hline 20 & 10 & 05 & 1600 & 90 \\
\hline 20 & 20 & 05 & 1200 & 80 \\
\hline 10 & 10 & 10 & 1500 & 88 \\
\hline 20 & 10 & 10 & 1800 & 95 \\
\hline 20 & 20 & 10 & 2000 & 100 \\
\hline 20 & 20 & 20 & & \\
\hline
\end{tabular}
(4) When connected to 4 axis (Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c|c|c}
\hline \multicolumn{4}{c}{ Axial current sensor value Note } & Power capacity & \begin{tabular}{c}
Cenerated heat \\
(VA)
\end{tabular} \\
\cline { 1 - 4 } X axis & Y axis & Z axis & R axis & \begin{tabular}{c}
(W)
\end{tabular} \\
\hline 05 & 05 & 05 & 05 & 800 & 70 \\
\hline 10 & 05 & 05 & 05 & 1000 & 75 \\
\hline 20 & 05 & 05 & 05 & 1200 & 80 \\
\hline 10 & 10 & 05 & 05 & 1100 & 78 \\
\hline 20 & 10 & 05 & 05 & 1400 & 85 \\
\hline 20 & 20 & 05 & 05 & 1600 & 90 \\
\hline 10 & 10 & 10 & 05 & 1300 & 83 \\
\hline 20 & 10 & 10 & 05 & 1500 & 88 \\
\hline 20 & 20 & 10 & 05 & 1800 & 95 \\
\hline 20 & 20 & 20 & 05 & 2100 & 103 \\
\hline 10 & 10 & 10 & 10 & 1400 & 85 \\
\hline 20 & 10 & 10 & 10 & 1700 & 93 \\
\hline 20 & 20 & 10 & 10 & 2000 & 100 \\
\hline 20 & 20 & 20 & 10 & 2200 & 105 \\
\hline 20 & 20 & 20 & 20 & 2500 & 113 \\
\hline
\end{tabular}

\footnotetext{
Note. Even if axial current sensor values for each axis are interchanged no problem will
} occur.

\section*{Installation conditions}
- Use the screws to secure the controller to the installation plate inside the control panel so that it is in a horizontal position. Be sure to use the metallic installation plate.
- Install the RCX340 in a well ventilated location, with space on all sides of the RCX340 (See fig. at right.).
- Ambient temperature : 0 to \(40^{\circ} \mathrm{C}\)
- Ambient humidity \(: 35\) to \(85 \% \mathrm{RH}\) (no condensation)

Standard specification I/O connector signal list
\begin{tabular}{|c|c|c|c|}
\hline Pin & I/O No. & Signal name & Remarks \\
\hline 1 & DI 01 & Dedicated input: Servo ON input & \\
\hline 2 & DI 10 & Dedicated input: Sequence control & \\
\hline 3 & DI 03 & Spare & Do not use. \\
\hline 4 & CHK 1 & Check signal 1 & Short-circuit with CHK2. \\
\hline 5 & DI 05 & Spare & Do not use. \\
\hline 6 & DI 06 & Dedicated input: Stop & \\
\hline 7 & DI 07 & Spare & Do not use. \\
\hline 8 & DI 20 & General-purpose input 20 & \\
\hline 9 & DI 21 & General-purpose input 21 & \\
\hline 10 & DI 22 & General-purpose input 22 & \\
\hline 11 & DI 23 & General-purpose input 23 & \\
\hline 12 & DI 24 & General-purpose input 24 & \\
\hline 13 & DI 25 & General-purpose input 25 & \\
\hline 14 & DI 26 & General-purpose input 26 & \\
\hline 15 & DI 27 & General-purpose input 27 & \\
\hline 16 & DO 00 & Spare & Do not use. \\
\hline 17 & DO 01 & Dedicated output CPU OK & \\
\hline 18 & DO 10 & Dedicated output AUTO mode output & \\
\hline 19 & DO 11 & Dedicated output Return-to-origin complete & \\
\hline 20 & DO 12 & Dedicated output Sequence program-in-progress & \\
\hline 21 & DO 13 & Dedicated output Robot program-in-progress & \\
\hline 22 & DO 14 & Dedicated output Program reset status output & \\
\hline 23 & DO 15 & Dedicated output Warning output & \\
\hline 24 & DO 16 & Spare & Do not use. \\
\hline 25 & DO 17 & Spare & Do not use. \\
\hline 26 & DI 12 & Dedicated input: Automatic operation start & \\
\hline 27 & DI 13 & Spare & Do not use. \\
\hline 28 & DI 14 & Dedicated input: Return-to-origin (for INC axis) & \\
\hline 29 & DI 15 & Dedicated input: Program reset input & \\
\hline 30 & DI 16 & Dedicated input: Alarm reset input & \\
\hline 31 & DI 17 & Dedicated input: Return-to-origin (for ABS axis) & \\
\hline 32 & DI 30 & General-purpose input 30 & \\
\hline 33 & DI 31 & General-purpose input 31 & \\
\hline 34 & DI 32 & General-purpose input 32 & \\
\hline 35 & DI 33 & General-purpose input 33 & \\
\hline 36 & DI 34 & General-purpose input 34 & \\
\hline 37 & DI 35 & General-purpose input 35 & \\
\hline 38 & DI 36 & General-purpose input 36 & \\
\hline 39 & DI 37 & General-purpose input 37 & \\
\hline 40 & CHK 2 & Check signal 2 & Short-circuit with CHK1. \\
\hline 41 & DO 02 & Dedicated output: Servo ON output & \\
\hline 42 & DO 03 & Dedicated output: Alarm output & \\
\hline 43 & DO 20 & General-purpose output 20 & \\
\hline 44 & DO 21 & General-purpose output 21 & \\
\hline 45 & DO 22 & General-purpose output 22 & \\
\hline 46 & DO 23 & General-purpose output 23 & \\
\hline 47 & DO 24 & General-purpose output 24 & \\
\hline 48 & DO 25 & General-purpose output 25 & \\
\hline 49 & DO 26 & General-purpose output 26 & \\
\hline 50 & DO 27 & General-purpose output 27 & \\
\hline
\end{tabular}

\section*{Expanded specification I/O connector signal list}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin & \[
\begin{array}{|l|}
\hline \text { I/O No. } \\
\text { (ID=1) }
\end{array}
\] & \[
\begin{gathered}
\mathrm{I} / \mathrm{O} \mathrm{No} \\
(\mathrm{ID}=2)
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline 1 / 0 \text { No. } \\
\text { (ID=3) }
\end{array}
\] & \[
\begin{aligned}
& \text { I/O No. } \\
& (I D=4)
\end{aligned}
\] & Signal name \\
\hline 1 & --- & & & --- & Reserved \\
\hline 2 & DI 10 & DI 40 & DI 70 & DI 120 & General-pur \\
\hline 3 & & & & & Reserved \\
\hline 4 & DI 11 & DI 41 & DI 71 & DI 121 & General-pur \\
\hline 5 & & & & & Reserved \\
\hline 6 & & & & & Reserved \\
\hline 7 & & & & & Reserved \\
\hline 8 & DI 20 & DI 50 & DI 100 & DI 130 & General-purpose input 20,50,100,130 \\
\hline 9 & DI 21 & DI 51 & DI 101 & DI 131 & General-purpose input 21,51,101,131 \\
\hline 10 & DI 22 & DI 52 & DI 102 & DI 132 & General-purpose input 22,52,102,132 \\
\hline 11 & DI 23 & DI 53 & DI 103 & DI 133 & General-purpose input 23,53,103,133 \\
\hline 12 & DI 24 & DI 54 & DI 104 & DI 134 & General-purpose input 24,54,104,134 \\
\hline 13 & DI 25 & DI 55 & DI 105 & DI 135 & General-purpose input \(25,55,105,135\) \\
\hline 14 & DI 26 & DI 56 & DI 106 & DI 136 & General-purpose input \(26,56,106,136\) \\
\hline 15 & DI 27 & DI 57 & DI 107 & DI 137 & General-purpose input 27,57,107,137 \\
\hline 16 & & & & & Reserved \\
\hline 17 & & & & & Reserved \\
\hline 18 & DO 10 & DO 30 & DO 50 & DO 70 & General-purpose output 10,30,50,70 \\
\hline 19 & DO 11 & DO 31 & DO 51 & DO 71 & General-purpose output 11,31,51,71 \\
\hline 20 & DO 12 & DO 32 & DO 52 & DO 72 & General-purpose output \(12,32,52,72\) \\
\hline 21 & DO 13 & DO 33 & DO 53 & DO 73 & General-purpose output 13,33,53,73 \\
\hline 22 & DO 14 & DO 34 & DO 54 & DO 74 & General-purpose output \(14,34,54,74\) \\
\hline 23 & DO 15 & DO 35 & DO 55 & DO 75 & General-purpose output 15,35,55,75 \\
\hline 24 & DO 16 & DO 36 & DO 56 & DO 76 & General-purpose output 16,36,56,76 \\
\hline 25 & DO 17 & DO 37 & DO 57 & DO 77 & General-purpose output 17,37,57,77 \\
\hline 26 & DI 12 & DI 42 & DI 72 & DI 122 & General-purpose input 12,42,72,122 \\
\hline 27 & DI 13 & DI 43 & DI 73 & DI 123 & General-purpose input 13,43,73,123 \\
\hline 28 & DI 14 & DI 44 & DI 74 & DI 124 & General-purpose input 14,44,74,124 \\
\hline 29 & DI 15 & DI 45 & DI 75 & DI 125 & General-purpose input 15,45,75,125 \\
\hline 30 & DI 16 & DI 46 & DI 76 & DI 126 & General-purpose input 16,46,76,126 \\
\hline 31 & DI 17 & DI 47 & DI 77 & DI 127 & General-purpose input 17,47,77,127 \\
\hline 32 & DI 30 & DI 60 & DI 110 & DI 140 & General-purpose input 30,60,110,140 \\
\hline 33 & DI 31 & DI 61 & DI 111 & DI 141 & General-purpose input 31,61,111,141 \\
\hline 34 & DI 32 & DI 62 & DI 112 & DI 142 & General-purpose input 32,62,112,142 \\
\hline 35 & DI 33 & DI 63 & DI 113 & DI 143 & General-purpose input 33,63,113,143 \\
\hline 36 & DI 34 & DI 64 & DI 114 & DI 144 & General-purpose input \(34,64,114,144\) \\
\hline 37 & DI 35 & DI 65 & DI 115 & DI 145 & General-purpose input 35,65,115,145 \\
\hline 38 & DI 36 & DI 66 & DI 116 & DI 146 & General-purpose input 36,66,116,146 \\
\hline 39 & DI 37 & DI 67 & DI 117 & DI 147 & General-pur \\
\hline 40 & --- & --- & & & Reserved \\
\hline 41 & --- & --- & --- & & Reserved \\
\hline 42 & --- & --- & --- & --- & Reserved \\
\hline 43 & DO 20 & DO 40 & DO 60 & DO 100 & General-purpose output 20,40,60,100 \\
\hline 44 & DO 21 & DO 41 & DO 61 & DO 101 & General-purpose output 21,41,61,101 \\
\hline 45 & DO 22 & DO 42 & DO 62 & DO 102 & General-purpose output \(22,42,62,102\) \\
\hline 46 & DO 23 & DO 43 & DO 63 & DO 103 & General-purpose output \(23,43,63,103\) \\
\hline 47 & DO 24 & DO 44 & DO 64 & DO 104 & General-purpose output 24,44,64,104 \\
\hline 48 & DO 25 & DO 45 & DO 65 & DO 105 & General-purpose output \(25,45,65,105\) \\
\hline 49 & DO 26 & DO 46 & DO 66 & DO 106 & General-purpose output \(26,46,66,106\) \\
\hline 50 & DO 27 & DO 47 & DO 67 & DO 107 & General-purpose output 27,47,67,107 \\
\hline
\end{tabular}

Standard specification I/O connector pin assignment lists
\begin{tabular}{|c|c|c|}
\hline Pin & I/O No. & Name \\
\hline 1 & DI01 & Servo ON \\
\hline 2 & DI10 & SEQ enable \\
\hline 3 & DI03 & (Spare) \\
\hline 4 & CHK1 & Check input 1 \\
\hline 5 & DI05 & (Spare) \\
\hline 6 & DI06 & STOP \\
\hline 7 & DI07 & (Spare) \\
\hline 8 & DI20 & General-purpose input \\
\hline 9 & DI21 & General-purpose input \\
\hline 10 & DI22 & General-purpose input \\
\hline 11 & DI23 & General-purpose input \\
\hline 12 & DI24 & General-purpose input \\
\hline 13 & DI25 & General-purpose input \\
\hline 14 & DI26 & General-purpose input \\
\hline 15 & DI27 & General-purpose input \\
\hline 16 & DO00 & (Spare) \\
\hline 17 & DO01 & CPUOK \\
\hline 18 & DO10 & AUTO \\
\hline 19 & DO11 & ORGOK \\
\hline 20 & DO12 & SEQRUN \\
\hline 21 & DO13 & RUN \\
\hline 22 & DO14 & RESET \\
\hline 23 & DO15 & WARNING \\
\hline 24 & DO16 & (Spare) \\
\hline 25 & DO17 & (Spare) \\
\hline 26 & DI12 & RUN \\
\hline 27 & DI13 & (Spare) \\
\hline 28 & DI14 & ORIGIN (for INC axis) \\
\hline 29 & DI15 & RESET \\
\hline 30 & DI16 & ALMRST \\
\hline 31 & DI17 & ORIGIN(for ABS axis) \\
\hline 32 & DI30 & General-purpose input \\
\hline 33 & DI31 & General-purpose input \\
\hline 34 & DI32 & General-purpose input \\
\hline 35 & DI33 & General-purpose input \\
\hline 36 & DI34 & General-purpose input \\
\hline 37 & DI35 & General-purpose input \\
\hline 38 & DI36 & General-purpose input \\
\hline 39 & DI37 & General-purpose input \\
\hline 40 & CHK2 & Check input 2 \\
\hline 41 & DO02 & SERVO \\
\hline 42 & DO03 & ALARM \\
\hline 43 & DO20 & General-purpose output \\
\hline 44 & DO21 & General-purpose output \\
\hline 45 & DO22 & General-purpose output \\
\hline 46 & DO23 & General-purpose output \\
\hline 47 & DO24 & General-purpose output \\
\hline 48 & DO25 & General-purpose output \\
\hline 49 & DO26 & General-purpose output \\
\hline 50 & DO27 & General-purpose output \\
\hline
\end{tabular}

Basic functions
\begin{tabular}{|c|c|c|}
\hline Function & \multicolumn{2}{|l|}{Description} \\
\hline Operation modes & AUTO mode (Major functions: program creation, program execution, step execution, etc.) MANUAL mode (Major functions: jog movement, point data teaching, parameter editing, etc.) & \\
\hline Commands & \begin{tabular}{l}
Array declaration commands (DIM statement) \\
Assignment commands (Numeric assignment, character string assignment, point definition statements, etc.) \\
Movement commands (MOVE, DRIVE, PMOVE statements, etc.) \\
Conditional branching commands (IF, FOR, WHILE statements, etc.) \\
External output commands (DO, MO, LO, TO, SO statements) \\
Parameter commands (ACCEL, OUTPOS, TOLE statements, etc.) \\
Condition wait command (WAIT statement) \\
Task related commands (START, SUSPEND, CUT statements, etc.)
\end{tabular} & etc. \\
\hline Functions & \begin{tabular}{l}
Arithmetic functions (SIN, COS, TAN functions, etc.) \\
Character string functions (STR\$, LEFT\$, MID\$, RIGHT\$ functions, etc.) \\
Point functions (WHERE, JTOXY, XYTOJ functions, etc.) \\
Parameter functions (ACCEL, OUTPOS, TOLE statements, etc.)
\end{tabular} & etc. \\
\hline Variables & \begin{tabular}{l}
Simple variables (integer variables, real variables, character variables) Array variables (integer variables, real variables, character variables) Point variables \\
Shift variables \\
I/O variables
\end{tabular} & etc. \\
\hline Arithmetic operation & \begin{tabular}{l}
Arithmetic operators (+,-, *, /, MOD) \\
Logic operators (AND, OR, XOR) \\
Relational operators (\(=,<,>,<>,<=, ~>=\))
\end{tabular} & \\
\hline Monitor & \(1 / \mathrm{O}\) status monitor (200 ms intervals) & \\
\hline Online commands & \begin{tabular}{l}
Program operation commands (RUN, STOP, RESET, STEP, etc.) \\
Utility commands (COPY, ERA, INIT, etc.) \\
Data handling commands (READ, WRITE, etc.) \\
Robot language commands (independent-executable commands)
\end{tabular} & \\
\hline Data files & Program, point, parameter, shift, hand, all, error history & etc. \\
\hline Internal timer & Timer count variable (TCOUNTER), 1 ms interval & \\
\hline Program break points & Max. 32 points & \\
\hline
\end{tabular}

\section*{Emergency input signal connections}

\section*{Connection example of controller with normal specifications and PBX}

- Connection example of controller with CE specifications and PBX-E

\section*{Robot Language Table}
- General commands
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DIM & \begin{tabular}{l}
Declares the array variable name and the number of \\
elements.
\end{tabular} \\
\hline LET & Executes a specified assignment statement. \\
\hline REM & Expresses a comment statement. \\
\hline
\end{tabular}
- Arithmetic commands
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ABS & Acquires the absolute value of a specified value. \\
\hline ATN & Acquires the arctangent of the specified value. \\
\hline ATN2 & Acquires the arctangent of the specified X-Y coordinates. \\
\hline COS & Acquires the cosine value of a specified value. \\
\hline DEGRAD & Converts a specified value to radians (\(\leftrightarrow\) RADDEG). \\
\hline DIST & Acquires the distance between 2 specified points. \\
\hline INT & \begin{tabular}{l}
Acquires an integer for a specified value by truncating all \\
decimal fractions.
\end{tabular} \\
\hline LSHIFT & \begin{tabular}{l}
Shifts a value to the left by the specified bit count. \\
(\(\leftrightarrow\) RSHIFT)
\end{tabular} \\
\hline RADDEG & Converts a specified value to degrees. (\(\leftrightarrow\) DEGRAD) \\
\hline RSHIFT & \begin{tabular}{l}
Shifts a value to the right by the specified bit count. \\
(\(\leftrightarrow\) LSHIFT)
\end{tabular} \\
\hline SIN & Acquires the sine value for a specified value. \\
\hline SQR & Acquires the square root of a specified value. \\
\hline TAN & Acquires the tangent value for a specified value. \\
\hline
\end{tabular}

\section*{Date / time}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DATE \$ & Acquires the date as a "yy/mm/dd" format character string. \\
\hline TCOUNTER & \begin{tabular}{l}
Outputs count-up values at 1 ms intervals starting from the \\
point when the TCOUNTER variable is reset.
\end{tabular} \\
\hline TIME \$ & \begin{tabular}{l}
Acquires the current time as an "hh:mm:ss" format character \\
string.
\end{tabular} \\
\hline TIMER & Acquires the current time in seconds, counting from midnight. \\
\hline
\end{tabular}

\section*{Character string operation}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CHR \$ & Acquires a character with the specified character code. \\
\hline LEFT \$ & \begin{tabular}{l}
Extracts a character string comprising a specified number of \\
digits from the left end of a specified character string.
\end{tabular} \\
\hline LEN & \begin{tabular}{l}
Acquires the length (byte count) of a specified character \\
string.
\end{tabular} \\
\hline MID \$ & \begin{tabular}{l}
Extracts a character string of a desired length from a \\
specified character string.
\end{tabular} \\
\hline ORD & \begin{tabular}{l}
Acquires the character code of the first character in a \\
specified character string.
\end{tabular} \\
\hline RIGHT \$ & \begin{tabular}{l}
Extracts a character string comprising a specified number of \\
digits from the right end of a specified character string.
\end{tabular} \\
\hline STR \$ & Converts a specified value to a character string (\(\leftrightarrow\) VAL). \\
\hline VAL & \begin{tabular}{l}
Converts the numeric value of a specified character string to \\
an actual numeric value. (\(\leftrightarrow\) STR\$)
\end{tabular} \\
\hline Point, coordinates, shift coordinates \\
\hline Command & Description \\
\hline CHANGE & Switches the hand of a specified robot. \\
\hline HAND & Defines the hand of a specified robot. \\
\hline JTOXY & \begin{tabular}{l}
Converts joint coordinate data to Cartesian coordinate data of \\
a specified robot. (\(\leftrightarrow\) XYTOJ)
\end{tabular} \\
\hline LEFTY & \begin{tabular}{l}
Sets the hand system of a specified robot to the left-handed \\
system.
\end{tabular} \\
\hline LOCx & \begin{tabular}{l}
Specifies/acquires point data for a specified axis or shift data \\
for a specified element.
\end{tabular} \\
\hline PATH & Sets the movement path. \\
\hline Pn & Defines points within a program. \\
\hline PPNT & \begin{tabular}{l}
Creates point data specified by a pallet definition number and \\
pallet position number.
\end{tabular} \\
\hline RIGHTY & \begin{tabular}{l}
Sets the hand system of a specified robot to the right- handed \\
system.
\end{tabular} \\
\hline Sn & Defines the shift coordinates within the program. \\
\hline SHIFT & \begin{tabular}{l}
Sets the shift coordinate for a specified robot by using the \\
shift data specified by a shift variable.
\end{tabular} \\
\hline XYTOJ & \begin{tabular}{l}
Converts the point variable Cartesian coordinate data to the \\
joint coordinate data of a specified robot. (\(\leftrightarrow\) JTOXY).
\end{tabular} \\
\hline
\end{tabular}

\section*{Branching commands}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline EXIT FOR & Terminates the FOR to NEXT statement loop. \\
\hline FOR to & \begin{tabular}{l}
Executes the FOR to NEXT statement repeatedly until a \\
specified value is exceeded.
\end{tabular} \\
\hline NEXT & GOSUB to \\
RETURN & \begin{tabular}{l}
Jumps to a subroutine with the label specified by GOSUB \\
statement, and executes that subroutine.
\end{tabular} \\
\hline GOTO & Unconditionally jumps to the line specified by a label. \\
\hline IF & Allows control flow to branch according to conditions. \\
\hline \begin{tabular}{l}
ON to \\
GOSUB
\end{tabular} & \begin{tabular}{l}
Jumps to a subroutine with labels specified by a GOSUB \\
statement in accordance with the conditions, and executes \\
that subroutine.
\end{tabular} \\
\hline \begin{tabular}{l}
ON to \\
GOTO
\end{tabular} & \begin{tabular}{l}
Jumps to label-specified lines in accordance with the \\
conditions.
\end{tabular} \\
\hline \begin{tabular}{l}
SELECT \\
CASE to END \\
SELECT
\end{tabular} & Allows control flow to branch according to conditions. \\
\hline WHILE to & Controls repeated operations. \\
WEND
\end{tabular}

\section*{Error control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ERR / ERL & \begin{tabular}{l}
Acquires the error code number of an error which has \\
occurred / the line number where an error occurred.
\end{tabular} \\
\hline \begin{tabular}{l}
ON ERROR \\
GOTO
\end{tabular} & \begin{tabular}{l}
This command allows the program to jump to the error \\
processing routine specified by the label without stopping \\
the program, or it stops the program and displays the error \\
message.
\end{tabular} \\
\hline RESUME & Resumes program execution after error recovery processing. \\
\hline
\end{tabular}

Program control
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CALL & Calls a sub-procedure. \\
\hline HALT & Stops the program and performs a reset. \\
\hline HALTALL & Stops and resets all programs. \\
\hline HOLD & Temporarily stops the program. \\
\hline HOLDALL & Temporarily stops all programs. \\
\hline PGMTSK & \begin{tabular}{l}
Acquires the task number in which a specified program is \\
registered.
\end{tabular} \\
\hline PGN & \begin{tabular}{l}
Acquires the program number from a specified program \\
name.
\end{tabular} \\
\hline SGI & \begin{tabular}{l}
Assigns/acquires the value to a specified integer type static \\
variable.
\end{tabular} \\
\hline SGR & \begin{tabular}{l}
Assigns/acquires the value to a specified real type static \\
variable.
\end{tabular} \\
\hline SWI & \begin{tabular}{l}
Switches the program being executed, then begins execution \\
from the first line.
\end{tabular} \\
\hline TSKPGM & \begin{tabular}{l}
Acquires the program number which is registered in a \\
specified task.
\end{tabular} \\
\hline Task control \\
\hline Command & Description \\
\hline CHGPRI & Changes the priority ranking of a specified task. \\
\hline CUT & \begin{tabular}{l}
Terminates another task currently being executed or \\
temporarily stopped.
\end{tabular} \\
\hline EXIT TASK & Terminates its own task which is in progress. \\
\hline RESTART & Restarts another task during a temporary stop. \\
\hline START & \begin{tabular}{l}
Specifies the task number and priority ranking of a specified \\
program, and starts that program.
\end{tabular} \\
\hline SUSPEND & Temporarily stops another task which is being executed. \\
\hline
\end{tabular}

\section*{Robot operations}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DRIVE & Moves a specified axis of a specified robot to an absolute position. \\
\hline DRIVEI & Moves a specified axis of a specified robot to a relative position. \\
\hline MOTOR & Controls the motor power status. \\
\hline MOVE & Performs absolute movement of all axes of a specified robot. \\
\hline MOVEI & Performs relative movement of all axes of a specified robot. \\
\hline MOVET & \begin{tabular}{l}
Performs relative movement of all axes of a specified robot \\
when the tool coordinate is selected.
\end{tabular} \\
\hline ORIGIN & Performs return-to-origin. \\
\hline PMOVE & Executes the pallet movement command of a specified robot. \\
\hline PUSH & Executes a pushing operation in the axis unit. \\
\hline SERVO & \begin{tabular}{l}
Controls the servo ON/OFF of a specified axis or all axes of a \\
specified robot.
\end{tabular} \\
\hline
\end{tabular}

\section*{Status acquisition}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ABSRPOS & \begin{tabular}{l}
Acquires the machine reference value for specified robot \\
axes．（Valid only for axes whose return－to－origin method is \\
set as＂mark＂．）
\end{tabular} \\
\hline ARMCND & Acquires the current arm status of a specified robot． \\
\hline ARMSEL & \begin{tabular}{l}
Specifies／acquires the current＂hand system＂setting of a \\
specified robot．
\end{tabular} \\
\hline ARMTYP & \begin{tabular}{l}
Specifies／acquires the＂hand system＂setting of a specified \\
robot．
\end{tabular} \\
\hline CURTQST & \begin{tabular}{l}
Acquires the current torque value ratio of a specified axis to \\
the rated torque．
\end{tabular} \\
\hline MCHREF & \begin{tabular}{l}
Acquires the return－to－origin or absolute－search machine \\
reference value for specified robot axes．（Valid only for axes \\
whose return－to－origin method is set as＂sensor＂or＂stroke－ \\
end＂．）
\end{tabular} \\
\hline MTRDUTY & Acquires the motor load factor of the specified axis． \\
\hline PSHRSLT & Acquires the status at the end of the PUSH statement． \\
\hline PSHSPD & Specifies／acquires the push speed parameter． \\
\hline PSHTIME & \begin{tabular}{l}
Specifies／acquires the push time parameter．
\end{tabular} \\
\hline WAIT ARM & \begin{tabular}{l}
Waits until the axis operation of a specified robot is \\
completed．
\end{tabular} \\
\hline WHERE & \begin{tabular}{l}
Reads out the current position of the arm of a specified robot \\
in joint coordinates（pulse）．
\end{tabular} \\
\hline WHRXY & \begin{tabular}{l}
Reads out the current position of the arm of a specified robot \\
as Cartesian coordinates（mm，degrees）．
\end{tabular} \\
\hline
\end{tabular}

Status change
\begin{tabular}{l|l}
\hline Command & Description \\
\hline ACCEL & \begin{tabular}{l}
Specifies／acquires the acceleration coefficient parameter of a \\
specified robot．
\end{tabular} \\
\hline ARCHP1 & \begin{tabular}{l}
Specifies／acquires the arch position 1 parameter of a \\
specified robot．
\end{tabular} \\
\hline ARCHP2 & \begin{tabular}{l}
Specifies／acquires the arch position 2 parameter of a \\
specified robot．
\end{tabular} \\
\hline ASPEED & \begin{tabular}{l}
Specifies／acquires the AUTO movement speed of a specified \\
robot．
\end{tabular} \\
\hline AXWGHT & \begin{tabular}{l}
Specifies／acquires the axis tip weight parameter of a specified \\
robot．
\end{tabular} \\
\hline CHANGE & Switches the hand of a specified robot． \\
\hline DECEL & \begin{tabular}{l}
Specifies／acquires the deceleration rate parameter of a \\
specified robot．
\end{tabular} \\
\hline HAND & Defines the hand of a specified robot． \\
\hline LEFTY & \begin{tabular}{l}
Sets the hand system of a specified robot to the left－handed \\
system．
\end{tabular} \\
\hline ORGORD & \begin{tabular}{l}
Specifies／acquires the axis sequence parameter for \\
performing return－to－origin and an absolute search operation \\
in a specified robot．
\end{tabular} \\
\hline OUTPOS & \begin{tabular}{l}
Specifies／acquires the＂OUT position＂parameter of a \\
specified robot．
\end{tabular} \\
\hline PDEF & \begin{tabular}{l}
Defines the pallet used to execute pallet movement \\
commands．
\end{tabular} \\
\hline PSHFRC & Specifies／acquires the＂Push force＂parameter． \\
\hline PSHJGSP & Specifies／acquires the push judge speed threshold parameter．
\end{tabular}

\section*{PATH control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline PATH & Specifies the PATH motion path． \\
\hline PATH END & Ends the path setting for PATH motion． \\
\hline PATH SET & Starts the path setting for PATH motion． \\
\hline PATH & Starts the PATH motion． \\
\hline START & \\
\hline
\end{tabular}

\section*{Torque control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline CURTQST & \begin{tabular}{l}
Acquires the current torque value ratio of a specified axis to \\
the rated torque．
\end{tabular} \\
\hline CURTRQ & \begin{tabular}{l}
Acquires the current torque value of the specified axis of a \\
specified robot．
\end{tabular} \\
\hline PUSH & Executes a pushing operation in the axis unit． \\
\hline TORQUE & \begin{tabular}{l}
Specifies／acquires the maximum torque command value \\
which can be set for a specified axis of a specified robot．
\end{tabular} \\
\hline
\end{tabular}

\section*{Input／output control}
\begin{tabular}{l|l}
\hline Command & Description \\
\hline DELAY & Waits for the specified period（units：ms）． \\
\hline DO & \begin{tabular}{l}
Outputs a specified value to the DO port or acquires the DO \\
status．
\end{tabular} \\
\hline LO & \begin{tabular}{l}
Outputs a specified value to the LO port to enable／disable \\
axis movement or acquires the LO status．
\end{tabular} \\
\hline MO & \begin{tabular}{l}
Outputs a specified value to the MO port or acquires the MO \\
status．
\end{tabular} \\
\hline OUT & \begin{tabular}{l}
Turns ON the bits of the specified output ports and terminates \\
the command statement．
\end{tabular} \\
\hline RESET & Turns the bit of a specified output port OFF． \\
\hline SET & Turns the bit at the specified output port ON． \\
\hline SI & \begin{tabular}{l}
Acquires a specified SI status． \\
\hline SID \\
Acquires a specified serial input＇s double－word information \\
status．
\end{tabular} \\
\hline SIW & \begin{tabular}{l}
Acquires a specified serial input＇s word information status． \\
\hline SO \\
Outputs a specified value to the SO port or acquires the SO \\
status．
\end{tabular} \\
\hline SOD & \begin{tabular}{l}
Outputs a specified serial output＇s double－word information \\
or acquires the output status．
\end{tabular} \\
\hline SOW & \begin{tabular}{l}
Outputs a specified serial output＇s word information or \\
acquires the output status．
\end{tabular} \\
\hline TO & \begin{tabular}{l}
Outputs a specified value to the TO port or acquires the TO \\
status．
\end{tabular} \\
\hline WAIT & \begin{tabular}{l}
Waits until the conditions of the DI／DO conditional expression \\
are met（with time－out）．
\end{tabular} \\
\hline
\end{tabular}

\section*{Communication contro}
Command Description

CLOSE \(\quad\) Close the specified General Ethernet Port．
ETHSTS \(\quad\) Acquires the Ethernet port status．
GEPSTS Acquires the General Ethernet Port status．
OFFLINE \(\quad\) Sets a specified communication port to the＂offline＂mode．
ONLINE \(\quad\) Sets the specified communication port to the＂online＂mode．
OPEN \(\quad\) Opens the specified General Ethernet Port．
SEND Sends a file．

\title{
Accessories and part options \\ RCX340
}

Standard accessories

\section*{Power connector + wiring connection lever}

\begin{tabular}{l|l}
\hline Model & KAS-M5382-00 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline LCC140 \\
\hline TS-X \\
\hline TS-P \\
\hline SR1-X \\
\hline SR1-P \\
\hline RCX320 \\
\hline RCX221 \\
\hline RCX222 \\
\hline RCX340 \\
\hline
\end{tabular}

\section*{Safety connector}

\begin{tabular}{l|ll}
& & \begin{tabular}{ll}
RCX320 \\
\hline Model & KCX-M5370-00 \\
& \\
\hline
\end{tabular} \\
\hline
\end{tabular}

NPN / PNP connector

- PBX terminator (dummy connector)

Attach this to the PBX connector during operation with the programming box PBX removed.

Model KCA-M53G0-02
Absolute battery
Battery for absolute data back-up.
\begin{tabular}{l|l}
Model & KCA-M53G0-02 \\
Note 1. Weight of battery itself. \\
Note. The absolute battery is subject to wear and \\
requires replacement. \\
If trouble occurs with the memory then remaining \\
battery life is low so replace the absolute battery. \\
The battery replacement period depends on us- \\
The \\
age conditions. But generally you should replace \\
the battery after about 1 year counting the total \\
time after connecting to the controller and left \\
without turning on the power.
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{2}{|c}{ Basic specifications } \\
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c}{ Absolute battery } \\
\hline Battery type & Lithium metallic battery \\
\hline Battery capacity & \(3.6 \mathrm{~V} / 2,700 \mathrm{mAh}\) \\
\hline Data holding time & \begin{tabular}{l}
About 1 year \\
(in state with no power applied)
\end{tabular} \\
\hline Dimensions & \(\phi 17 \times\) L53mm \\
\hline Weight \({ }^{\text {Note1 }}\) & 21 g \\
\hline
\end{tabular}

Note 1. Weight of battery itself
The absolute battery is subject to wear and
battery life is low so reple without turning on the power.

> 1 batteries are required for each 1 axes.
> 1 battery......Data storage time of approximately 6 months (with no power applied) Note. No absolute battery is required for the incremental or semi-absolute axis.

Dust cover for COM connector
\begin{tabular}{l|l}
\hline Model & KR7-M5395-10 \\
\hline
\end{tabular}

Dust cover for LAN connector
\begin{tabular}{l|l|l}
& & \begin{tabular}{rl}
RCX320 \\
\hline & RCX340 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Dust cover for USB connector
\begin{tabular}{ll|l}
& & \begin{tabular}{rl}
RCX320 \\
\hline & Model \\
& KCX-M658K-00 \\
& \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Options}

External 24V power supply connector for brake + wiring lever

\section*{Type}
\begin{tabular}{|c|c|c|c|}
\hline Type & Language & Cable length & Model \\
\hline \multirow{6}{*}{PBX} & \multirow[b]{2}{*}{Japanese} & 5 m & KCX-M5110-1J \\
\hline & & 12m & KCX-M5110-3J \\
\hline & \multirow[b]{2}{*}{English} & 5 m & KCX-M5110-1E \\
\hline & & 12m & KCX-M5110-3E \\
\hline & \multirow[b]{2}{*}{Chinese} & 5 m & KCX-M5110-1C \\
\hline & & 12m & KCX-M5110-3C \\
\hline \multirow{6}{*}{PBX-E (with enable switch)} & \multirow[t]{2}{*}{Japanese} & 5 m & KCX-M5110-0J \\
\hline & & 12 m & KCX-M5110-2J \\
\hline & \multirow[b]{2}{*}{English} & 5 m & KCX-M5110-0E \\
\hline & & 12m & KCX-M5110-2E \\
\hline & \multirow[b]{2}{*}{Chinese} & 5 m & KCX-M5110-0C \\
\hline & & 12m & KCX-M5110-2C \\
\hline & & & Model \\
\hline \multicolumn{3}{|l|}{Display language switching USB for PBX} & KCX-M6498-00 \\
\hline \multicolumn{3}{|l|}{USB cable} & CX-M657E-00 \\
\hline
\end{tabular}
Model \begin{tabular}{l|l|l}
\hline & \begin{tabular}{l}
RCX-Studio 2020 \\
Basic (USB key \\
blue)
\end{tabular} & KCX-M4990-40 \\
& \begin{tabular}{l}
RCX-Studio 2020 \\
Pro (USB key \\
purple)
\end{tabular} & KCX-M4990-50 \\
\hline
\end{tabular}

RCX320
RCX340

Note. Even when there is no USB key, RCX-Studio
2020 can be used as function restricted version.
For details about the functions of the function restricted, Basic, and Pro versions, see P. 696.

Basic specifications
\begin{tabular}{l|l}
\hline Supported language & Japanese, English, Chinese \\
\hline OS & Microsoft Windows \(7 \mathrm{SP} 1(32 / 64 \mathrm{bit}) / 8.1(32 \mathrm{bit} / 64 \mathrm{bit}) / 10(32 \mathrm{bit} / 64 \mathrm{bit})\) \\
\hline Execution environment & .NET Framework 4.5 or more \\
\hline CPU & \begin{tabular}{l}
Recommended: Intel Core i5 2 GHz or more, Minimum: Intel Celeron 2 GHz \\
or more, 3D-SIM is invalid.: Intel Core 2 Duo 2 GHz or more
\end{tabular} \\
\hline Memory & \begin{tabular}{l}
Recommended: 8 GB or more, Minimum: 4 GB or more, \\
3D-SIM is invalid: 1 GB or more
\end{tabular} \\
\hline Hard disk capacity & 1GB of available space required on installation drive \\
\hline Communication Port & Communication cable: Serial communication port, Ethernet port, or USB port \\
\hline Others & \begin{tabular}{l}
Dedicated commutation cable (For D-Sub or USB) \\
Ethernet cable (category 5 or better) \\
USB port: 1 port (For USB key)
\end{tabular} \\
\hline Applicable robot controllers & RCX320 / RCX340 \\
\hline Applicable robot & YAMAHA robot that can be connected to the RCX340, RCX320. \\
\hline
\end{tabular}

Note. Microsoft, Windows 7, Windows 8.1, and Windows 10 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries
Other company names and product names listed in this manual may be the trademarks or registered trademarks of their respective companies.
- Data cables

Communication cable for RCX-Studio 2020. Select from USB cable or D-sub cable.

USB
[RCX320/RCX340] Ethernet cable (category 5 or higher) is also supported.

D-Sub
or higher)

Note. This USB cable supports Windows 2000/XP or later. Note. Data cable jointly used for POPCOM \({ }^{+}\), VIP \({ }^{+}\), RCX-Studio Pro and RCX-Studio 2020.
Note. USB driver for communication cable can also be downloaded from our website.
\begin{tabular}{|c|c|c|c|}
\hline - YC-Link/E master board & Model & KCX-M4400-M0 & RCX320 \\
\hline - YC-Link/E slave board & Model & KCX-M4400-S0 & RCX320 \\
\hline - YC-Link/E cable (1m) & Model & KCX-M6479-10 & RCX320 \\
\hline
\end{tabular}

\section*{Support software for PC}

\title{
TS－Manager
}

Besides basic functions，such as point data edit and backup， this support software TS－Manager incorporates various convenient functions to efficiently process the system debugging and analysis．The TS－Manager helps you in every scene from the system setup to the maintenance．

TS－P
TS－SD

\section*{Features}

1 Basic functions
Detailed settings by point，such as the position information，operation pattern，speed，acceleration，and deceleration settings，and robot parameter settings can be set，edited，and backed up．Additionally，the basic operation of the robot， such as JOG movement or inching operation can also be controlled through the TS－Manager．

Note．Excel is a registered trademark of Microsoft Corporation in the United States and／or other countries．
2 Real－time trace
This function traces the current position，speed，load factor，current value，and voltage value at real－time．Additionally， as trigger conditions are set，data can be automatically obtained when these conditions are satisfied．Further－ more，as a zone is specified from the monitor results，the maximum value，minimum value，and average value can be calculated．These values are useful for the analysis if a trouble occurs．

3 Various monitor functions and detailed error logs
The robot operation status（operation mode or servo sta－ tus）and I／O status can be monitored．
Additionally，the Alarm Log screen also displays the in－ put／output I／O status in addition to the carrier position， speed，operation status，current value，and voltage value in case of an alarm．This greatly contributes to the status analysis．

4 Operation simulation
As the operation condition data or point data is input，a period of time necessary for operation is simulated．
Use of this function makes it possible to select an optimal model before purchase and simulate the speed and accel－ eration／deceleration settings without use of actual machine． It is also possible to link this operation simulation function with the TS－Manager main software．This easily affects the point data you have edited in the actual machine．

Displays the detailed simulation results graphically．

\section*{\(\square\) TS-Manager environment}
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows 2000, XP (32bit), Vista, 7, 8 / 8.1, \\
10 (Supported version: V.1.4.5 or later)
\end{tabular} \\
\hline CPU & Exceeding the environment recommended by the OS being used \\
\hline Memory & Exceeding the environment recommended by the OS being used \\
\hline Hard disk & \begin{tabular}{l}
Vacant capacity of more than 20MB in the installation destination \\
drive
\end{tabular} \\
\hline Communication port & Serial (RS-232C), USB \\
\hline Applicable controllers & TS series \\
\hline Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.
\end{tabular}

Communication cable for TS-Manager. Select from USB cable or D-sub cable.

Note. USB driver for communication cable can also be downloaded from our website

Option details

\section*{Support software for PC}

POPCOM+

POPCOM+ is an easy to operate application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{- Applicable controllers} \\
\hline LCC140 & P.620 \\
\hline ERCD & P.046 \\
\hline \begin{tabular}{l}
SR1-X \\
SR1-P
\end{tabular} & P652 \\
\hline
\end{tabular}

\section*{Features}

1 Easy to use
All items necessary for robot operation are displayed on single screen. There is no need to remember the menu structure so that it can be easily operated with mouse control by anybody.

Program editing
Edit amendment, cut,
copy, paste, syntax check and program entry can be performed efficiently with function keys.

3 Point editing
Edit amendment, cut, copy, paste, syntax check, teach and trace functions are provided.

Help function
If you need some detailed information, robot language etc. during operation, operate [F1] key or [HELP] key to recall useful information on the screen.

Robot operation
By connecting between a computer and the controller with a communication cable, the controller can control the robot in the same way as a HPB / HPB-D (programming box)

\section*{Creating point data}

There are three methods available for creating the point data.

MDI (Manual Data Input) teaching
The numeric keyboard is used to enter position coordinate data directly.

Remote teaching
The robot arm is actually moved to the target position using the keys for point data registration.

Direct teaching
The robot arm is manually moved to the target position with the servo motors off for point data registration.

PC supporting software POPCOM+

\begin{tabular}{l|l}
\hline POPCOM + software model & KBG-M4966-00 \\
\hline
\end{tabular}

POPCOM+ environment
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows XP (32bit), Vista, 7, 8 / 8.1, \\
10 (Supported version: V.2.1.1 or later)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested requirements for \\
the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 50 MB of available space required on installation drive. \\
\hline Disk operation & RS-232C \\
\hline Applicable controllers & SRCX to SR1, DRCX, TRCX, ERCX, ERCD, LCC140 \({ }^{\text {Note } 1}\) \\
\hline
\end{tabular}

Note 1. LCC140 is applicable to Ver. 2.1.1 or later
Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.

Data cables (5m)
Communication cable for POPCOM \({ }^{+}\)
Select from USB cable or D-sub cable.

Note. This USB cable supports Windows 2000/XP or later.
Note. Data cable jointly used for POPCOM \({ }^{+}\), VIP \({ }^{+}\), RCXStudio Pro.
Note. USB driver for communication cable can also be downloaded from our website

\section*{Support software for PC}

\section*{V P + Windows}

VIP+ is an easy to operate application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

\section*{Features}

GUI updated for enhanced usability
The user interface has been improved with the VIP
Windows function kept as it is so as to achieve more ease of use.
 Input the data in the work sheet form (Parameter, Point data)

It is also possible to copy and paste the data from the other spread sheet (chart calculation software).

Syntax coloring when editing the program

When reserved words (character string reserved as the robot language) are inputted, they are colored automatically, making them noted at one glance for easier program editing.

8 P
Program execution monitor
The step being performed during the program execution can be monitored. Thus, it ispossible to check which step is performed without stopping the program thereby debugging of the program is made much easier.

9 List appointing (point where the system is restored)
It is possible to create the system restoration point at any timing. By doing so at important points in the system constructing process when, for example something faulty is found after the system was changed, the system can be returned to the state before such change easily.

5 Data operation using the new drag \& drop function
The data can be stored easily by using the drag \& drop function. Likewise, the stored data can be restored to the controller by operating the mouse only.

Select the data to be stored.

Drag the selected data to the document window and drop it there.

Specify the file name and this completes the storage procedure

1 Easy to use
With a number of robot operation items provided on one screen, any operator can operate easily without memorizing the menu construction.

2 Programming editing
The program, point, parameter, shift, and hand can be edited on the PC alone. Equipped with the function selector having the command searching function which enables to input the robot language with ease.

3 Data check function
Provided with the equivalent data check function to that of a robot controller, it is possible to correct data errors before operation.

4 Help function
When more information is needed during operation, press the [F1] or [HELP] key, and the help screen will appear.

5 Robot operation
By connecting PC and controller with communication cable, robot operation will be available by the on-line command.

\section*{6 On-line editing}

Connecting a PC and the controller with a communication cable enable to edit data from robot controllers just as with RPB / RPB-E.

7 Creating point data There are three methods available for creating the point data.
MDI (Manual Data Input) teaching The numeric keyboard is used to enter position coordinate data directly.

Remote teaching
The robot arm is actually moved to the target position using the keys for point data registration.

Direct teaching

The robot arm is manually moved to
the target position with the servo motors off for point data registration.

Support software for PC VIP+

Model KX0-M4966-00
Data cables (5m)
Communication cable for VIP+.
Select from USB cable or D-sub cable.

Note. This USB cable supports Windows 2000/XP or later.
Note. Data cable jointly used for POPCOM \({ }^{+}\), VIP \({ }^{+}\), RCX Studio Pro.
Note. USB driver for communication cable can also be downloaded from our website
\begin{tabular}{l|l}
\hline Environment & \\
\hline OS & \begin{tabular}{l}
Windows 2000, XP (32bit), Vista, 7, \\
10 (Supported version: V.2.8.4 or later)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested requirements \\
for the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 40MB of available space required on installation drive. \\
\hline Communication method & \begin{tabular}{l}
RS-232C, Ethernet \\
Note. For Ethernet communication, Ethernet unit for RCX series controller is required.
\end{tabular} \\
\hline Applicable robot controllers RCX22x / 240
\end{tabular}

Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries. Note. ADOBE and ADOBE READER are registered trademarks of Adobe Systems Incorporated. Note. ADOBE and ADOBE READER are registered trademarks
Note. Ethernet is a registered trademark of Xerox Corporation.
\begin{tabular}{|l|}
\hline \\
\hline LCC140 \\
\hline ERCD \\
\hline SR1-X \\
\hline SR1-P \\
\hline RCX320 \\
\hline RCX221 \\
\hline RCX222 \\
\hline RCX340 \\
\hline
\end{tabular}
\(\square\) Controller and data cable connection diagrams

Controller

\section*{Support software for PC}

\section*{RDV－Manager}

RDV－Manager is software for RDV－X／RDV－P．Using the Windows operating computer，it is possible to set parameters，to monitor the position，speed and torque and to have graphics displayed， assuring pleasant and easy operation in the Windows Vista， Windows 7 or Windows 8 ／Windows 8.1 environment．

\section*{Features}

1 Monitoring function
It is possible to monitor the operation condition and output state in real time． Additionally，the terminal can be operated forcibly to check the operation．

Operation tracing function
It is possible to have the servo motor speed and electric current displayed in the form of graphics．

Setting parameters
It is possible to set，change，print and store the parameters．

Offline auto tuning function
The load moment of inertia can be estimated and the automatic servo gain can be adjusted．

\section*{Support software RDV－Manager}

RDV－Manager is RDV－X／RDV－P dedicated soft－ ware．

Model
KEF－M4966－00
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c|}{ Environment } \\
\hline OS & \begin{tabular}{l}
Windows Vista SP1（32bit） \\
Note 1 \(1, ~ / ~ 8.1, ~ 10 ~\)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Pentium4 1．8GHz or more \\
（Recommend）
\end{tabular} \\
\hline Memory & 1GB or more \\
\hline Hard disk & \begin{tabular}{l}
1GB of available space \\
required on installation \\
drive．
\end{tabular} \\
\hline Disk operation & USB \\
\hline \begin{tabular}{l}
Applicable \\
controllers
\end{tabular} & RDV series \\
\hline
\end{tabular}

Note 1．SP1（service pack 1）or higher．
Note．Windows is the registered trademark of US Microsoft Corporation in U．S．A．and other countries．

Option details

\section*{Support software for PC}

\section*{RCX-Studio 2020}

New functions such as 3D simulator function and program template (program template automatic creation function) are added for ease of user operation.

\section*{Features}

1 3D simulator
- Layout can be verified beforehand without connecting robot

Robots and peripheral devices are displayed in 3D, and the robot operation is simulated on PC.
\(>\) Robot layout, teaching, and debugging can be performed.
- Physical interference between the robot and peripheral device can be checked before operation is started

2 Program template (Program template automatic creation function)
- Program creation time can be shortened greatly.

Program templates for 10 types of applications are incorporated. Just following the steps to perform the operation creates a program template automatically.

Custom window creation
- Operation screens suitable for the customer's equipment can be created.
GUIs for operators that are displayed on the panel computer can be created.

Other existing functions
All useful features from RCX-Studio Pro are succeeded to help supporting from startup to maintenance.

Cycle time

Data comparison

\section*{RCX－Studio 2020 software}

Software can be downloaded from YAMAHA＇s WEB site（member site）together with RCX－Studio 2020 Basic or RCX－Studio 2020 Pro．

Basic specifications

Note 1．This shows the software package type．The software is common to two products and can be downloaded from YAMAHA＇s WEB site
Note 2．Common to the conventional model RCX－Studio Pro．
Note 3．Microsoft，Windows 7，Windows 8．1，and Windows 10 are either registered trademarks or trademarks of Microsoft Corporation in the United States and／or other countries． Other company names and product names listed in this manual may be the trademarks or registered trademarks of their respective companies．

\section*{USB key}

A USB key is supplied to the RCX－Studio 2020 to prevent irregular movement of robots．
There will be limitations of software functions（see below chart）：
\begin{tabular}{l|c|c|c}
\hline \multicolumn{1}{c|}{ Functions } & \begin{tabular}{c}
When the USB key is not \\
connected
\end{tabular} & \begin{tabular}{c}
RCX－Studio 2020 Basic \\
（blue）Note．
\end{tabular} & \begin{tabular}{c}
RCX－Studio 2020 Pro \\
（purple）
\end{tabular} \\
\hline Backup／restore via data transfer & Valid & Valid & Valid \\
\hline Controller operation in online mode & Invalid & Valid & Valid \\
\hline File save & Invalid & Valid & Valid \\
\hline Real Time Trace & Only data save is invalid． & Valid & Valid \\
\hline Cycle Time Calculator & Starting only（No calculating） & Valid & Valid \\
\hline iVY2 editor & Starting only（No connecting） & Valid & Valid \\
\hline Data Difference & Except data saving & Valid & Valid \\
\hline 3D simulator function & Only capturing is invalid． & Valid & Valid \\
\hline Custom window & Valid & Valid & Valid \\
\hline Program template & Only file output is invalid． & Valid & Valid \\
\hline CAD data read & Valid & Valid & Valid \\
\hline CAD to point conversion & Invalid & Invalid & Valid \\
\hline
\end{tabular}

Note．USB key color

\section*{Data cables（5m）}

Communication cable for RCX－Studio 2020
Select from USB cable or D－sub cable

［RCX320／RCX340］
Ethernet cable（category 5 or higher） is also supported．
\begin{tabular}{l|l|l}
\hline \multirow{3}{*}{ Model } & USB type（5m） & KBG－M538F－00 \\
\cline { 2 - 3 } & \begin{tabular}{l}
D－Sub type \\
9pin－9pin（5m）
\end{tabular} & KAS－M538F－10 \\
\hline
\end{tabular}

Note．This USB cable supports Windows 2000／XP or later．
Note．The communication cable is common to POPCOM + ，VIP + RCX－Studio Pro，and RCX－Studio 2020.
Note．USB driver for communication cable can also be downloaded from our website．
\begin{tabular}{|c|c|}
\hline LCC140 & ERCD \\
\hline SR1－X & SR1－P \\
\hline RCX320 & RCX221 \\
\hline RCX222 & RCX340 \\
\hline
\end{tabular}

Option details
Handy terminal

\section*{HT1/HT1-D}

This Handy Terminal is a device that can perform any operation such as robot manual operation, point data edit, teaching, and parameter setting, etc. Has graphic LCD display with backlight for easy viewing.

\section*{নApplicable controllers}

TS-S2
TS-SH
TS-X
TS-P

HT1 / HT1-D basic specifications
\begin{tabular}{l}
L HT1 / HT1-D basic specifications \\
\hline Name \\
\hline
\end{tabular}

\section*{Part names and function}
Strap holder
Attaching a short strap or
necklace strap here prevents
dropping the HT1 while operating
it or installing it onto equipment.
LCD screen
This is a liquid crystal display
(LCD) screen with 32 characters
\(\times 10\) lines (pixel display),
showing the operation menus
and various types of information.
Dressing this button during
operation immediately stops
robot movement To release
this button, turn it clockwise.
Releasing this button also
cancels emergency stop.

\section*{HT1-D rear side}

Option details

\section*{Programming box}

\section*{HPB/HPB-D}

All operations can be performed from this device including manual robot operation, programming entry and editing, teaching and setting parameters. The display works interactively with the operator so even an absolute beginner can easily learn how to use programming box.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{- HPB / HPB-D basic specifications} \\
\hline Name & & HPB & HPB-D \\
\hline \multicolumn{2}{|l|}{External view} & & \\
\hline Model & Using with ERCD, SR1-X, SR1-P & KBB-M5110-01 (without a conversion adaptor) & KBB-M5110-21 (without a conversion adaptor) \\
\hline \multicolumn{2}{|l|}{Display} & \multicolumn{2}{|l|}{LCD (20characters \(\times 4\) lines)} \\
\hline \multicolumn{2}{|l|}{Emergency stop button} & \multicolumn{2}{|l|}{Normally closed contact point (with lock function)} \\
\hline \multicolumn{2}{|l|}{Enable switch} & - & 3-position \\
\hline \multicolumn{2}{|l|}{CE marking} & Not supported & Applicable \\
\hline \multicolumn{2}{|l|}{Memory back-up device} & \multicolumn{2}{|l|}{SD Memory card} \\
\hline \multicolumn{2}{|l|}{Operating temperature} & \multicolumn{2}{|l|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{2}{|l|}{Operating humidity} & \multicolumn{2}{|l|}{\(35 \%\) to 85\%RH (non-condensing)} \\
\hline \multicolumn{2}{|l|}{Dimensions} & \multicolumn{2}{|l|}{W107 \(\times\) H230 \(\times\) D53mm (Strap holder, emergency stop button not included.)} \\
\hline \multicolumn{2}{|l|}{Weight} & \multicolumn{2}{|l|}{650 g} \\
\hline \multicolumn{2}{|l|}{Cable length} & \multicolumn{2}{|l|}{3.5 m} \\
\hline
\end{tabular}

\section*{Part names and function}

Emergency stop button
Performs a robot emergency stop when pressed during robot operation. Release the button lock (locks when pressed) by turning the button in the CW direction. After releasing the button, a servo recovery must be performed from the HPB (or by I/O operation) in order to recover from the emergency stop status.
Liquid crystal display
This is a 20-character, 4 -line LCD screen. The operation menu and other information are displayed here.

Connector cable
Connects the HPB to the controller. A D-Sub 9-pin connector (male) is provided at one end of the cable.

3-position enable switch (HPB-D only

This switch is effective for use with an external safety circuit.
This switch opens (cuts off) the circuit when pressed or released.
Pressing it to mid-position connects the circuit. Use this switch as the enable switch in Service mode, so that the external safety circuit triggers emergency stop on the robot when this switch is pressed or released.

Option details
Programming box

\section*{RPB/RPB-E}

All operations can be performed from this device including manual robot operation, programming entry and editing, teaching and setting parameters. The display works interactively with the operator so even an absolute beginner can easily learn how to use programming box.
- RPB / RPB-E basic specifications
\begin{tabular}{l|l|l|l|l}
\hline Name & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Part names and function

RPB-E rear side

3-position enable switch (only on RPB-E)
This switch is usable as part of an external (remote) safety circuit.
Pressing this switch inwards or releasing it cuts off the (RPB/robot) circuit. However that circuit is operable when this switch is in middle position.
This enable switch is usually operable in service mode. It functions as part of an external safety circuit so that releasing the enable switch or pressing it inwards set the robot to emergency stop.

\section*{Option details}

\section*{Programming box}

\section*{PBX／PBX－E}

This programming box is applicable to three languages，＂Japanese＂，＂English＂， and＂Chinese＂．Use of a color display makes it possible to improve the visibility． Work to add or edit functions becomes easy，allowing even personnel without programming skill to operate this programming box．
A function to save the controller data into the USB memory is incorporated．

Part names and function
 AUTO and MANUAL

\section*{PBX－E rear side}
［Accessories］
\(\square\) Display language switching USB for PBX
\begin{tabular}{l|l}
\hline & Model \\
\hline Display language switching USB for PBX＊ & KCX－M6498－00 \\
\hline USB cable & KCX－M657E－00 \\
\hline
\end{tabular}

\footnotetext{
The data for updating the PBX（language switch data）can be downloaded from the website shown below．
https：／／global．yamaha－motor．com／business／robot／download／
}

\begin{tabular}{l}
\multicolumn{1}{|c|}{ PBX／PBX－E basic specifications } \\
\hline Name \\
\hline
\end{tabular}

\section*{Option details \\ LCD Monitor option \\ TS-Monitor}

Integrated into the controller unit, the TS-monitor needs no connections to the handy terminal or PC and checks operation status, current position, error information, etc. The TS-monitor even allows the operator on the scene or service personnel to easily check the controller status.
Total operating time is also displayed which is convenient to schedule maintenance periods.
Note. The TS-Monitor cannot be installed on the controller when using a daisy-chain connection or when using a gateway connection.

- The TS Monitor Advantage

Features

\section*{Shows status info}

Shows operating status
Displays total drive distance
(helpful for preventive maintenance).

\section*{- TS-X/TS-P dimensions (with TS-Monitor)}

\section*{TS-X/TS-P (105/110/205/210) with TS-Monitor}

\section*{TS-X/TS-P (220) with TS-Monitor}

\section*{TS-Monitor basic specifications}
\begin{tabular}{l|l|l}
\hline \multirow{2}{*}{ Model } & TS-X & KCA-M5119-00 \\
& TS-P & KCA-M5119-10 \\
\hline Effective display size & W40.546 \(\times\) H25.63mm \\
\hline Screen display & Graphic monochrome LCD \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Backlight & Blue and red, 2-color LCD \\
\hline Contrast adjustment & 5 steps \\
\hline Number of display dots & \(128 \times 64\) dots \\
\hline
\end{tabular}

\section*{}

> Connecting GP4000 Series made by Pro-face to Robot Positioner, TS-S2, TS-SH, TS-X, TS-P enables you to use a lot of functions as well as basic operations on Touch Operator Interface.

Free download of the program file from the Pro-face home page https://www.proface.com

\section*{Features}

\section*{1 Can easily check a state and change settings.}
- Check the status (the current position, speed etc)
- Basic operations such as Jog operation, inching operation, return to origin, error reset etc.
- Set, edit, or back up point data and parameters
- Check triggered alarms and detailed descriptions of alarm history

\section*{2 Supports 3 languages}
- Supports Japanese, English, and Chinese (simplified, traditional)

\section*{Screen details}

\section*{Diagnostic Screen}

When a problem occurs, you can check the detailed descriptions of the alarm history, so you can understand easily what the cause is.

\section*{Position Data Editing Screen}

You can edit and back up point data (255 points). \({ }^{\text {Note }}\)
Note. Settings for it and a USB storage required.

\section*{I/O Monitor Screen}

Displays both general I/O and dedicated I/O together. You can quickly check the I/O status.

\section*{Parameter Editing Screen}

While checking parameters of robot positioners in the list, you can set them with the pull-down menu.

\section*{Information Monitor Screen}

The screen can display the robot status and the operation status. You can check immediately the robot condition.

\section*{Connecting Selection Screen}

You can connect up to 16 robot positioners simultaneously with GP-Pro EX Ver.3.0 multi-axis feature.

Option details
Field network system with minimal wiring

Each field path setting file can be downloaded from the website. https://global.yamaha-motor.com/business/robot/download/fieldbus/

YHX

Etheri'et/IP"Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{\(\quad\) EtherNet/IP \({ }^{\text {TM }}\)} \\
\hline Applicable controllers & YHX \\
\hline Network specifications & As specified for Ethernet (IEEE802.3) \\
\hline Applicable EtherNet/IPTM specifications & \begin{tabular}{l}
Volume 1: Common Industrial protocol(CIP \({ }^{\text {TM }}\)) Edition 3.21 \\
Volume 2: EtherNet/IP \\
\hline TM Adaptation Edition 1.22
\end{tabular} \\
\hline Device type & Generic Device (device number 43) \\
\hline Communication speed & 10Mbps / 100 Mbps \\
\hline Connector specifications & RJ-45 connector (8-pole modular connector), 2 ports \\
\hline Cable specifications & EtherNet/IP Refer t o "2.1 LAN cable" in Chapter 2 of this user's manual. \\
\hline Maximum cable length & 100 m \\
\hline Input/output data size & \begin{tabular}{l}
Input: 1408byte (704 words) \\
Output: 1408byte (704 words)
\end{tabular} \\
\hline Setting of IP address, etc. & Set from YHX-Studio \\
\hline Monitor LED & Module Status(MS), Network Status(NS), Link/Activity: Port1-2 \\
\hline
\end{tabular}

\section*{PROPT \({ }^{\circ}\)}

的自TT
Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{\(\quad\) PROFINET } \\
\hline Applicable controllers & YHX \\
\hline Network specification conformance & PROFINET IO V2.33 \\
\hline Conformance class & Conformance Class C \\
\hline Vendor Name/Vendor_ID & YAMAHA Motor co., Ltd. / 0x02D5 \\
\hline Station Type/Device_ID & YAMAHA-YHX-HCU / 0x002B \\
\hline Product revision & 1.00 \\
\hline Communication speed & 100 Mbps \\
\hline Connector specifications & RJ-45 connector (8-pole modular connector), 2 ports \\
\hline Cable specifications & STP cable (double shield) with CAT 5e or higher \\
\hline Maximum cable length & 100 m \\
\hline Input/output data size & \begin{tabular}{l}
Input: 1408byte (704 words) \\
Output: 1408byte (704 words)
\end{tabular} \\
\hline Monitor LED & Module Status(MS), Network Status(NS), Link/Activity: Port1-2 \\
\hline
\end{tabular}

\section*{Ether \(\boldsymbol{C A T}_{*}\) Basic specifications for network}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ EtherCAT } \\
\hline Applicable controllers & YHX \\
\hline ESI file name & YAMAHA YHX EtherCAT 1_01.xmI \\
\hline Communication speed & 100Mbps \\
\hline Connector specifications & RJ-45 connector (8-pole modular connector) 2 ports \\
\hline Cable specifications & 100 m \\
\hline Maximum cable length & \begin{tabular}{l}
Input: 1408byte (704 words) \\
Output: 1408byte (704 words)
\end{tabular} \\
\hline Input/output data size & RUN, ERROR, Link/Activity:Port1-2 \\
\hline Monitor LEDs CAT 5e or higher \\
\hline
\end{tabular}

\section*{CC-Link Basic specifications for network}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ CC-Link } \\
\hline Applicable controllers & YHX \\
\hline CC-Link compatible version & Ver. 2.00 \\
\hline Remote station type & Remove device station \\
\hline Number of occupied stations & Fixed to 4 stations \\
\hline Station number & 1 to 61 \\
\hline Communication speed & \(10 \mathrm{Mbps}, 5 \mathrm{Mbps}, 2.5 \mathrm{Mbps}, 625 \mathrm{kbps}, 156 \mathrm{kbps}\) \\
\hline Shortest length between stations & 0.2 m or more \\
\hline Total length & \(100 \mathrm{~m} / 10 \mathrm{Mbps}, 150 \mathrm{~m} / 5 \mathrm{Mbps}, 200 \mathrm{~m} / 2.5 \mathrm{Mbps}, 600 \mathrm{~m} / 625 \mathrm{kbps}, 1200 \mathrm{~m} / 156 \mathrm{kbps}\) \\
\hline Input/output data size & \begin{tabular}{l}
Input: \(368 \mathrm{bbte}(184 \mathrm{words})\) \\
Output: \(368 \mathrm{byte}(184\) words \()\)
\end{tabular} \\
\hline Monitor LED & L RUN, L ERROR \\
\hline
\end{tabular}

Each field path setting file can be downloaded from the website. https://global.yamaha-motor.com/business/robot/download/fieldbus/

\section*{CC-Link Basic specifications for network}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ CC-Link } \\
\hline Applicable controllers & LCC140 \\
\hline CC-Link compatible version & Remove device station \\
\hline Remote station type & Fixed to 2 stations \\
\hline Number of occupied stations & 1 to 63 (Set from HPB) \\
\hline Station number & \(10 \mathrm{M} / 5 \mathrm{M} / 2.5 \mathrm{M} / 625 \mathrm{~K} / 156 \mathrm{Kbps}\) (Set using HPB or POPCOM + .) \\
\hline Communication speed & 0.2 m or more \\
\hline Shortest length between stations & \(100 \mathrm{~m} / 10 \mathrm{Mbps}, 160 \mathrm{~m} / 5 \mathrm{Mbps}, 4000 \mathrm{~m} / 2.5 \mathrm{Mbps}, 900 \mathrm{~m} / 625 \mathrm{Kbps}, 1200 \mathrm{~m} / 156 \mathrm{Kbps}\) \\
\hline Total length & \begin{tabular}{l}
None \\
\hline Gonitor LED \\
CC-Link I/O points \\
Dedicated input 16 points, Dedicated output 16 points \\
Input register 8 words \\
Output register 8 words
\end{tabular} \\
\hline
\end{tabular}

Devicel et Basic specifications for network
\begin{tabular}{|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{DeviceNet \({ }^{\text {TM }}\)} \\
\hline Applicable controllers & \multicolumn{2}{|l|}{LCC140} \\
\hline Applicable DeviceNet \({ }^{\text {TM }}\) specifications & \multicolumn{2}{|l|}{\begin{tabular}{l}
Volume 1 Release2.0 \\
Volume 2 Release2.0
\end{tabular}} \\
\hline DeviceNet \({ }^{\text {TM }}\) Conformance test & \multicolumn{2}{|l|}{Compliant with CT24} \\
\hline Device profile / Device type number & \multicolumn{2}{|l|}{Generic Device (keyable) / 2B Hex} \\
\hline Vendor name/Vendor ID & \multicolumn{2}{|l|}{YAMAHA MOTOR CO.,LTD. / 636} \\
\hline Product code & \multicolumn{2}{|l|}{21} \\
\hline Product revision & \multicolumn{2}{|l|}{1.0} \\
\hline EDS file name & \multicolumn{2}{|l|}{Yamaha_LCC1(DEV).eds} \\
\hline MAC ID setting & \multicolumn{2}{|l|}{0 to 63 (Set using HPB or POPCOM \({ }^{+}\).)} \\
\hline Communication speed setting & \multicolumn{2}{|l|}{\(500 \mathrm{~K} / 250 \mathrm{~K} / 125 \mathrm{Kbps}\) (Set using HPB or POPCOM \({ }^{+}\).)} \\
\hline Communication data & \multicolumn{2}{|l|}{Predefined Master/Slave Connection Set: Group 2 only server Dynamic connection support (UCMM): None Support for divided transmission of explicit message: Yes} \\
\hline Network Total length & \multicolumn{2}{|l|}{\(100 \mathrm{~m} / 500 \mathrm{Kbps}, 250 \mathrm{~m} / 250 \mathrm{Kbps}, 500 \mathrm{~m} / 125 \mathrm{Kbps}\)} \\
\hline length Branch length/Total branch length & \multicolumn{2}{|l|}{6 m or less/39m or less, 6 m or less/78m or less, 6 m or less/156m or less} \\
\hline Monitor LED & \multicolumn{2}{|l|}{None} \\
\hline Number of DeviceNet \({ }^{\text {TM }}\) I/O points/ number of occupied channels & General-purpose input 32 points, General-purpose output 32 points Dedicated input 16 points, Dedicated output 16 points Input register 8 words Output register 8 words & Input: 24byte Output: 24byte \\
\hline
\end{tabular}

Etheri'et/IP" Basic specifications for network
\begin{tabular}{|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{EtherNet//P \({ }^{\text {TM }}\)} \\
\hline Applicable controllers & LCC140 & \\
\hline Applicable software version & LCC140: Ver. 64.07 or higher HPB/HPB-D: Ver. 24.06 or higher \(\mathrm{POPCOM}^{+}\): Ver. 2.1.0 or higher & \\
\hline Applicable EtherNet/IP \({ }^{\text {TM }}\) specifications & \begin{tabular}{l}
Volume 1: Common Industrial protocol(CIP \(\left.{ }^{\text {TM }}\right)\) Edition 3.14 \\
Volume 2: EtherNet/IP \({ }^{\text {TM }}\) Adaptation of CIP \({ }^{\text {TM }}\) Edition 1.15
\end{tabular} & \\
\hline EtherNet/IP \({ }^{\text {TM }}\) Conformance test & Compliant with CT11 & \\
\hline Device profile/Device type number & Generic Device (keyable) / 2B Hex & \\
\hline Vendor name/Vendor ID & YAMAHA MOTOR CO.,LTD. / 636 & \\
\hline Product code & 23 & \\
\hline Product revision & 1.1 & \\
\hline EDS file name & Yamaha_LCC1(EIP2).eds & \\
\hline Communication speed & 10Mbps / 100Mbps & \\
\hline Connector specifications & RJ-45 connector (8-pole modular connector), 2 ports & \\
\hline Applicable cable specifications & STP cable (double shield) with CAT 5e or higher & \\
\hline Maximum cable length & 100m & \\
\hline Monitor LED & Module Status(MS), Network Status(NS), Link/Activity: Port1-2 & \\
\hline Number of EtherNet/IPTM I/O points/ number of occupied channels & General-purpose input 32 points, General-purpose output 32 points Dedicated input 16 points, Dedicated output 16 points Input register 8 words Output register 8 words & Input: 24byte Output: 24byte \\
\hline
\end{tabular}

Option details
Field network system with minimal wiring
NETWORK

\section*{CC-Link Basic specifications for network}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \\
\hline Applicable controllers & TS-S2 / TS-SH / TS-X / TS-P CC-Link \\
\hline Version supporting CC-Link & Ver. 1.10 \\
\hline Remote node type & Remote device node \\
\hline Number of occupied nodes & 1 node \\
\hline Node number setting & 1 to 64 \\
\hline Communication speed setting & \(10 \mathrm{Mbps}, 5 \mathrm{Mbps}, 2.5 \mathrm{Mbps}, 625 \mathrm{Kbps}, 156 \mathrm{Kbps}\) \\
\hline No. of CC-Link inputs/outputs & Input 16 points, Output 16 points \\
\hline Shortest distance between nodes \({ }^{\text {Note1 }}\) & 0.2 m or more \\
\hline Overall extension distance \({ }^{\text {Note1 }}\) & \(100 \mathrm{~m} / 10 \mathrm{Mbps}, 160 \mathrm{~m} / 5 \mathrm{Mbps}, 400 \mathrm{~m} / 2.5 \mathrm{Mbps}, 900 \mathrm{~m} / 625 \mathrm{Kbps}, 1200 \mathrm{~m} / 156 \mathrm{Kbps}\) \\
\hline Monitor LED & L RUN, L ERR, SD, RD \\
\hline Note 1. These values apply when able that supports CC-Link Ver.110 is used
\end{tabular}

Note 1. These values apply when a cable that supports CC-Link Ver.1.10 is used.

\section*{Devicel et Basic specifications for network}
\begin{tabular}{|c|c|}
\hline Item & DeviceNet \({ }^{\text {TM }}\) \\
\hline Applicable controllers & TS-S2 / TS-SH / TS-X / TS-P \\
\hline Applicable DeviceNet \({ }^{\text {TM }}\) specifications & Volume 1 Release2.0/Volume 2 Release2.0 \\
\hline Device type & Generic Device (device number 0) \\
\hline Number of occupied CH & Input 6ch, Output 6ch \\
\hline MAC ID setting & 0 to 63 \\
\hline Communication speed setting & 500 Kbps , 250 Kbps , 125 Kbps \\
\hline DeviceNet \({ }^{\text {TM }}\) inputs/outputs & Input 16 points, Output 16 points \\
\hline N Otwork \({ }^{\text {On }}\) & \(100 \mathrm{~m} / 500 \mathrm{Kbps}, 250 \mathrm{~m} / 250 \mathrm{Kbps}, 500 \mathrm{~m} / 125 \mathrm{Kbps}\) \\
\hline Network Branch length & 6 m or less \\
\hline Overall branch length & 39 m or less/500Kbps, 78 m or less/250Kbps, 156 m or less/125Kbps \\
\hline Monitor LED & Module, Network \\
\hline
\end{tabular}

Etheri 'et/IP" Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ EtherNet/IP \({ }^{\text {TM }}\)} \\
\hline Applicable controllers & TS-S2 / TS-SH / TS-SH / TS-X / TS-P \({ }^{\text {Note }}\) \\
\hline Applicable EtherNet/IP \({ }^{\text {TM }}\) specifications & \begin{tabular}{l}
Volume1: Common Industrial Protocol (CIT \({ }^{\text {TM }}\)) Edition 3.8 \\
Voluime2: EtherNet/PP \({ }^{\text {TM }}\) Adaptation Edition 1.9
\end{tabular} \\
\hline Device type & Generic Device (device number 43) \\
\hline Number of occupied CH & Input 6ch, Output 6ch \\
\hline Ethernet interface & 10BASE-T/100BASE-TX \\
\hline Network length & 100m \\
\hline Monitor LED & MS, NS, Activity, Link \\
\hline
\end{tabular}

Note. Supported by controller software version V1.10.121 or later. Necessary parameters can be set with the support tool, HT-1 (V1.13 or later) and TSManager (V1.3.3 or later).
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \\
\hline Applicable controllers & TS-S2 / TS-SH / TS-X / TS-P \\
\hline Network specification conformance & PROFINET IO V2.2 \\
\hline Conformance class & Conformance Class B / IO Device \\
\hline Input/output data size & Input 6 words, output 6 words \\
\hline Transmission speed & \(100 \mathrm{Mbps}(\) Auto-negotiation) \\
\hline Network length & 100 m \\
\hline Monitor LED & MS, NS, Activity, Link \\
\hline
\end{tabular}

Note. Supported by controller software version V1.14.136 or later. Necessary parameters can be set with the support tool, HT-1 (V1.16 or later) and TSManager (V1.4.4 or later).

\section*{Option details}

\section*{Field network system with minimal wiring}

Each field path setting file can be downloaded from the website. https://global.yamaha-motor.com/business/robot/download/fieldbus/

CC-Link Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ CC-Link } \\
\hline Applicable controllers & SR1-X / SR1-P \\
\hline Version supporting CC-Link & Ver. 1.10 \\
\hline Remote node type & Remote device node \\
\hline Number of occupied nodes & 1 to 63 \\
\hline Nodes number setting & \(10 \mathrm{Mbps}, 5 \mathrm{Mbps}, 2.5 \mathrm{Mbps}, 625 \mathrm{Kbps}, 156 \mathrm{Kbps}\) \\
\hline Communication speed setting & \begin{tabular}{l}
General input 32 points, General output 32 points, \\
Dedicated input 16 points, Dedicated Output 16 points
\end{tabular} \\
\hline No. of CC-Link I/O Note1 & \begin{tabular}{l}
All points usable as paralle external I/O for controller. \\
Each point controllable from master station sequencer (PLC) by emulated serialization, regardless of robot program.
\end{tabular} \\
\hline \begin{tabular}{l}
Parallel external I/O \\
(ERCX, SRCP30, DRCX only)
\end{tabular} & 0.2 m or more \\
\hline Shortest distance between nodes \({ }^{\text {Note2 } 2}\) \\
\hline Overall length Note2 & \(100 \mathrm{~m} / 10 \mathrm{Mbps}, 160 \mathrm{~m} / 5 \mathrm{Mbps}, 400 \mathrm{~m} / 2.5 \mathrm{Mbps}, 900 \mathrm{~m} / 625 \mathrm{Kbps}, 1200 \mathrm{~m} / 156 \mathrm{Kbps}\) \\
\hline Monitor LED & RUN, ERR, SD, RD \\
\hline
\end{tabular}

Note 1. Controller I/Os are updated every 10 ms .
Note 2. These values apply when a cable that supports CC-Link Ver 1.10 is used.

\section*{Devicel et Basic specifications for network}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & DeviceNet \({ }^{\text {TM }}\) \\
\hline \multicolumn{2}{|l|}{Applicable controllers} & SR1-X / SR1-P \\
\hline \multicolumn{2}{|l|}{Applicable DeviceNet \({ }^{\text {TM }}\) specifications} & Volume 1 Release2.0/Volume 2 Release2.0 \\
\hline \multicolumn{2}{|l|}{Device type} & Generic Device (device number 0) \\
\hline \multicolumn{2}{|l|}{Number of occupied CH} & Input 2ch \({ }^{\text {Note1 }}\), Output 2ch \({ }^{\text {Note1 }}\) \\
\hline \multicolumn{2}{|l|}{MAC ID setting} & 0 to 63 \\
\hline \multicolumn{2}{|l|}{Communication speed setting} & 500 Kbps , 250 Kbps , 125 Kbps \\
\hline \multicolumn{2}{|l|}{DeviceNet \({ }^{\text {TM }}\) I/O \({ }^{\text {Note2 }}\)} & General input 16 points \({ }^{\text {Note3 }}\), General output 16 points \({ }^{\text {Note3 }}\), Dedicated input 16 points, Dedicated Output 16 points \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { Parallel external I/O } \\
& \text { (ERCX, SRCP30, DRCX only) } \\
& \hline
\end{aligned}
\]} & All points usable as parallel external I/O for controller. Each point controllable from master station sequencer (PLC) by emulated serialization, regardless of robot program. \\
\hline \multirow[t]{2}{*}{Network length} & Overall length \({ }^{\text {Note4 }}\) & \(100 \mathrm{~m} / 500 \mathrm{Kbps}, 250 \mathrm{~m} / 250 \mathrm{Kbps}, 500 \mathrm{~m} / 125 \mathrm{Kbps}\) \\
\hline & Branch length/Overall branch length & 6 m or less/39m or less, 6 m or less/78m or less, 6 m or less/156m or less \\
\hline \multicolumn{2}{|l|}{Monitor LED} & Module, Network \\
\hline
\end{tabular}

Note 1. Inputs / Outputs are 12ch each when using SR1-P / SR1-X with extension model.
Note 2. Controller I/Os are updated every 10 ms .
ote 3. General Inputs / Outputs are 32 each when using SR1-P / SR1-X with extension model
Note 4. These values apply when a thick cable is used. The distance is less when a fine cable is used or when thick and fine cables are mixed in use.

\section*{PROPE}

Bides Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ PROFIBUS } \\
\hline Applicable controllers & SR1-X / SR1-P \\
\hline Communication profile & PROFIBUS-DP slave \\
\hline Number of occupied nodes & 1 node \\
\hline Setting of station address & 0 to 126 \\
\hline Communication speed setting & \begin{tabular}{l}
\(9.6 \mathrm{Kbps}, 19.2 \mathrm{Kbps}, 93.75 \mathrm{Kbps}, 187.5 \mathrm{Kbps}, 500 \mathrm{Kbps}, 1.5 \mathrm{Mbps}, 3 \mathrm{Mbps}, 6 \mathrm{Mbps}, 12 \mathrm{Mbps}\) (automatic \\
recognition)
\end{tabular} \\
\hline PROFIBUS I/O Note & General input 32 points, General output 32 points, Dedicated input 16 points, Dedicated Output 16 points \\
\hline \begin{tabular}{l}
Parallel external I/O \\
(ERCX / DRCX only)
\end{tabular} & \begin{tabular}{l}
All points usable as parallel external I/O for controller. \\
Each point controllable from master station sequencer (PLC) by emulated serialization, regardless of \\
robot program.
\end{tabular} \\
\hline Overall length & \(100 \mathrm{~m} / 12 \mathrm{Mbps}, 200 \mathrm{~m} / 1.5 \mathrm{Mbps}, 400 \mathrm{~m} / 500 \mathrm{Kbps}, 1000 \mathrm{~m} / 187.5 \mathrm{Kbps}, 1200 \mathrm{~m} / 9.6 \mathrm{~K} \cdot 19.2 \mathrm{~K} \cdot 93.75 \mathrm{Kbps}\) \\
\hline
\end{tabular}

Note. The shortest I/O update interval of the controller is 10 ms but the actual I/O update time varies depending on the update time with the master station.

Option details
Field network system with minimal wiring

CC-Link Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{\(\quad\) CC-Link } \\
\hline Applicable controllers & RCX320 / RCX221 / RCX222 / RCX340 \\
\hline Version supporting CC-Link & Ver. 1.10 \\
\hline Remote station type & Remote device node \\
\hline Number of occupied stations & Fixed to 4 stations \\
\hline Station number setting & 1 to 61 \(\quad\)\begin{tabular}{l}
RCX320/RCX221/RCX222 (Set from the rotary switch on the board) \\
RCX340 (Set from the programming box or support software)
\end{tabular} \\
\hline Communication speed setting & \(10 \mathrm{Mbps}, 5 \mathrm{Mbps}, 2.5 \mathrm{Mbps}, 625 \mathrm{Kbps}, 156 \mathrm{Kbps}\) (set from the Rotary swich on board) \\
\hline No. of CC-Link I/O Note1 & General input 96 points, General output 96 points, Dedicated input 16 points, Dedicated output16 points \\
\hline Parallel external I/O Note2 & \begin{tabular}{l}
A function that simulates serial communication enables individual control of the various points \\
from a master sequencer, regardless of the robot program.
\end{tabular} \\
\hline Shortest distance between nodes \begin{tabular}{l}
Note3
\end{tabular} & 0.2 m or more \\
\hline Overall length \({ }^{\text {Note3 }}\) & \(100 \mathrm{~m} / 10 \mathrm{Mbps}, 150 \mathrm{~m} / 5 \mathrm{Mbps}, 200 \mathrm{~m} / 2.5 \mathrm{Mbps}, 600 \mathrm{~m} / 625 \mathrm{Kbps}, 1200 \mathrm{~m} / 156 \mathrm{Kbps}\) \\
\hline Monitor LED & RUN, ERR, SD, RD \\
\hline
\end{tabular}

Note 1. In case of RCX320/RCX221/RCX222, the controller I/Os are updated every 10 ms .
For RCX 340, the controller I/Os are updated every 5 ms for the shortest. The actual update time changes depending on the communication cycle of the master unit Note 2. With RCX 141/142, the exclusive input of the parallel I/O cannot be used other than the interlock input. With RCX221/222, the exclusive input of the parallel I/O Note 3. cannot be used. (The interlock input terminal is located on the SAFETY connector side.)
Note 3. These values apply when a cable that supports CC-Link Ver.1.10 is used.

\section*{Devicei et Basic specifications for network}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & DeviceNet \({ }^{\text {TM }}\) \\
\hline \multicolumn{2}{|l|}{Applicable controllers} & RCX320 / RCX221 / RCX222 / RCX340 \\
\hline \multicolumn{2}{|l|}{Applicable DeviceNet \({ }^{\text {TM }}\) specifications} & Volume 1 Release2.0 / Volume 2 Release2.0 \\
\hline \multicolumn{2}{|l|}{Device Profile Name} & Generic Device (device number 0) \\
\hline \multicolumn{2}{|l|}{Number of occupied CH \({ }^{\text {Note1 }}\)} & Normal: Input/output 24ch each, Compact: Input/output 2ch each \\
\hline \multicolumn{2}{|l|}{MAC ID setting} & 0 to 63 \\
\hline \multicolumn{2}{|l|}{Transmission speed setting} & 500 Kbps , 250 Kbps , 125 Kbps (set using DIP switch on board) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DeviceNet }{ }^{\text {TM }} \\
& \text { I/O }{ }^{\text {Note2 }}
\end{aligned}
\]} & Normal & General input 96 points, General output 96 points, Dedicated input 16 points, Dedicated output 16 points \\
\hline & Compact & General input 16 points, General output 16 points, Dedicated input 16 points, Dedicated output 16 points \\
\hline \multicolumn{2}{|l|}{Parallel external I/O \({ }^{\text {Note3 }}\)} & The master module and up to four ports can be controlled regardless of the robot program by using the pseudoserialization function. \\
\hline \multirow[t]{2}{*}{Network length} & Overall length \({ }^{\text {Note4 }}\) & \(100 \mathrm{~m} / 500 \mathrm{Kbps}, 250 \mathrm{~m} / 250 \mathrm{Kbps}, 500 \mathrm{~m} / 125 \mathrm{Kbps}\) \\
\hline & Branch length / Overall branch length & 6m max./39m max., 6m max./78m max., 6m max./156m max. \\
\hline \multicolumn{2}{|l|}{Monitor LED} & MS (Module Status), NS (Network Status) \\
\hline
\end{tabular}

Note 1. Use the robot parameter to select Normal
Note 2. In case of RCX320/RCX221/RCX222, the controller I/Os are updated every 10 ms
For RCX 340, the controller I/Os are updated every 5 ms for the shortest. The actual update time changes depending on the communication cycle of the master unit Note 3. With RCX221 / 222, the exclusive input of the paraliel I/O cannot be used. (The interlock input terminal is located on the SAFETY connector side.)

PROFI

\section*{TBUS Basic specifications for network}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \\
\hline Applicable controllers & RCX320 / RCX221 / RCX222 / RCX340 \\
\hline Communication profile & PROFIBUS-DP slave \\
\hline Number of occupied nodes & 1 node \\
\hline Setting of station address & 1 to 99 (set using Rotary switch on board) \\
\hline Setting of communication speed & \(9.6 \mathrm{Kbps}, 19.2 \mathrm{Kbps}, 93.75 \mathrm{Kbps}, 187.5 \mathrm{Kbps}, 500 \mathrm{Kbps}, 1.5 \mathrm{Mbps}, 3 \mathrm{Mbps}, 6 \mathrm{Mbps}, 12 \mathrm{Mbps}\) (automatic recognition) \\
\hline PROFIBUS I/O Note1 & General input 96 points, General output 96 points, Dedicated intput 16 points, Dedicated output 16 points
\end{tabular}

Note 1. In case of RCX320/RCX221/RCX222, the shortest I/O update interval of the controller is 10 ms but the actual I/O update time varies depending on the update time
with the master station. Note 2. With RCX221 / 222, the exclusive input of the parallel I/O cannot be used. (The interlock input terminal is located on the SAFETY connector side.)

Each field path setting file can be downloaded from the website． https：／／global．yamaha－motor．com／business／robot／download／fieldbus／

Etheri＇et／IP＂Basic specifications for network
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{4}{|c|}{EtherNet／IP \({ }^{\text {TM }}\)} \\
\hline Applicable controllers & \multicolumn{4}{|l|}{RCX320／RCX340} \\
\hline Network specifications & \multicolumn{4}{|l|}{Conforms to Ethernet（IEEE 802．3）．} \\
\hline Applicable EtherNet／IP \({ }^{\text {TM }}\) specifications & \multicolumn{4}{|l|}{\begin{tabular}{l}
Volume 1：Common Industrial protocol（CIP \({ }^{\text {TM }}\) ）Edition 3.14 \\
Volume 2 ：EtherNet／IP \({ }^{\text {TM }}\) Adaptation Edition 1.15
\end{tabular}} \\
\hline Device type & \multicolumn{4}{|l|}{Generic Device（Device No．43）} \\
\hline Data size & \multicolumn{4}{|l|}{48 bytes each for input／output} \\
\hline Transmission speed & \multicolumn{4}{|l|}{\(10 \mathrm{Mbps} / 100 \mathrm{Mbps}\)} \\
\hline Connector specifications & \multicolumn{4}{|l|}{RJ－45 connector（8－pole modular connector） 2 port} \\
\hline Cable specifications & \multicolumn{4}{|l|}{Refer to＂2．1 LAN cable＂in Chapter 2 of this user＇s manual．} \\
\hline Max．cable length & \multicolumn{4}{|l|}{100 m} \\
\hline \multirow{4}{*}{EtherNet／IP \({ }^{\text {TM }}\) input／output points \({ }^{\text {Note }}\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Input \\
（48 bytes in total）
\end{tabular}} & byte 0－3 byte 4－31 & Dedicated word input General purpose word input & \[
\begin{aligned}
& : 2 \text { words } \\
& : 14 \text { words }
\end{aligned}
\] \\
\hline & & byte 32－33 byte 34－47 & Dedicated bit input General－purpose bit input & \(: 16\) points
\(: 96\) points \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Output \\
（48 bytes in total）
\end{tabular}} & byte 0－3 byte 4－31 & Dedicated word output General－purpose word output & \[
\begin{aligned}
& : 2 \text { words } \\
& : 14 \text { words }
\end{aligned}
\] \\
\hline & & byte 32－33 byte 34－47 & Dedicated bit output General－purpose bit output & \[
\begin{aligned}
& : 16 \text { points } \\
& : 96 \text { points }
\end{aligned}
\] \\
\hline Parallel external input & \multicolumn{4}{|l|}{Regardless of the robot program，the master module and up to four ports can be controlled using the emulated serialization function．} \\
\hline Settings，such as IP address & \multicolumn{4}{|l|}{The settings are made with the programming box（PBX）or RCX－Studio 2020.} \\
\hline Monitor LEDs & \multicolumn{4}{|l|}{Network Status，Module Status} \\
\hline
\end{tabular}

\section*{PROFT \({ }^{6}\)}

内自元 Basic specifications for network
\begin{tabular}{|c|c|c|}
\hline Item & & PROFINET \\
\hline Applicable controllers & \multicolumn{2}{|l|}{RCX320／RCX340} \\
\hline Supported software versions & \multicolumn{2}{|l|}{RCX320／RCX340：V1．21 or later PBX／PBX－E ：V1．08 or later RCX－Studio：V1．0．1 or later RCX－Studio Pro ：V2．0．0 or later} \\
\hline Network specification conformance & \multicolumn{2}{|l|}{PROFINET IO V2．2} \\
\hline Conformance class & \multicolumn{2}{|l|}{Conformance Class B／IO Device} \\
\hline Vendor Name／Vendor＿ID & \multicolumn{2}{|l|}{YAMAHA MOTOR CO．，LTD．／0x02D5} \\
\hline Station Type／Device＿ID & \multicolumn{2}{|l|}{YAMAHA RCX3 PROFINET／0x0001} \\
\hline Product revision & \multicolumn{2}{|l|}{1.00} \\
\hline Transmission speed & \multicolumn{2}{|l|}{100 Mbps （Auto－negotiation）} \\
\hline Connector specifications & \multicolumn{2}{|l|}{RJ－45 connector（8－pole modular connector） 2 ports} \\
\hline Conforming cable specifications & \multicolumn{2}{|l|}{CAT 5e or higher STP cable（double shield）} \\
\hline Max．cable length & \multicolumn{2}{|l|}{100 m} \\
\hline Monitor LEDs & \multicolumn{2}{|l|}{Module Status（MS），Network Status（NS），Link／Activity：Port1－2} \\
\hline \multirow{10}{*}{Input／output data size \({ }^{\text {Note }}\)} & \multirow{5}{*}{Input ：48bytes} & Dedicated word input 2 words（4 bytes） \\
\hline & & General－purpose word input 14 words（28 bytes） \\
\hline & & Dedicated bit input 16 bits（2 bytes） \\
\hline & & General－purpose bit input 96 bits（12 bytes） \\
\hline & & Reserved area 2 bytes \\
\hline & \multirow{5}{*}{Output：48bytes} & Dedicated word output 2 words（4 bytes） \\
\hline & & General－purpose word output 14 words（28 bytes） \\
\hline & & Dedicated bit output 16 bits（2 bytes） \\
\hline & & General－purpose bit output 96 bits（12 bytes） \\
\hline & & Reserved area 2 bytes \\
\hline
\end{tabular}

Note．The controller I／Os are updated every 5 ms for the shortest．The actual update time changes depending on the communication cycle of the master unit．

Option details
Field network system with minimal wiring

\section*{NETWORK}

Each field path setting file can be downloaded from the website. https://global.yamaha-motor.com/business/robot/download/fieldbus/

RCX320 RCX340

\section*{EtherCAT. Basic specifications for network}
\begin{tabular}{|c|c|c|}
\hline Item & & EtherCAT \\
\hline Applicable controllers & RCX320 / RCX34 & \\
\hline Supported software versions & \[
\begin{aligned}
& \text { RCX320 / RCX34 } \\
& \text { PBX/PBX-E :V1. } \\
& \text { RCX-Studio Pro }
\end{aligned}
\] & 0 : V1.62 or later 13 or later V2.1.9 or later \\
\hline ESI file name & YAMAHA RCX340 & EtherCAT 1_00.xml \\
\hline Transmission speed & 100 Mbps (Auto-n & negotiation) \\
\hline Connector specifications & RJ-45 connector & (8-pole modular connector) 2 ports \\
\hline Conforming cable specifications & CAT 5e or higher & STP cable (double shield) \\
\hline Max. cable length & 100 m & \\
\hline Monitor LEDs & RUN, ERROR, Li & k/Activity:Port1-2 \\
\hline \multirow{10}{*}{Input/output data size \({ }^{\text {Note }}\)} & \multirow{5}{*}{Input: 48bytes} & Dedicated word input 2 words (4 bytes) \\
\hline & & General-purpose word input 14 words (28 bytes) \\
\hline & & Dedicated bit input 16 bits (2 bytes) \\
\hline & & General-purpose bit input 96 bits (12 bytes) \\
\hline & & Reserved area 2 bytes \\
\hline & \multirow{5}{*}{Output: 48bytes} & Dedicated word output 2 words (4 bytes) \\
\hline & & General-purpose word output 14 words (28 bytes) \\
\hline & & Dedicated bit output 16 bits (2 bytes) \\
\hline & & General-purpose bit output 96 bits (12 bytes) \\
\hline & & Reserved area 2 bytes \\
\hline
\end{tabular}

Note. The controller I/Os are updated every 5 ms for the shortest. The actual update time changes depending on the communication cycle of the master unit.
Ethernet Basic specifications for network
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{\(\quad\) Ethernet } \\
\hline Applicable controllers & RCX320 / RCX340 \\
\hline Network specification & As specified for Ethernet (IEEE802.3) \\
\hline Connector specification & RJ-45 connector (8-pole modular connector) 1 port \\
\hline Baud rate & 10Mbps (10BASE-T) \\
\hline Communication mode & Half Duplex (Half-duplex) \\
\hline Network protocol & \begin{tabular}{l}
Application layer: TELNET / Transport layer: TCP / \\
Network layer: IP, ICMP, ARP / Data link layer: CSMA/CD / \\
Physical layer: 10BASE-T
\end{tabular} \\
\hline Number of simultaneous log inputs & 1 \\
\hline Setting of IP address, etc. & Set from RPB \\
\hline Monitor LED & Run, Collision, Link, Transmit, Receive \\
\hline
\end{tabular}

\title{
RCXiVY2+ System
}

Robot with image processing functions

\section*{Integrated Robot Vision System with "plug-and-play" simplicity. \\ New functions have been added to the conventional iVY2 to make the vision system even easier to use.}

Main functions > P108

Ordering method

\section*{Basic specifications}

\section*{- Robot vision basic specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & RCXiVY2+ unit \\
\hline \multirow{12}{*}{Basic specifications} & \multicolumn{2}{|l|}{Applicable controllers} & RCX340 / RCX320 \\
\hline & \multicolumn{2}{|l|}{Number of screen pixels} & \[
\begin{aligned}
& 720(\mathrm{H}) \times 540(\mathrm{~V})(400,000 \text { pixels }) \\
& 1440(\mathrm{H}) \times 1080(\mathrm{~V})(1,600,000 \text { pixels }) \\
& 2048(\mathrm{H}) \times 1536(\mathrm{~V})(3,200,000 \text { pixels }) \\
& 2592(\mathrm{H}) \times 1944(\mathrm{~V})(5,000,000 \text { pixels }){ }^{\text {Note1 }} \\
& \hline
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{Model setting capacity} & 254 models \\
\hline & \multicolumn{2}{|l|}{Number of connectable cameras} & 2 cameras (8 units when the HUB is used.) \\
\hline & \multicolumn{2}{|l|}{Connectable camera} & GigE camera PoE: IEEE802.3af 1 ch up to 7W \\
\hline & \multicolumn{2}{|l|}{External interface} & Ethernet (1000BASE-T) \({ }^{\text {Note2 }}\) USB 2.0 2Ch (Up to 5V \(2.5 \mathrm{~W} / \mathrm{ch}\)) \\
\hline & \multicolumn{2}{|l|}{External monitor output} & \begin{tabular}{l}
DVI-I Note3 \\
Monitor resolution: \(1024 \times 768\) \\
Vertical periodic frequency: 60 Hz \\
Horizontal periodic frequency: 48.4 kHz
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Power supply} & 24 VDC +/- 10\%, Maximum 1.5 A \\
\hline & \multicolumn{2}{|l|}{Dimensions} & W45 \(\times\) H195 \(\times\) D130 (RCXiVY2+ unit only) \\
\hline & \multicolumn{2}{|l|}{Weight} & 0.8 kg (RCXiVY2+ unit only, when the lighting control board option is selected) \\
\hline & \multicolumn{2}{|l|}{Operating environment} & Compliant with the RCX340/RCX320 controller. \\
\hline & \multicolumn{2}{|l|}{Storage environment} & Compliant with the RCX340/RCX320 controller. \\
\hline \multicolumn{3}{|l|}{Search method} & Edge search, Measuring search, Blob search, Code search \\
\hline \multirow[t]{2}{*}{Image capturing} & \multicolumn{2}{|l|}{Trigger mode} & S/W trigger, H/W trigger \\
\hline & \multicolumn{2}{|l|}{External trigger input} & 2 points \\
\hline \multicolumn{3}{|l|}{Function} & Position detection, coordinate conversion, automatic point data generation, distortion and inclination correction \\
\hline \multicolumn{3}{|l|}{Camera installation position} & \begin{tabular}{l}
Fixed to the fixed camera (up, down) or robot (Y-axis, Z-axis). \\
Vertical direction to the image capturing target workpiece is recommended.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Setting support function} & Calibration, image save function, model registration \({ }^{\text {Note4 }}\), fiducial mark registration \({ }^{\text {Note4 }}\), measuring registration \({ }^{\text {Note4 }}\), blob registration \({ }^{\text {Note } 4}\), code registration \({ }^{\text {Note } 4}\), monitor function \({ }^{\text {Note } 4}\) \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Lighting control options}} & Number of connectable lighting units & Maximum 2 \\
\hline & & Modulated light format & PWM modulated light control (0 to 100\%), PWM frequency switchable \(62.5 \mathrm{kHz} / 125 \mathrm{kHz}\) Continuous light, strobe light (follows camera exposure) \\
\hline & & Lighting power input & 12 V DC or 24 V DC (external supply shared by both channels) \\
\hline & & Lighting output & For 12 V DC supply: Total of less than 40 W for both channels. For 24 V DC supply: Total of less than 80 W for both channels. \\
\hline
\end{tabular}

\footnotetext{
Note1. Since the rolling shutter is used, the tracking is not supported.
Note2. For setting and monitor operations
Note3. Also usable with an analog monitor by using a conversion adaptor.
Note4. RCXiVY2+ Studio function (requires a Windows PC)
}

Tracking board basic Specifications
\begin{tabular}{|c|c|c|}
\hline & Item & Tracking board \\
\hline \multirow{9}{*}{Basic specifications} & Applicable controllers & RCX340 / RCX320 \\
\hline & Number of connected encoders & Up to 2 units. \\
\hline & Encoder power supply & 5VDC (2 counters total 500 mA or less) (Supplied from controller) \\
\hline & Applicable encoder & 26LS31/26C31 or equivalent line driver (RS-422 compliance). \\
\hline & Input phase & A, \(\bar{A}, \mathrm{~B}, \overline{\mathrm{~B}}, \mathrm{Z}, \overline{\mathrm{Z}}\) \\
\hline & Max. response frequency & 2 MHz or less \\
\hline & Counter & 0 to 65535 \\
\hline & Multiplier & 4 x \\
\hline & Other & With disconnection detection function \\
\hline
\end{tabular}

Dimensional outlines

\section*{Calibration jig}

When using attachment（small）

\section*{Dimensional outlines}

Camera

\section*{Lenses}

25mm lens (megapixel support) (Model: KCX-M7214-70)

Lens characteristics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Lens} & \multirow{3}{*}{Model} & \multirow{3}{*}{Focal length [mm]} & \multirow{3}{*}{Aperture value [F No.]} & \multicolumn{8}{|c|}{Angle-of-view (degrees)} & \multirow[t]{3}{*}{Closest approach distance [m]} \\
\hline & & & & \multicolumn{2}{|l|}{KFR-M6541-00
\((400,000\) pixel camera)} & \multicolumn{2}{|l|}{\[
\begin{array}{c|}
\text { KFR-M6541-10 } \\
(1,600,000 \text { pixel camera }) \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{c|c}
KFR-M6541-20 \\
\((3,200,000\) pixel camera)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{|c|}
\hline KFR-M6541-30 \\
\((5,000,000\) pixel camera \()\) \\
\hline
\end{tabular}} & \\
\hline & & & & Vertical & Horizontal & Vertical & Horizontal & Vertical & Horizontal & Vertical & Horizontal & \\
\hline 8 mm & KCX-M7214-00 & 8 & F1.3-CLOSE & 27.13 & 36.09 & 26.85 & 35.69 & 37.57 & 49.23 & 30.72 & 40.60 & 0.2 \\
\hline 12 mm & KCX-M7214-10 & 12 & F1.4-CLOSE & 17.23 & 23.01 & 17.05 & 22.74 & 24.11 & 31.95 & 19.57 & 26.03 & 0.3 \\
\hline 16 mm & KCX-M7214-20 & 16 & F1.4-CLOSE & 13.17 & 17.50 & 13.03 & 17.30 & 18.48 & 24.44 & 14.97 & 19.83 & 0.4 \\
\hline 25 mm & KCX-M7214-30 & 25 & F1.4-CLOSE & 8.57 & 11.42 & 8.47 & 11.29 & 12.05 & 16.01 & 9.74 & 12.95 & 0.5 \\
\hline 8 mm (megapixel support) & KCX-M7214-40 & 8 & F1.4-F16 & 26.47 & 34.83 & 26.20 & 34.44 & 36.68 & 47.61 & 29.97 & 39.21 & 0.1 \\
\hline 12mm (megapixel support) & KCX-M7214-50 & 12 & F1.4-F16 & 17.49 & 23.19 & 17.31 & 22.92 & 24.47 & 32.19 & 19.86 & 26.23 & 0.1 \\
\hline 16 mm (megapixel support) & KCX-M7214-60 & 16 & F1.4-F16 & 13.28 & 17.69 & 13.14 & 17.48 & 18.64 & 24.69 & 15.09 & 20.04 & 0.1 \\
\hline 25 mm (megapixel support) & KCX-M7214-70 & 25 & F1.4-F16 & 8.62 & 11.48 & 8.52 & 11.34 & 12.12 & 16.09 & 9.80 & 13.02 & 0.15 \\
\hline
\end{tabular}

Note. This table shows the angle-of-view for Yamaha's standard lenses. If the angle-of-view is greater, there might be more distortion at the edge of the image.
- Angle-of-view size, WD, and magnification when close-up ring is used
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Close-up } \\
\text { ring } \\
{[\mathrm{mm}]} \\
\hline
\end{gathered}
\]} & & & \multicolumn{8}{|c|}{Lens} \\
\hline & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
8 \mathrm{~mm} \\
\text { KCX-M7214-00 } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
12 \mathrm{~mm} \\
\text { KCX-M } 7214-10 \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
16 \mathrm{~mm} \\
\text { KCX-M7214-20 }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
25 \mathrm{~mm} \\
\text { KCX-M7214-30 }
\end{gathered}
\]} \\
\hline \multirow{6}{*}{None} & & WD [mm] & & 0 & & 0 & & 0 & & 0 \\
\hline & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
\text { X } \times \mathrm{Y} \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & \(97.8 \times\) & 130.5 & & 124 & & 124 & 72.9 & \(\times 97.2\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & \(98.6 \times\) & 130.5 & 93.7 & \(\times 124\) & 93.7 & \(\times 124\) & 73.5 & \(\times 97.2\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & 139.2 & × 185.7 & 132.2 & \(\times 176.5\) & 132.2 & \(\times 176.5\) & \(103.7 \times\) & \(\times 138.4\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & 112.3 & \(\times 150\) & 106.7 & \(\times 142.5\) & 106.7 & \(\times 142.5\) & \(83.7 \times\) & × 111.7 \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & \multicolumn{2}{|r|}{0.038} & \multicolumn{2}{|r|}{0.040} & \multicolumn{2}{|r|}{0.040} & \multicolumn{2}{|r|}{0.051} \\
\hline \multirow{6}{*}{0.5} & & WD [mm] & 69.5 & 118.6 & 143 & 296.8 & 222 & 524.1 & 358.5 & 1269.4 \\
\hline & \multirow{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
\text { X } \times \mathrm{Y} \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & \(37.2 \times 49.6\) & \(60 \times 80\) & \(46.5 \times 62\) & \(93 \times 124\) & \(52.3 \times 69.8\) & \(120 \times 160\) & \(53.1 \times 70.8\) & \(186 \times 248\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & \(37.5 \times 49.6\) & \(60.4 \times 80\) & \(46.8 \times 62\) & \(93.7 \times 124\) & \(52.8 \times 69.8\) & \(120.9 \times 160\) & \(53.5 \times 70.8\) & \(187.5 \times 248\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & \(52.9 \times 70.6\) & \(85.3 \times 113.8\) & \(66.1 \times 88.2\) & \(132.2 \times 176.5\) & \(74.5 \times 99.4\) & \(170.6 \times 227.7\) & \(75.5 \times 100.8\) & \(264.5 \times 353\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & \(42.7 \times 57\) & \(68.8 \times 91.9\) & \(53.3 \times 71.2\) & \(106.7 \times 142.5\) & \(60.1 \times 80.2\) & \(137.7 \times 183.8\) & \(61 \times 81.4\) & \(213.5 \times 285\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & 0.100 & 0.062 & 0.080 & 0.040 & 0.071 & 0.031 & 0.070 & 0.020 \\
\hline \multirow{6}{*}{1.0} & & WD [mm] & 38.7 & 53.8 & 91.3 & 142.3 & 152 & 257.1 & 280.8 & 635.9 \\
\hline & \multirow[t]{4}{*}{Angle-of-view size \(X \times Y\) [mm]} & KFR-M6541-00 (400,000 pixels) & \(22.9 \times 30.6\) & \(30 \times 40\) & \(31 \times 41.3\) & \(46.5 \times 62\) & \(36.8 \times 49.1\) & \(60.9 \times 81.3\) & \(40.8 \times 54.5\) & \(93 \times 124\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & \(23.1 \times 30.6\) & \(30.2 \times 40\) & \(31.2 \times 41.3\) & \(46.8 \times 62\) & \(37.1 \times 49.1\) & \(61.4 \times 81.3\) & \(41.2 \times 54.5\) & \(93.7 \times 124\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & \(32.6 \times 43.5\) & \(42.6 \times 56.9\) & \(44 \times 58.8\) & \(66.1 \times 88.2\) & \(52.3 \times 69.9\) & \(86.7 \times 115.7\) & \(58.1 \times 77.5\) & \(132.2 \times 176.5\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & \(26.3 \times 35.1\) & \(34.4 \times 45.9\) & \(35.5 \times 47.5\) & \(53.3 \times 71.2\) & \(42.2 \times 56.4\) & \(70 \times 93.4\) & \(46.9 \times 62.6\) & \(106.7 \times 142.5\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & 0.162 & 0.124 & 0.120 & 0.080 & 0.101 & 0.061 & 0.091 & 0.040 \\
\hline \multirow{6}{*}{1.5} & & WD [mm] & & & 65.4 & 90.8 & 114.5 & 168.1 & 230.9 & 424.7 \\
\hline & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
\times \times \mathrm{Y} \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & & & \(23.1 \times 30.8\) & \(30.7 \times 40.9\) & \(28.1 \times 37.5\) & \(40.4 \times 53.9\) & \(33.5 \times 44.6\) & \(62 \times 82.6\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & \(23.2 \times 30.8\) & \(30.9 \times 40.9\) & \(28.4 \times 37.5\) & \(40.7 \times 53.9\) & \(33.7 \times 44.6\) & \(62.5 \times 82.6\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & \(32.8 \times 43.8\) & \(43.7 \times 58.3\) & \(40 \times 53.4\) & \(57.5 \times 76.7\) & \(47.6 \times 63.6\) & \(88.1 \times 117.6\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & \(26.5 \times 35.4\) & \(35.2 \times 47.1\) & \(32.3 \times 43.1\) & \(46.4 \times 61.9\) & \(38.4 \times 51.3\) & \(71.1 \times 95\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & 0.161 & 0.121 & 0.132 & 0.092 & 0.111 & 0.060 \\
\hline \multirow{6}{*}{2.0} & & WD [mm] & & & 50 & 65.1 & 91.2 & 123.6 & 196.3 & 319.1 \\
\hline & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
X \times Y \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & & & \(18.5 \times 24.6\) & \(23.1 \times 30.8\) & \(22.9 \times 30.6\) & \(30.4 \times 40.6\) & \(28.6 \times 38.1\) & \(47 \times 62.7\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & \(18.6 \times 24.6\) & \(23.2 \times 30.8\) & \(23.1 \times 30.6\) & \(30.7 \times 40.6\) & \(28.8 \times 38.1\) & \(47.4 \times 62.7\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & \(26.3 \times 35.1\) & \(32.8 \times 43.8\) & \(32.6 \times 43.5\) & \(43.3 \times 57.8\) & \(40.6 \times 54.3\) & \(66.9 \times 89.3\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & \(21.2 \times 28.3\) & \(26.5 \times 35.4\) & \(26.3 \times 35.1\) & \(35 \times 46.7\) & \(32.8 \times 43.8\) & \(54 \times 72.1\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & 0.201 & 0.161 & 0.162 & 0.122 & 0.130 & 0.079 \\
\hline \multirow{6}{*}{5.0} & & WD [mm] & & & & & & & 104.2 & 129 \\
\hline & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
\text { X } \times \mathrm{Y} \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & & & & & & & \(14.8 \times 19.8\) & \(18.6 \times 24.9\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & & & & & \(15 \times 19.8\) & \(18.8 \times 24.9\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & & & & & \(21.1 \times 28.2\) & \(26.5 \times 35.4\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & & & & & \(17 \times 22.8\) & \(21.4 \times 28.6\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & & & & & 0.250 & 0.199 \\
\hline
\end{tabular}

Note. WD is the lens tip reference
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Close-up } \\
\text { ring } \\
{[\mathrm{mm}]} \\
\hline
\end{gathered}
\]} & & & \multicolumn{8}{|c|}{Lens} \\
\hline & & & \multicolumn{2}{|l|}{8 mm lens for megapixel KCX-M7214-40} & \multicolumn{2}{|l|}{12 mm lens for megapixel
KCX-M7214-50} & \multicolumn{2}{|l|}{16 mm lens for megapixel} & \multicolumn{2}{|l|}{25 mm lens for megapixel KCX-M7214-70} \\
\hline \multirow{6}{*}{None} & & WD [mm] & & & & 00 & & 00 & & 50 \\
\hline & \multirow{4}{*}{Angle-of-view size
\[
X \times Y
\]
[mm]} & KFR-M6541-00 (400,000 pixels) & 53.1 & 70.8 & 37.2 & \(\times 49.6\) & 27.3 & \(\times 36.4\) & 24.9 & \(\times 33.2\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & 53.5 & 70.8 & 37.5 & \(\times 49.6\) & 27.5 & \(\times 36.4\) & 25.1 & \(\times 33.2\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & \(75.5 \times\) & 100.8 & 52.9 & \(\times 70.6\) & 38.8 & \(\times 51.9\) & 35.5 & \(\times 47.3\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & 42.7 & \(\times 57\) & 31.3 & \(\times 41.9\) & 28.6 & \(\times 38.2\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & \multicolumn{2}{|c|}{\[
0.070
\]} & \multicolumn{2}{|r|}{0.100} & \multicolumn{2}{|r|}{0.136} & \multicolumn{2}{|r|}{0.149} \\
\hline \multirow{6}{*}{0.5} & & WD [mm] & 46 & 113.6 & 66.1 & 283.2 & 77.8 & 505.4 & 130.3 & 1232.2 \\
\hline & \multirow[b]{4}{*}{Angle-of-view size \(X \times Y\) [mm]} & KFR-M6541-00 (400,000 pixels) & \(28.1 \times 37.5\) & \(59 \times 78.7\) & \(25.8 \times 34.4\) & \(90.7 \times 120.9\) & \(22.4 \times 29.8\) & \(120 \times 160\) & \(22 \times 29.3\) & \(186 \times 248\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & \(28.4 \times 37.5\) & \(59.5 \times 78.7\) & \(26 \times 34.4\) & \(91.4 \times 120.9\) & \(22.5 \times 29.8\) & \(120.9 \times 160\) & \(22.1 \times 29.3\) & \(187.5 \times 248\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & \(40 \times 53.4\) & \(83.9 \times 112\) & \(36.7 \times 49\) & \(129 \times 172.1\) & \(31.8 \times 42.5\) & \(170.6 \times 227.7\) & \(31.3 \times 41.7\) & \(264.5 \times 353\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & \(32.3 \times 43.1\) & \(67.7 \times 90.4\) & \(29.6 \times 39.5\) & \(104.1 \times 139\) & \(25.7 \times 34.3\) & \(137.7 \times 183.8\) & \(25.2 \times 33.7\) & \(213.5 \times 285\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & 0.132 & 0.063 & 0.144 & 0.041 & 0.166 & 0.031 & 0.169 & 0.020 \\
\hline \multirow{6}{*}{1.0} & & WD [mm] & & & 47.2 & 131.9 & 62.6 & 243 & 114.6 & 607.2 \\
\hline & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
\times \times \mathrm{Y} \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & & & \(20.1 \times 26.8\) & \(45.9 \times 61.2\) & \(18.8 \times 25.1\) & \(60 \times 80\) & \(19.6 \times 26.2\) & \(93 \times 124\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & \(20.2 \times 26.8\) & \(46.2 \times 61.2\) & \(19 \times 25.1\) & \(60.4 \times 80\) & \(19.8 \times 26.2\) & \(93.7 \times 124\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & \(28.5 \times 38.1\) & \(65.3 \times 87.1\) & \(26.8 \times 35.8\) & \(85.3 \times 113.8\) & \(27.9 \times 37.3\) & \(132.2 \times 176.5\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & \(23 \times 30.8\) & \(52.7 \times 70.3\) & \(21.6 \times 28.9\) & \(68.8 \times 91.9\) & \(22.5 \times 30.1\) & \(106.7 \times 142.5\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & 0.185 & 0.081 & 0.197 & 0.062 & 0.189 & 0.040 \\
\hline \multirow{6}{*}{1.5} & & WD [mm] & & & 35.2 & 81.4 & 51.5 & 155.5 & 102 & 398.9 \\
\hline & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
\times \times \mathrm{Y} \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & & & \(16.5 \times 22\) & \(33.2 \times 44.2\) & \(16.3 \times 21.7\) & \(40 \times 53.3\) & \(17.7 \times 23.7\) & \(62 \times 82.6\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & \(16.6 \times 22\) & \(33.4 \times 44.2\) & \(16.4 \times 21.7\) & \(40.3 \times 53.3\) & \(17.9 \times 23.7\) & \(62.5 \times 82.6\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & \(23.5 \times 31.3\) & \(47.2 \times 63\) & \(23.2 \times 30.9\) & \(56.8 \times 75.9\) & \(25.3 \times 33.7\) & \(88.1 \times 117.6\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & \(18.9 \times 25.3\) & \(38.1 \times 50.8\) & \(18.7 \times 25\) & \(45.9 \times 61.2\) & \(20.4 \times 27.2\) & \(71.1 \times 95\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & 0.225 & 0.112 & 0.228 & 0.093 & 0.209 & 0.060 \\
\hline \multirow{6}{*}{2.0} & & WD [mm] & & & & & 43 & 111.7 & 91.5 & 294.7 \\
\hline & \multirow{4}{*}{\[
\begin{gathered}
\text { Angle-of-view size } \\
X \times Y \\
{[\mathrm{~mm}]}
\end{gathered}
\]} & KFR-M6541-00 (400,000 pixels) & & & & & \(14.3 \times 19.1\) & \(30.2 \times 40.3\) & \(16.2 \times 21.6\) & \(46.5 \times 62\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & & & \(14.4 \times 19.1\) & \(30.4 \times 40.3\) & \(16.3 \times 21.6\) & \(46.8 \times 62\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & & & \(20.4 \times 27.2\) & \(43 \times 57.3\) & \(23.1 \times 30.8\) & \(66.1 \times 88.2\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & & & \(16.4 \times 22\) & \(34.7 \times 46.3\) & \(18.6 \times 24.8\) & \(53.3 \times 71.2\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & & & 0.259 & 0.123 & 0.229 & 0.080 \\
\hline \multirow{6}{*}{5.0} & & WD [mm] & & & & & & & 53.9 & 107.2 \\
\hline & \multirow{4}{*}{Angle-of-view size
\[
X \times Y
\]
[mm]} & KFR-M6541-00 (400,000 pixels) & & & & & & & \(10.6 \times 14.2\) & \(18.6 \times 24.8\) \\
\hline & & KFR-M6541-10 (1,600,000 pixels) & & & & & & & \(10.7 \times 14.2\) & \(18.7 \times 24.8\) \\
\hline & & KFR-M6541-20 (3,200,000 pixels) & & & & & & & \(15.1 \times 20.2\) & \(26.4 \times 35.3\) \\
\hline & & KFR-M6541-30 (5,000,000 pixels) & & & & & & & \(12.2 \times 16.3\) & \(21.3 \times 28.5\) \\
\hline & \multicolumn{2}{|r|}{Optical magnification} & & & & & & & 0.349 & 0.200 \\
\hline
\end{tabular}

\footnotetext{
Note. The above table shows the field of view when the standard lens and close-up ring are used. (Closest distance value is shown in No Close-up Ring column).
Note. If a close-up ring is not used, a WD less than the value shown in this table cannot be used.
Note. If a close-up ring is used, only WD in the region of this value can be used
Note. Values in this table are for reference only; Actual values may vary.
}

\section*{Accessories and part options RCXiVY2+ System}

\section*{Standard accessories}

\section*{RCXiVY2+ unit}

The RCXiVY2+ unit adds robot vision to the RCX340/RCX320 robot controller.
RCXiVY2+ unit
\begin{tabular}{l|l|l}
\hline \multirow{2}{*}{ Model } & No lighting & KFR-M4400-V0 \\
\cline { 2 - 3 } & With lighting & KFR-M4400-L0 \\
\hline
\end{tabular}
RCXiVY2+ unit accessories
\begin{tabular}{l|c}
\hline \multicolumn{1}{c}{ Name } & Model \\
\hline \begin{tabular}{l}
Trigger input cable \\
connector set
\end{tabular} & KX0-M657K-00 \\
\hline \begin{tabular}{l}
24 V power supply \\
connector
\end{tabular} & KCF-M5382-00 \\
\hline
\end{tabular}

\section*{Environment}
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Microsoft Windows XP / Vista (32 bit / 64 bit) / 7 (32 bit / 64 \\
bit) / 8, 8.1 (32 bit / 64 bit) /10 (32 bit / 64 bit)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested requirements \\
for the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline \begin{tabular}{l}
Hard disk \\
capacity
\end{tabular} & \begin{tabular}{l}
30 MB of available space required on installation drive. \\
* Additional vacant space is required for saving images and data.
\end{tabular} \\
\hline Display & \begin{tabular}{l}
\(800 \times 600\) dot, or higher, 32768 colors (16bit High Color) or \\
higher (recommended)
\end{tabular} \\
\hline \begin{tabular}{l}
Communication \\
Port
\end{tabular} & Ethernet Port of TCP/IP \\
\hline
\end{tabular}

Note. Microsoft, Windows XP, Windows Vista, Windows 7, Windows 8, 8.1, and Windows 10 are registered trademarks of the Microsoft Corporation, USA.
Note. Ethernet is a registered trademark of the XEROX Corporation, USA.

CMOS camera

\begin{tabular}{c|l|l|l}
\hline \multirow{4}{*}{ Model } & 400,000 pixel & \(720(\mathrm{H}) \times 540(\mathrm{~V})\) & KFR-M6541-00 \\
\cline { 2 - 4 } & \(1,600,000\) pixel & \(1440(\mathrm{H}) \times 1080(\mathrm{~V})\) & KFR-M6541-10 \\
\cline { 2 - 4 } & \(3,200,000\) pixel & \(2048(\mathrm{H}) \times 1536(\mathrm{~V})\) & KFR-M6541-20 \\
\cline { 2 - 4 } & \(5,000,000\) pixel & \(2592(\mathrm{H}) \times 1944(\mathrm{~V})\) & KFR-M6541-30 \\
\hline
\end{tabular}

Close-up ring

\begin{tabular}{l|l|l}
\hline \multirow{3}{*}{ Model } & 0.5 mm & 1.0 mm \\
\cline { 2 - 3 } & 2.0 mm & KXO-M7215-00 \\
\cline { 2 - 3 } & 5.0 mm & KXO-M7215-10 \\
\hline
\end{tabular}

\section*{Lighting control board}

\section*{Lighting control board}

This board adds lighting control functionality to the RCXiVY2+ system. (Installed in the RCXiVY2+ unit when shipped)
\begin{tabular}{|c|c|c|}
\hline \multirow{8}{*}{Model} & 8 mm & KCX-M7214-00 \\
\hline & 12 mm & KCX-M7214-10 \\
\hline & 16 mm & KCX-M7214-20 \\
\hline & 25 mm & KCX-M7214-30 \\
\hline & 8 mm (megapixel support) & KCX-M7214-40 \\
\hline & 12 mm (megapixel support) & KCX-M7214-50 \\
\hline & 16 mm (megapixel support) & KCX-M7214-60 \\
\hline & 25 mm (megapixel support) & KCX-M7214-70 \\
\hline
\end{tabular}

Tracking board
This board adds conveyor tracking functionality to the RCX340/RCX320 controller.

\begin{tabular}{l|c}
\hline \multicolumn{1}{c}{ Name } & Model \\
\hline Lighting control board & KCX-M4403-L0 \\
\hline \multicolumn{2}{c}{ Lighting control board accessories } \\
\hline \multicolumn{2}{c}{ Name } \\
\hline Lighting power cable connector set & KX0-M657K-10 \\
\hline
\end{tabular}
- Tracking board
\begin{tabular}{l|c}
\hline Name & Model \\
\hline Tracking board & KCX-M4400-T0 \\
\hline \multicolumn{2}{c}{ Tracking board accessories } \\
\hline Name & Model \\
\hline Tracking encoder connector & KX0-M657K-20 \\
\hline
\end{tabular}

\section*{Camera cable}

Cable for connecting the camera to the RCXiVY2+ board.

\begin{tabular}{l|l}
\hline Cable length (L) & \multicolumn{1}{c}{ Model } \\
\hline 5 m & KCX-M66F0-00 \\
\hline 10 m & KCX-M66F0-10 \\
\hline 15 m & KCX-M66F0-20 \\
\hline *Common to ivY2. &
\end{tabular}

LAN cable with shield cloth
(5 m)

\begin{tabular}{l|l}
\hline Model & KX0-M55G0-00 \\
\hline
\end{tabular}

\section*{Tracking encoder cable (10 m)}

Model KX0-M66AF-00

\section*{YRG Series}

\section*{Structure}
Single cam structure
Double cam structure
Ball screw structure
Compact ball guide structure

Unique cam structure is simple and compact. The fingers work due to external force since no self-locking is used.

Unique double cam structure with gear. Simple design gives high gripping power yet body is compact.

Belt-driven ground ball screw delivers a long stroke with high efficiency and high precision.

Use of special cams provides light weight and compactness Ideal for grasping and moving a round workpiece made of glass or similar material.

\section*{System configuration illustration}

\section*{Compact single cam type}

\section*{YRG-2005SS}

\section*{Basic specifications}
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{l|}{ Model name } & YRG-2005SS \\
\hline \multicolumn{2}{l|}{ Model number } & KCF-M2010-A0 \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Holding \\
power
\end{tabular}} & Max. continuous rating (N) & 5 \\
\cline { 2 - 3 } & Min. setting (\% (N)) & \(30(1.5)\) \\
\cline { 2 - 3 } & Resolution (\% (N)) & \(1(0.05)\) \\
\hline \multirow{3}{*}{ Open/close stroke (mm) } & 3.2 \\
\hline \multirow{3}{*}{ Speed } & Max. rating (mm/sec) & 100 \\
\cline { 2 - 3 } & Min. setting (\% (mm/sec)) & \(20(20)\) \\
\cline { 2 - 3 } & Resolution (\% (mm/sec)) & \(1(1)\) \\
\cline { 2 - 3 } & Holding speed (Max.) (\%) & 50 \\
\hline Repetitive positioning accuracy (mm) & +-0.02 \\
\hline \multicolumn{2}{l}{ Guide mechanism } & Linear guide \\
\hline \multicolumn{2}{l}{ Max. holding weight \({ }^{\text {Note 1 }(\mathrm{kg})}\)} & 0.05 \\
\hline \multicolumn{3}{l}{ Weight \((\mathrm{g})\)}
\end{tabular}
- Hoding power control: 30 to \(100 \%\) (\(1 \%\) steps) • Speed control : 20 to \(100 \%\) (\(1 \%\) steps) - Acceleration control : 1 to 100\% (1\% steps) - Multipoint position control : 10,000 max.

Note. Design the finger as short and lightweight as possible.
Note. Set the parameters and holding power (\%) of the holding movement command so ot that any excessive shock is not applied to the finger during operation.
Note. When installing or uninstalling the finger, tighten the bolts while the finger is being held securely so that any excessive force or shock is not applied to the guide block.
Note. Workpiece weight that is able to be held may greatly vary depending on the material, shape, and/or holding surface conditions of the finger.
Note 1. The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force.
Determine the weight of the workpiece to be gripped by considering the upper
limit weight and the inertia force due to acceleration/deceleration and rotary operation in the gripped state.
\(\square\) Gripping power vs. gripping power setting (\%)

- Graph shows a general guide to gripping power versus gripping power setting (\%). Variations will appear in the actual gripping power.

\section*{Allowable load and load moment}
\begin{tabular}{c|l|c|c|c}
\hline \multicolumn{3}{l|}{} & & \\
\hline \multirow{4}{*}{ Guide } & Allowable load & F & N & 12 \\
\cline { 2 - 5 } & Allowable pitching moment & Mp & \(\mathrm{N} \cdot \mathrm{m}\) & 0.04 \\
\cline { 2 - 5 } & Allowable yawing moment & My & \(\mathrm{N} \cdot \mathrm{m}\) & 0.04 \\
\cline { 2 - 5 } & Allowable rolling moment & Mr & \(\mathrm{N} \cdot \mathrm{m}\) & 0.08 \\
\hline \multirow{3}{*}{ Finger } & Max. weight (1 pair) & Max. holding position & & g \\
\cline { 2 - 5 } & Max. overhang & L & mm & 10 \\
\hline
\end{tabular}
- Mount the finger so that the allowable load and load moment of the guide do not exceed the values stated in the table above.

- Make the adjustment so that the finger weight, holding length (L) from the installation surface to the holding point, and overhang (H)
do not exceed the values stated in the table above.
- Please contact your YAMAHA sales dealer for further information on combination of L and H .

Single cam type
YRG-2010S/2815S/4225S
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Model name} & YRG-2010S & YRG-2815S & YRG-4225S \\
\hline \multicolumn{2}{|l|}{Model number} & KCF-M2011-A0 & KCF-M2011-B0 & KCF-M2011-C0 \\
\hline \multirow[b]{3}{*}{Holding power} & Max. continuous rating (N) & 6 & 22 & 40 \\
\hline & Min. setting (\% (N)) & 30 (1.8) & 30 (6.6) & 30 (12) \\
\hline & Resolution (\% (N)) & 1 (0.06) & 1 (0.22) & 1 (0.4) \\
\hline \multicolumn{2}{|l|}{Open/close stroke (mm)} & 7.6 & 14.3 & 23.5 \\
\hline \multirow{4}{*}{Speed} & Max. rating (mm/sec) & \multicolumn{3}{|c|}{100} \\
\hline & Min. setting (\% (mm/sec)) & \multicolumn{3}{|c|}{20 (20)} \\
\hline & Resolution (\% (mm/sec)) & \multicolumn{3}{|c|}{1 (1)} \\
\hline & Holding speed (Max.) (\%) & \multicolumn{3}{|c|}{50} \\
\hline \multicolumn{2}{|l|}{Repetitive positioning accuracy (mm)} & \multicolumn{3}{|c|}{+/-0.02} \\
\hline \multicolumn{2}{|l|}{Guide mechanism} & \multicolumn{3}{|c|}{Linear guide} \\
\hline \multicolumn{2}{|l|}{Max. holding weight \({ }^{\text {Note } 1}\) (kg)} & 0.06 & 0.22 & 0.4 \\
\hline \multicolumn{2}{|l|}{Weight (g)} & 160 & 300 & 580 \\
\hline
\end{tabular}
- Hoding power control: 30 to \(100 \%\) (\(1 \%\) steps) \(\cdot\) Speed control: 20 to \(100 \%\) (\(1 \%\) steps)
- Acceleration control : 1 to \(100 \%\) (1\% steps) • Multipoint position control: 10,000 max.

Note. Design the finger as short and lightweight as possible.
Note. Set the parameters and holding power (\%) of the holding movement command so that any excessive shock is not applied to the finger during operation.
Note. When installing or uninstalling the finger, tighten the bolts while the finger is being held securely so that any excessive force or shock is not applied to the guide block Note. Workpiece weight that is able to be held may greatly vary depending on the material, shape, and/or holding surface conditions of the finger.

Note 1. The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force.
Determine the weight of the workpiece to be gripped by considering the upper limit weight and the inertia force due to acceleration/deceleration and rotary operation in the gripped state.

Gripping power vs. gripping power setting (\%)

- Graph shows a general guide to gripping power versus gripping power setting (\%). Variations will appear in the actual gripping power.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & YRG-2010S & YRG-2815S & YRG-4225S \\
\hline \multirow{4}{*}{Guide} & Allowable load & F & N & 450 & 350 & 600 \\
\hline & Allowable pitching moment & Mp & \(\mathrm{N} \cdot \mathrm{m}\) & 0.7 & 0.5 & 1.1 \\
\hline & Allowable yawing moment & My & \(\mathrm{N} \cdot \mathrm{m}\) & 0.8 & 0.6 & 1.3 \\
\hline & Allowable rolling moment & Mr & \(\mathrm{N} \cdot \mathrm{m}\) & 2.3 & 2.8 & 8.6 \\
\hline \multirow{3}{*}{Finger} & Max. weight (1 pair) & & g & 15 & 30 & 50 \\
\hline & Max. holding position & L & mm & 20 & 20 & 25 \\
\hline & Max. overhang & H & mm & 20 & 25 & 30 \\
\hline
\end{tabular}
- Mount the finger so that the allowable load and load moment of the guide do not exceed the values stated in the table above.
- Make the adjustment so that the finger weight, holding length (L) from the installation surface to the holding point, and overhang (H) do not exceed the values stated in the table above.
- Please contact your YAMAHA sales dealer for further information on combination of \(L\) and \(H\).

\section*{YRG-2010S/2815S/4225S}

个A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & AA & AB & B & CB & D & E & ED & F & G & H & J & L \\
\hline YRG-2010S & 17 & 17 & 17 & 12 & 27 & 2 & \(9_{-0.05}^{0}\) & 20 & 71 & 8.4 to 16 & ¢ \(3^{0}{ }_{-0.01}^{0}\) & 5 & 3.5 \\
\hline YRG-2815S & 24 & 24 & 14 & 15 & 38 & 2 & \(14{ }_{-0.05}^{0}\) & 25 & 78 & 9.6 to 23.9 & ¢ \(3^{0}{ }_{-0.01}^{0}\) & 6 & 4.3 \\
\hline YRG-4225S & 36 & 25 & 13 & 20 & 50 & 3 & \(24{ }_{-0.05}^{0}\) & 40 & 86 & 12 to 35.5 & ¢ \(4{ }_{-0.012}^{0}\) & 6.5 & 5.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & M & N & P & Q & R & RA & SA & SB & SC & TE & U & V & VA & VB & W & Z \\
\hline YRG-2010S & 12.1 & M3 & 5 & 24 & 34 & 165+/-10 & 13 & 17 & 8.3 & 5 & M3 & 5 & 6 & 6 & 61 & 2.2 \\
\hline YRG-2815S & 15 & M4 & 5 & 32 & 46 & 140+/-10 & 16 & 21 & 9.3 & 6 & M4 & 6 & 8 & 8 & 69 & 2 \\
\hline YRG-4225S & 17.4 & M5 & 8 & 46 & 60 & 235+/-10 & 18 & 24 & 10.8 & 7.5 & M5 & 7.5 & 8 & 10 & 72 & 3 \\
\hline
\end{tabular}

\section*{Double cam type}

\section*{YRG－2005W／2810W／4220W}

Basic specifications
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Model name} & YRG－2005W & YRG－2810W & YRG－4220W \\
\hline \multicolumn{2}{|l|}{Model number} & KCF－M2012－A0 & KCF－M2012－B0 & KCF－M2012－C0 \\
\hline \multirow{3}{*}{Holding power} & Max．continuous rating（N） & 50 & 150 & 250 \\
\hline & Min．setting（\％（N）） & 30 （15） & 30 （45） & 30 （75） \\
\hline & Resolution（\％（N）） & 1 （0．5） & 1 （1．5） & 1 （2．5） \\
\hline \multicolumn{2}{|l|}{Open／close stroke（mm）} & 5 & 10 & 19.3 \\
\hline \multirow{4}{*}{Speed} & Max．rating（mm／sec） & 60 & 60 & 45 \\
\hline & Min．setting（\％（mm／sec）） & 20 （12） & 20 （12） & 20 （9） \\
\hline & Resolution（\％（mm／sec）） & 1 （0．6） & 1 （0．7） & 1 （0．45） \\
\hline & Holding speed（Max．）（\％） & \multicolumn{3}{|c|}{50} \\
\hline \multicolumn{2}{|l|}{Repetitive positioning accuracy（mm）} & \multicolumn{3}{|c|}{＋／－0．03} \\
\hline \multicolumn{2}{|l|}{Guide mechanism} & \multicolumn{3}{|c|}{Linear guide} \\
\hline \multicolumn{2}{|l|}{Max．holding weight \({ }^{\text {Note } 1}(\mathrm{~kg})\)} & 0.5 & 1.5 & 2.5 \\
\hline \multicolumn{2}{|l|}{Weight（g）} & 200 & 350 & 800 \\
\hline
\end{tabular}
－Hoding power control ： 30 to \(100 \%\)（ \(1 \%\) steps）－Speed control ： 20 to \(100 \%\)（ \(1 \%\) steps） －Acceleration control ： 1 to \(100 \%\)（ \(1 \%\) steps）－Multipoint position control \(: 10,000\) max．
Note．Design the finger as short and lightweight as possible．
Note．Set the parameters and holding power（\％）of the holding movement command so that any
excessive shock is not applied to the finger during operation．
Note．When installing or uninstalling the finger，tighten the bolts while the finger is being held
securely so that any excessive force or shock is not applied to the guide block．
Note．Workpiece weight that is able to be held may greatly vary depending on the material，shape， and／or holding surface conditions of the finger．
Note 1．The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force．
veight and the inertia force due to accelerationldece weight and the inertia force due to acceleration／deceleration and rotary operation in the gripped state．
\(\square\) Gripping power vs．gripping power setting（\％）

－Graph shows a general guide to gripping power versus gripping power setting（\％）． Variations will appear in the actual gripping power．
\begin{tabular}{c|l|c|c|c|c|c}
\hline \multicolumn{2}{l|}{} & & YRG－2005W & YRG－2810W & YRG－4220W \\
\hline \multirow{4}{*}{ Guide } & Allowable load & Allowable pitching moment & Fp & N & 1000 & 1000 \\
\cline { 2 - 7 } & Allowable yawing moment & Ny & \(\mathrm{N} \cdot \mathrm{m}\) & 6.7 & 8.1 & 200 \\
\cline { 2 - 7 } & Allowable rolling moment & Mr & \(\mathrm{N} \cdot \mathrm{m}\) & 5.1 \\
\hline \multirow{3}{*}{ Finger } & Max．weight（1 pair） & & g & 40 & 4.8 & 7.8 \\
\cline { 2 - 7 } & Max．holding position & L & mm & 30 & 80 & 25.9 \\
\cline { 2 - 7 } & Max．overhang & H & mm & 20 & 20 & 50 \\
\hline
\end{tabular}
－Mount the finger so that the allowable load and load moment of the guide do not exceed the values stated in the table above．
－Make the adjustment so that the finger weight，holding length（L）from the installation surface to the holding point，and overhang（H）
do not exceed the values stated in the table above．
Please contact your YAMAHA sales dealer for further information on combination of \(L\) and \(H\) ．
YRG－2005W／2810W／4220W

\(\uparrow\) A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & AA & AB & B & CB & D & E & ED & F & G & H & J & K & L \\
\hline YRG－2005W & 17 & 17 & 17 & 12 & 27 & 2 & \(9_{-0.05}^{0}\) & 20 & 74 & 10.6 to 15.6 & \＄4 \({ }_{-0.012}^{0}\) & 6 & 8 & 4.6 \\
\hline YRG－2810W & 24 & 24 & 14 & 15 & 38 & 2 & \(14{ }_{-0.05}^{0}\) & 25 & 80 & 12.6 to 22.6 & \＄5 \({ }_{-0.012}^{0}\) & 7 & 10 & 5.65 \\
\hline YRG－4220W & 36 & 25 & 13 & 20 & 50 & 3 & \(24{ }_{-0.05}^{0}\) & 40 & 90 & 17.0 to 36.3 & \＄6 \({ }_{-0.012}^{0}\) & 8 & 15 & 7.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & M & N & P & Q & R & RA & SA & SB & SC & TE & U & V & VA & VB & W & X & X1 & Z \\
\hline YRG－2005W & 22.5 & M3 & 5 & 24 & 34 & 165＋／－10 & 13 & 17 & 8.3 & 5 & M3 & 5 & 6 & 6 & 64 & 52 & 54 & 2.2 \\
\hline YRG－2810W & 27.5 & M4 & 5 & 32 & 46 & 140＋／－10 & 16 & 21 & 9.3 & 6 & M4 & 6 & 8 & 8 & 71 & 67 & 61 & 2 \\
\hline YRG－4220W & 37 & M5 & 8 & 46 & 60 & 235＋／－10 & 18 & 24 & 10.8 & 7.5 & M5 & 7.5 & 8 & 10 & 76 & 96 & 63 & 3 \\
\hline
\end{tabular}

\section*{Screw type strait style}

\title{
YRG-2020FS/2840FS
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{Model name} & YRG-2020FS & YRG-2840FS \\
\hline \multicolumn{2}{|l|}{Model number} & KCF-M2013-A0 & KCF-M2013-B0 \\
\hline \multirow{3}{*}{Holding power} & Max. continuous rating (N) & 50 & 150 \\
\hline & Min. setting (\% (N)) & 30 (15) & 30 (45) \\
\hline & Resolution (\% (N)) & 1 (0.5) & 1 (1.5) \\
\hline \multicolumn{2}{|l|}{Open/close stroke (mm)} & 19 & 38 \\
\hline \multirow{4}{*}{Speed} & Max. rating (mm/sec) & 50 & 50 \\
\hline & Min. setting (\% (mm/sec)) & 20 (10) & 20 (10) \\
\hline & Resolution (\% (mm/sec)) & 1 (0.5) & 1 (0.5) \\
\hline & Holding speed (Max.) (\%) & 50 & 50 \\
\hline \multicolumn{2}{|l|}{Repetitive positioning accuracy (mm)} & +/-0.01 & +/-0.01 \\
\hline \multicolumn{2}{|l|}{Guide mechanism} & \multicolumn{2}{|c|}{Linear guide} \\
\hline \multicolumn{2}{|l|}{Max. holding weight \({ }^{\text {Note } 1}(\mathrm{~kg}\))} & 0.5 & 1.5 \\
\hline \multicolumn{2}{|l|}{Weight (g)} & 420 & 880 \\
\hline
\end{tabular}
- Hoding power control : 30 to \(100 \%\) (\(1 \%\) steps) •Speed control : 20 to \(100 \%\) (\(1 \%\) steps) - Acceleration control : 1 to \(100 \%\) (\(1 \%\) steps) - Multipoint position control : 10,000 max

Note. Design the finger as short and lightweight as possible.
Note. Set the parameters and holding power (\%) of the holding movement command so that any excessive shock is not applied to the finger during operation.
Note. When installing or uninstalling the finger, tighten the bolts while the finger is being held securely so that excesive to the guide block
Note. Workpiece weight that is able to be held may greatly vary depending on the material, shape, and/or holding surface conditions of the finger.
Note 1. The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force.
Deight and the inertia force due to acceleation weight and the inertia force due to acceleration/deceleration and rotary operation in the gripped state.

Gripping power vs. gripping power setting (\%)

- Graph shows a general guide to gripping power versus gripping power setting (\%). Variations will appear in the actual gripping power.
\(\square\) Allowable load and load moment
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & YRG-2020FS & YRG-2840FS & \\
\hline \multirow{4}{*}{Guide} & Allowable load & F & N & 1000 & 1300 & , \\
\hline & Allowable pitching moment & Mp & \(N \cdot m\) & 3.5 & 5 & \\
\hline & Allowable yawing moment & My & \(\mathrm{N} \cdot \mathrm{m}\) & 4.2 & 6 & \\
\hline & Allowable rolling moment & Mr & \(\mathrm{N} \cdot \mathrm{m}\) & 7.3 & 12.7 & \\
\hline \multirow{3}{*}{Finger} & Max. weight (1 pair) & & g & 40 & 80 & \\
\hline & Max. holding position & L & mm & 30 & 30 & \\
\hline & Max. overhang & H & mm & 20 & 20 & \\
\hline
\end{tabular}

Screw type "T" style

\section*{YRG-2020FT/2840FT}

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Model name} & YRG-2020FT & YRG-2840FT \\
\hline \multicolumn{2}{|l|}{Model number} & KCF-M2014-A0 & KCF-M2014-B0 \\
\hline \multirow{3}{*}{Holding power} & Max. continuous rating (N) & 50 & 150 \\
\hline & Min. setting (\% (N)) & 30 (15) & 30 (45) \\
\hline & Resolution (\% (N)) & 1 (0.5) & 1 (1.5) \\
\hline \multicolumn{2}{|l|}{Open/close stroke (mm)} & 19 & 38 \\
\hline \multirow{4}{*}{Speed} & Max. rating (\(\mathrm{mm} / \mathrm{sec}\)) & 50 & 50 \\
\hline & Min. setting (\% (mm/sec)) & 20 (10) & 20 (10) \\
\hline & Resolution (\% (mm/sec)) & 1 (0.5) & 1 (0.5) \\
\hline & Holding speed (Max.) (\%) & 50 & 50 \\
\hline \multicolumn{2}{|l|}{Repetitive positioning accuracy (mm)} & +/-0.01 & +/-0.01 \\
\hline \multicolumn{2}{|l|}{Guide mechanism} & \multicolumn{2}{|c|}{Linear guide} \\
\hline \multicolumn{2}{|l|}{Max. holding weight \({ }^{\text {Note } 1}(\mathrm{~kg})\)} & 0.5 & 1.5 \\
\hline \multicolumn{2}{|l|}{Weight (g)} & 420 & 890 \\
\hline
\end{tabular}
- Hoding power control : 30 to \(100 \%\) (\(1 \%\) steps) - Speed control : 20 to \(100 \%\) (\(1 \%\) steps) - Acceleration control : 1 to \(100 \%\) (\(1 \%\) steps) - Multipoint position control : 10,000 max

Note. Design the finger as short and lightweight as possible.
Note. Set the parameters and holding power (\%) of the holding movement command so that any excessive shock is not applied to the finger during operation.
Note. When installing or uninstalling the finger, tighten the bolts while the finger is being held securely so that any excessive force or shock is not applied to the guide block.
Note. Workpiece weight that is able to be held may greatly vary depending on the material, shape, and/or holding surface conditions of the finger.
Note 1. The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force.
Determine the weight of workpiece to be gripped by considering the upper limit
weight and the inertia force due to acceleration/deceleration and rotary operation in the gripped state.
\(\square\) Gripping power vs. gripping power setting (\%)

- Graph shows a general guide to gripping power versus gripping power setting (\%). Variations will appear in the actual gripping power.

\section*{Allowable load and load moment}
\begin{tabular}{c|l|c|c|c|c}
\hline \multicolumn{3}{l|}{} & & YRG-2020FT & YRG-2840FT \\
\hline \multirow{4}{*}{ Guide } & Allowable load & F & N & 1000 & 1300 \\
\cline { 2 - 6 } & Allowable pitching moment & Mp & \(\mathrm{N} \cdot \mathrm{m}\) & 3.5 & 5 \\
\cline { 2 - 6 } & Allowable yawing moment & My & \(\mathrm{N} \cdot \mathrm{m}\) & 4.2 & 6 \\
\cline { 2 - 6 } & Allowable rolling moment & Mr & \(\mathrm{N} \cdot \mathrm{m}\) & 7.3 & 12.7 \\
\hline \multirow{3}{*}{ Finger } & Max. weight (1 pair) & & g & 40 & 80 \\
\cline { 2 - 6 } & Max. holding position & L & mm & 30 & 30 \\
\cline { 2 - 6 } & Max. overhang & H & mm & 20 & 20 \\
\hline
\end{tabular}
- Mount the finger so that the allowable load and load moment of the guide do not exceed the values stated in the table above.
- Make the adjustment so that the finger weight, holding length (L) from the installation surface to the holding point, and overhang \((\mathrm{H})\) do not exceed the values stated in the table above.
Please contact your YAMAHA sales dealer for further information on combination of \(L\) and \(H\)
YRG-2020FT/2840FT
 it does not move.
Take appropriate measures so that any excessive force is not applied to the root of the cable
\begin{tabular}{|c|}
\hline & A & B & C & & D & & E & ED & F & G & H & J & JA & & K & & L & M & N & P \\
\hline YRG-2020FT & 22 & 12 & 12 & & 2 & 14 & \({ }_{-0}^{0}\) & 25 & 39 & 10.5 to 29.5 & \$3 \({ }_{-0.01}^{0}\) & 6 & 12 & & 12 & & 4.5 & 27.5 & M3 & 5 \\
\hline \multirow[t]{2}{*}{YRG-2840FT} & 30 & 15 & 16 & & 2 & 18 & \({ }_{-0.05}^{0}\) & 30 & 52 & 13 to 51 & \$4 \({ }_{-0.012}^{0}\) & 8 & 14 & & 14 & & 5.5 & 34.5 & M4 & 7.5 \\
\hline & Q & R & RA & S & & SA & SB & T & TA & TB & TC & TD & TE & U & & V & W & Y & Z & ZA \\
\hline YRG-2020FT & 30 & 76 & 175+/-10 & 27 & & 27 & 4 & 24 & 9 & 24 & 30 & 12.5 & 12.5 & M4 & & 6 & 60 & 38 & 2 & 9 \\
\hline YRG-2840FT & 40 & 110 & 135+/-10 & 40 & & 40 & 5 & 28 & 12 & 28 & 36 & 14 & 14 & M5 & & 7.5 & 72 & 55 & 3 & 12 \\
\hline
\end{tabular}

Three fingers type
YRG-2004T
Basic specifications
Gripping power vs. gripping power setting (\%)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Model name} & YRG-2004T \\
\hline \multicolumn{2}{|l|}{Model number} & KCF-M2015-A0 \\
\hline \multirow{3}{*}{Holding power} & Max. continuous rating (N) & 2.5 \\
\hline & Min. setting (\% (N)) & 30 (0.75) \\
\hline & Resolution (\% (N)) & 1 (0.025) \\
\hline \multicolumn{2}{|l|}{Open/close stroke (mm)} & 3.5 \\
\hline \multirow{4}{*}{Speed} & Max. rating (mm/sec) & 100 \\
\hline & Min. setting (\% (mm/sec)) & 20 (20) \\
\hline & Resolution (\% (mm/sec)) & 1 (1) \\
\hline & Holding speed (Max.) (\%) & 50 \\
\hline \multicolumn{2}{|l|}{Repetitive positioning accuracy (mm)} & +/-0.03 \\
\hline \multicolumn{2}{|l|}{Guide mechanism} & Linear guide \\
\hline \multicolumn{2}{|l|}{Max. holding weight \({ }^{\text {Note } 1}\) (kg)} & 0.02 \\
\hline \multicolumn{2}{|l|}{Weight (g)} & 90 \\
\hline
\end{tabular}
- Hoding power control : 30 to \(100 \%\) (\(1 \%\) steps) •Speed control : 20 to \(100 \%\) (\(1 \%\) steps)

Acceleration control: 1 to \(100 \%\) (\(1 \%\) steps) - Multipoint position control : 10,000 max
Note. Design the finger as short and lightweight as possible.
Note. Set the parameters and holding power (\%) of the holding movement command so that any excessive shock is not applied to the finger during operation.

- Graph shows a general guide to gripping power versus gripping power setting (\%). Variations will appear in the actual gripping power.

Note. When installing or uninstalling the finger, tighten the bolts while the finger is being held
securely so that any excessive force or shock is not applied to the guide block.
Note. Workpiece weight that is able to be held may greatly vary depending on the material, shape, and/or holding surface conditions of the finger.
Note 1. The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force.
ler
iond rotary operation in the gripped state.

\section*{Allowable load and load moment}
\begin{tabular}{c|l|c|c|c}
\hline \multicolumn{3}{l|}{} & YRG-2004T \\
\hline \multirow{4}{*}{ Finger } & Allowable load & & N & 6 \\
\cline { 2 - 5 } & Allowable pitching moment & & \(\mathrm{N} \cdot \mathrm{m}\) & 0.02 \\
\cline { 2 - 5 } & Max. weight (1 pair) & & g & 10 \\
\cline { 2 - 5 } & Max. holding position & L & mm & 15 \\
\hline
\end{tabular}
-When the external forces Fa and Fb are applied to a potion the distance (L) apart from the finger installation surface, the load \((F)\) and moment \((M)\) are calculated from the formulas shown below.
\(F=F a+W \times g\)
Fa :External force [N]
\(\mathrm{M}=\mathrm{Fb} \times \mathrm{L}\)
Fb :External force [N]
F: Load [N]
W: Workpiece weight \([\mathrm{Kg}]\)
M : Moment \([\mathrm{N} \cdot \mathrm{m}]\)
\(\mathrm{g}:\) Gravity acceleration \(\left[\mathrm{m} / \mathrm{s}^{2}\right]\)
\(\mathrm{H}:\) Distance of holding point \([\mathrm{m}]\)

Distance of point of external force application [m]
YRG-2004T

\section*{Three fingers type}

YRG-2013T/2820T/4230T
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Basic specifications} \\
\hline \multicolumn{2}{|l|}{Model name} & YRG-2013T & YRG-2820T & YRG-4230T \\
\hline \multicolumn{2}{|l|}{Model number} & KCF-M2015-B0 & KCF-M2015-C0 & KCF-M2015-D0 \\
\hline \multirow{3}{*}{Holding power} & Max. continuous rating (N) & 2 & 10 & 20 \\
\hline & Min. setting (\% (N)) & 30 (0.6) & 30 (3) & 30 (6) \\
\hline & Resolution (\% (N)) & 1 (0.02) & 1 (0.1) & 1 (0.2) \\
\hline \multicolumn{2}{|l|}{Open/close stroke (mm)} & 13 & 20 & 30 \\
\hline \multirow{4}{*}{Speed} & Max. rating (mm/sec) & \multicolumn{3}{|c|}{100} \\
\hline & Min. setting (\% (mm/sec)) & \multicolumn{3}{|c|}{20 (20)} \\
\hline & Resolution (\% (mm/sec)) & 1 (1) & 1 (1) & 1 (1) \\
\hline & Holding speed (Max.) (\%) & 50 & 50 & 50 \\
\hline \multicolumn{2}{|l|}{Repetitive positioning accuracy (mm)} & \multicolumn{3}{|c|}{+/-0.03} \\
\hline \multicolumn{2}{|l|}{Guide mechanism} & \multicolumn{3}{|c|}{Linear guide} \\
\hline \multicolumn{2}{|l|}{Max. holding weight \({ }^{\text {Note } 1}(\mathrm{~kg})\)} & 0.02 & 0.1 & 0.2 \\
\hline \multicolumn{2}{|l|}{Weight (g)} & 190 & 340 & 640 \\
\hline
\end{tabular}
- Hoding power control : 30 to \(100 \%\) (\(1 \%\) steps) - Speed control : 20 to \(100 \%\) (\(1 \%\) steps) - Acceleration control : 1 to \(100 \%\) (\(1 \%\) steps) - Multipoint position control : 10,000 max

Note. Design the finger as short and lightweight as possible.
Note. Set the parameters and holding power (\%) of the holding movement command so that any excessive shock is not applied to the finger during operation.
Note. When installing or uninstalling the finger, tighten the bolts while the finger is being held
Note. Workpiece weight that is able to be held may greatly vary depending on the material, shape, and/or holding surface conditions of the finger.
Note 1. The maximum gripping weight is the upper limit weight when the workpiece is gripped with maximum continuous rated gripping force.
Determine the weight of the workpiece to be gripped by considering the upper limit
weight and the inertia force due to acceleration/deceleration and rotary operation in the gripped state.

\section*{Allowable load and load moment}

\section*{YRG Series}

Electric gripper basic specifications
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{c|}{ Item } & \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Basic \\
specifications
\end{tabular}} & Applicable controller & RCX320 / RCX340 \\
\cline { 2 - 3 } & Number of connection grippers & Max. 4 units \\
\hline \multirow{4}{*}{ Axis control } & Control method & PTP motion \\
\cline { 2 - 3 } & Min. setting unit & 0.01 mm \\
\cline { 2 - 3 } & Position indication unit & Pulses, mm (millimeters) \\
\cline { 2 - 3 } & Speed setting & 20 to 100\% (in 1\% steps, Changeable by the program.) \\
\cline { 2 - 3 } & Acceleration setting & 1 to 100\% (in 1\% steps, Setting by the acceleration parameter) \\
\hline \multirow{2}{*}{ Programming } & Teaching & \begin{tabular}{l}
MDI (coordinate data input), direct teaching, teaching playback,offline teaching (data input \\
from external unit)
\end{tabular} \\
\hline
\end{tabular}

\section*{Gripper control board specifications}
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{c|}{ Item } & \multicolumn{1}{c}{ Specifications } \\
\hline \multirow{3}{*}{ Axis control } & No. of axes & 1 axis \\
\cline { 2 - 3 } & Position detection method & Optical rotary encoder \\
\cline { 2 - 3 } & Min. setting distance & 0.01 mm \\
\cline { 2 - 3 } & Speed setting & Set in the range of 20 to 100\% to the max. parameter speed. \\
\hline \multirow{2}{*}{ Protective alarm } & \begin{tabular}{l}
Overcurrent, overload, voltage failure, system failure, position deviation over, feedback \\
error, etc.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{ LED status indication } \\
\hline Power supply & Drive power & POWER (Green), RUN (Green), READY (Yellow), ALARM (Red) \\
\hline
\end{tabular}

\section*{Part names and functions}

\section*{RCX320 / RCX340}

Figure when viewed from the front of the controller

\section*{Accessories and part options \\ YRG Series}

\section*{Standard accessories}

\section*{Gripper control board}

Robot (for gripper) cable

\begin{tabular}{l|l|l|}
\hline Model & KCX-M4400-G0 & RCX320 \\
\hline Note. This board includes a 24 V supply connector. & RCX340 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{Model} & 3.5 m & KCF-M4751-31 & \\
\hline & 5 m & KCF-M4751-51 & RCX320 \\
\hline & 10m & KCF-M4751-A1 & RCX340 \\
\hline Note. ge & \[
\begin{aligned}
& \text { sure to a } \\
& \text { ipper) cat }
\end{aligned}
\] & st the total length of th and relay cable to 14 n & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Model & KCF-M5382-00 & \begin{tabular}{l}
RCX320 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{8}{*}{Model} & 0.5m & KCF-M4811-11 & \\
\hline & 1 m & KCF-M4811-21 & \\
\hline & 1.5 m & KCF-M4811-31 & \\
\hline & 2 m & KCF-M4811-41 & RCX320 \\
\hline & 2.5 m & KCF-M4811-51 & RCX340 \\
\hline & 3 m & KCF-M4811-61 & \\
\hline & 3.5 m & KCF-M4811-71 & \\
\hline & 4m & KCF-M4811-81 & \\
\hline
\end{tabular}

\title{
ALL TYPES OF INFORMATION INFORMATION
}

\section*{CONTENTS}

\section*{CABLE}

Robot cable table 732
Single-axis robot cable …................. 732
Multi-robot cable …...................... 738
Cartesian robot cable 740
SCARA robot cable....................... 741

Cable terminal table.......................... 742
PHASER relay cable 742
Connector converter cable 743
Programming box converter cable \(\cdots 743\)
I/O control converter cable …......... 743
TECHNICAL
TRANSERVO RF type model selection \(\cdots 744\) Selecting a model 744
List of moment of inertia calculation formulas (Calculation of moment of inertia I) …................................ 745
Kinds of loads 745
R-axis tolerable moment of inertia and
acceleration coefficient …................ 746
How to find the inertia moment \(\cdots \cdots \cdots 76\)
Example of moment of inertia calculation747

External safety circuit examples •..... 748
Circuit configuration examples
(TS-X/TS-P)
Circuit configuration examples (SR1)
Circuit configuration examples
(RCX240).................................. 750

\section*{INFORMATION}

Cautions regarding CE specifications \(\cdots 751\)
CE marking …............................. 751
Cautions regarding compliance with

Installation of external safety circuits \(\cdots 751\)
Compliance with EMC Directives \(\cdots \cdots 751\)
Cautions regarding official language of EU countries 751
Cautions on KCs (Korean Certificate
Safety) specifications 752
About KCs 752
About measures for KCs 752
List of robots subject to KCs 752
Cautions on Korean EMC specifications \(\cdot \cdots 754\)
About Korean KC......................... 754
About Korean KC compliance …..... 754
List of KC compliant robots \(\cdot \cdots \cdots \cdots754\)
About non-compliant models …....... 754
Approach to complying with EU RoHS
Directive 755
EU RoHS Directive 2011/65/EU…... 755
Addition of restricted substances to
regulated substances \(\cdots \cdots \ldots \ldots \ldots \ldots \ldots755\)
Warranty-..................................... 756
This warranty does not cover any
failure caused by: 756
The following cases are not covered
under the warranty: …............... 756
Repeatability positioning accuracy \(\cdots 757\)
Factors involving absolute accuracy \(\cdots 757\)

\section*{Operating pattern factors \\ . 757}

Temperature factors
757
Fluctuating load factors…............... 757

\section*{DISCONTINUED}

MR12/MR12D
758
YK400XR
.761
RCX240/RCX240S …................... 762

\section*{Robot cable table}

The robot cable is a cable joining the robot to the controller．
Single－axis robot cable

\section*{YHX cable}
［Encoder cable（Common for GX series）］

｜Rear Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No． \\
\hline 3 m & GXCC－ENC－R3R & KES－M4751－30 \\
\hline 5 m & GXCC－ENC－R5R & KES－M4751－50 \\
\hline 10 m & GXCC－ENC－R10R & KES－M4751－A0 \\
\hline
\end{tabular}
｜Front Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No． \\
\hline 3 m & GXCC－ENC－R3F & KES－M4755－30 \\
\hline 5 m & GXCC－ENC－R5F & KES－M4755－50 \\
\hline 10 m & GXCC－ENC－R10F & KES－M4755－A0 \\
\hline
\end{tabular}

\section*{［Power cable（GX05／GX05L／GX07）］}

\section*{Rear Extraction specifications}
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No． \\
\hline 3 m & GXCC－UVW40－R3R & KES－M4752－30 \\
\hline 5 m & GXCC－UVW40－R5R & KES－M4752－50 \\
\hline 10 m & GXCC－UVW40－R10R & KES－M4752－A0 \\
\hline
\end{tabular}

Front Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No． \\
\hline 3 m & GXCC－UVW40－R3F & KES－M4756－30 \\
\hline 5 m & GXCC－UVW40－R5F & KES－M4756－50 \\
\hline 10 m & GXCC－UVW40－R10F & KES－M4756－A0 \\
\hline
\end{tabular}

\section*{[Power cable (GX10 / GX12)]}

|Rear Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No. \\
\hline 3 m & GXCC-UVW60-R3R & KES-M4753-30 \\
\hline 5 m & GXCC-UVW60-R5R & KES-M4753-50 \\
\hline 10 m & GXCC-UVW60-R10R & KES-M4753-A0 \\
\hline
\end{tabular}
|Front Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No. \\
\hline 3 m & GXCC-UVW60-R3F & KES-M4757-30 \\
\hline 5 m & GXCC-UVW60-R5F & KES-M4757-50 \\
\hline 10 m & GXCC-UVW60-R10F & KES-M4757-A0 \\
\hline
\end{tabular}

\section*{[Power cable (GX16 / GX20)]}

Rear Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No. \\
\hline 3 m & GXCC-UVW80-R3R & KES-M4754-30 \\
\hline 5 m & GXCC-UVW80-R5R & KES-M4754-50 \\
\hline 10 m & GXCC-UVW80-R10R & KES-M4754-A0 \\
\hline
\end{tabular}

Front Extraction specifications
\begin{tabular}{c|c|c}
\hline Cable length & Product model & Part No. \\
\hline 3 m & GXCC-UVW80-R3F & KES-M4758-30 \\
\hline 5 m & GXCC-UVW80-R5F & KES-M4758-50 \\
\hline 10 m & GXCC-UVW80-R10F & KES-M4758-A0 \\
\hline
\end{tabular}

\section*{TS－S／TS－S2／TS－SD cable}

\section*{［Flexible cable］}

Connected robot \(\downarrow\) TRANSERVO
\begin{tabular}{c|cc|}
\hline Set & \multicolumn{2}{|c}{ Single item } \\
\hline- & Composite wire & KCK－M4751－\(\square 0\) \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
Note．Notation within slot in model \\
types is as shown at right． & Within \(\square\) & Cable length \\
\cline { 3 - 4 } & \begin{tabular}{c}
1 \\
3
\end{tabular} \\
\hline & 1 m \\
\hline & \(\frac{A}{5}\) & 5 m \\
\hline
\end{tabular}

〈Composite wire：KCK－M4751－\(\square 0\) 〉

\section*{TS－S2S cable}
［Flexible cable］
Connected robot \(\triangleright\) TRANSERVO
（RF Type Sensor specification）
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Set} & \multicolumn{3}{|c|}{Single item} \\
\hline & Composite wi & \multicolumn{2}{|l|}{re KCK－M4752－\(\square 0\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Note．Notation within slot in model types is as shown at right．}} & Within \(\square\) & Cable length \\
\hline & & 1 & 1 m \\
\hline & & 3 & 3 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}

\section*{TS－X cable}

\section*{［Standard cable］}

Connected robot \(\triangleright\) FLIP－X
\begin{tabular}{c|c|c|c}
\hline Set & \multicolumn{3}{|c}{ Single item } \\
\hline \multirow{2}{*}{ KBY－M4710－\(\square 0\)} & Signal wire & KBY－M4751－\(\square 0\) \\
\cline { 2 - 4 } & Motor wire & KX7－M4752－\(\square 0\) \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Note．Notation within slot in model \\
types is as shown at right．
\end{tabular}} & \begin{tabular}{ll}
Within \(\square\) & Cable length \\
\cline { 3 - 4 } & 3 \\
& \\
\cline { 2 - 4 } & 5 \\
\hline
\end{tabular} &
\end{tabular}

［Controller side］
［Robot side］
〈Signal wire：KBY－M4751－\(\square 0\) 〉

\section*{［Flexible cable］}

Connected robot \(D\) FLIP－X
\begin{tabular}{|c|c|c|c|}
\hline Set & \multicolumn{3}{|c|}{Single item} \\
\hline \multirow[b]{2}{*}{KBY－M4720－\(\square 0\)} & Signal wire & \multicolumn{2}{|l|}{KBY－M4755－\(\square 0\)} \\
\hline & Motor wire & KX7 & M4752－\(\square 0\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Note．Notation within slot in model types is as shown at right．}} & hin \(\square\) & Cable length \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}

\section*{TS－P cable}

\section*{［Standard cable］}

Connected robot \(\triangleright\) PHASER
\begin{tabular}{c|c|c}
\hline Set & \multicolumn{2}{|c}{ Single item } \\
\hline \multirow{2}{*}{ KBS－M4710－\(\square 0\)} & Signal wire & KBS－M4751－\(\square 1\) \\
\cline { 2 - 3 } & Motor wire & KAU－M4752－\(\square 1\) \\
\hline
\end{tabular}
\begin{tabular}{|lc|c|}
Note．Notation within slot in model \\
types is as shown at right． & Within \(\square\) & Cable length \\
\cline { 2 - 3 } & 3 & 3.5 m \\
\hline & \(\frac{5}{2}\) & 5 m \\
\hline
\end{tabular}

\section*{［Flexible cable］}

Connected robot \(\triangle\) PHASER
\begin{tabular}{c|c|c|}
\hline Set & \multicolumn{3}{|c}{ Single item } \\
\hline \multirow{2}{*}{ KBS－M4720－\(\square 0\)} & Signal wire & KBS－M4755－\(\square 1\) \\
\cline { 2 - 4 } & Motor wire & KAU－M4752－\(\square 1\) \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Note．Notation within slot in model \\
types is as shown at right．
\end{tabular}} & \begin{tabular}{ll}
Within \(\square\) & Cable length \\
\cline { 3 - 4 } & 3 \\
\hline
\end{tabular} &
\end{tabular}

\section*{RDV－X cable（No－brake specifications）}

\section*{［Standard cable］}

Connected robot \(D\) FLIP－X
\begin{tabular}{c|c|c|c}
\hline Set & \multicolumn{3}{|c}{ Single item } \\
\hline \multirow{3}{*}{ KEF－M4710－\(\square 0\)} & Signal wire & KBH－M4751－\(\square 0\) \\
\cline { 2 - 4 } & Motor wire & KEF－M4752－\(\square 0\) \\
\cline { 2 - 4 } & I／O connector & KBH－M4420－00 \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Note．Notation within slot in model \\
types is as shown at right．
\end{tabular}} & \begin{tabular}{ll}
Within \(\square\) & Cable length \\
\hline
\end{tabular} & \begin{tabular}{ll}
3 & \(3.5 m\) \\
\hline
\end{tabular} &
\end{tabular}

\section*{［Flexible cable］}

Connected robot \(\triangleright\) FLIP－X
\begin{tabular}{|c|c|c|c|}
\hline Set & \multicolumn{3}{|c|}{Single item} \\
\hline \multirow{3}{*}{KEF－M4730－\(\square 0\)} & Signal wire & \multicolumn{2}{|l|}{KBH－M4756－\(\square 0\)} \\
\hline & Motor wire & KEF－ & M4752－\(\square 0\) \\
\hline & I／O connector & KBH & －M4420－00 \\
\hline \multirow[t]{4}{*}{Note．Notation within sl types is as shown} & in model & hin \(\square\) & Cable length \\
\hline & right． & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}
［Motor wire］

\section*{［Signal wire］}

\section*{［Signal wire］}

（Standard：KBH－M4751－\(\square\) ）

［Motor wire］

\section*{Robot cable table}
[Standard cable]
Connected robot \(\triangleright\) FLIP-X
\begin{tabular}{|c|c|c|c|}
\hline Set & \multicolumn{3}{|c|}{Single item} \\
\hline \multirow{3}{*}{KEF-M4720- \(\square 0\)} & Signal wire & \multicolumn{2}{|l|}{KBH-M4753- \(\square 0\)} \\
\hline & Motor wire & \multicolumn{2}{|l|}{KEF-M4752- \(\square 0\)} \\
\hline & ORG, BK wires & \multicolumn{2}{|l|}{KBH-M4421-00} \\
\hline \multirow[t]{4}{*}{Note. Notation within slo types is as shown} & in model Wit & Within \(\square\) & Cable length \\
\hline & right. & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}

\section*{[Flexible cable]}

Connected robot \(\triangle\) FLIP-X
\begin{tabular}{c|c|c}
\hline Set & \multicolumn{3}{|c}{ Single item } \\
\hline \multirow{3}{*}{ KEF-M4740- \(\square 0\)} & Signal wire & KBH-M4757- \(\square 0\) \\
\cline { 2 - 4 } & Motor wire & KEF-M4752- \(\square 0\) \\
\cline { 2 - 3 } & ORG, BK wires & KBH-M4421-00 \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Note. Notation within slot in model \\
types is as shown at right.
\end{tabular}} & \begin{tabular}{l}
Within \(\square\) \\
\cline { 3 - 4 }
\end{tabular} & Cable length \\
\cline { 3 - 4 } & & 5 \\
\hline
\end{tabular}
[ORG, BK wires]

[Signal wire]

\section*{[Motor wire]}

\section*{RDV-P cable}

\section*{[Standard cable]}

Connected robot \(\triangle\) PHASER
\begin{tabular}{c|c|c}
\hline Set & \multicolumn{3}{|c}{ Single item } \\
\hline \multirow{3}{*}{ KEF-M4711- \(\square 0\)} & Signal wire & KBH-M4754- \(\square 1\) \\
\cline { 2 - 3 } & Motor wire & KEF-M4755- \(\square 0\) \\
\cline { 2 - 3 } & I/O connector & KBH-M4420-00 \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Note. Notation within slot in model \\
types is as shown at right.
\end{tabular}} & \begin{tabular}{l}
Within \(\square\) \\
\cline { 3 - 4 }
\end{tabular} & Cable length \\
\cline { 3 - 4 } & & 5 \\
\cline { 3 - 4 } & &
\end{tabular}

\section*{[Flexible cable]}

Connected robot \(D\) PHASER
\begin{tabular}{c|l|l}
\hline Set & \multicolumn{2}{|c}{ Single item } \\
\hline \multirow{3}{*}{ KEF-M4712- \(\square 0\)} & Signal wire & KBH-M4758- \(\square 0\) \\
\cline { 2 - 3 } & Motor wire & KEF-M4755- \(\square 0\) \\
\cline { 2 - 3 } & I/O connector & KBH-M4420-00 \\
\hline
\end{tabular}

\footnotetext{
Note. Notation within slot in model Within \(\square\) Cable length types is as shown at right.

}

\section*{[Signal wire]}

[Motor wire]

\section*{SR1-X cable}

\section*{[Standard cable]}

Connected robot \(\triangle\) FLIP-X
\begin{tabular}{c|c|c}
\hline Set & \multicolumn{2}{|c}{ Single item } \\
\hline \multirow{2}{*}{ KX7-M4710- \(\square 0\)} & Signal wire & KX7-M4751- \(\square 1\) \\
\cline { 2 - 3 } & Motor wire & KX7-M4752- \(\square 0\) \\
\hline
\end{tabular}

Note. Notation within slot in model Within \(\square\) Cable length types is as shown at right.
\begin{tabular}{c|c|}
Within \(\square\) & Cable length \\
\hline 3 & 3.5 m \\
\hline 5 & 5 m \\
\hline\(A\) & 10 m \\
\hline
\end{tabular}

\section*{[Flexible cable]}

Connected robot \(\triangle\) FLIP-X
\begin{tabular}{|c|c|c|c|}
\hline Set & \multicolumn{3}{|c|}{Single item} \\
\hline \multirow[b]{2}{*}{KX7-M4720- \(\square 0\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Signal wire \\
Motor wire
\end{tabular}} & \multicolumn{2}{|l|}{KX7-M4755- \(\square 0\)} \\
\hline & & \multicolumn{2}{|l|}{KX7-M4752- \(\square 0\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Note. Notation within slot in model types is as shown at right.}} & hin \(\square\) & Cable length \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}
[Signal wire]

[Motor wire]

\section*{SR1-P cable}

\section*{[Standard cable]}

Connected robot \(\triangleright\) PHASER
\begin{tabular}{c|c|c}
\hline Set & \multicolumn{2}{|c}{ Single item } \\
\hline \multirow{2}{*}{ KAU-M4710- \(\square 0\)} & Signal wire & KAU-M4751- \(\square 4\) \\
\cline { 2 - 3 } & Motor wire & KAU-M4752- \(\square 1\) \\
\hline
\end{tabular}
\begin{tabular}{|ccc|c|}
Note. Notation within slot in model \\
types is as shown at right. & Within \(\square\) & Cable length \\
\cline { 2 - 3 } & 3 & 3.5 m \\
\hline & 5 & 5 m \\
\hline A & 10 m \\
\hline
\end{tabular}

\section*{[Flexible cable]}

Connected robot \(D\) PHASER
\begin{tabular}{|c|c|c|c|}
\hline Set & \multicolumn{3}{|c|}{Single item} \\
\hline \multirow[b]{2}{*}{KAU-M4720- \(\square 0\)} & Signal wi & \multicolumn{2}{|l|}{KAU-M4755- \(\square 0\)} \\
\hline & Motor wi & \multicolumn{2}{|l|}{KAU-M4752- \(\square 1\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Note. Notation within slot in model types is as shown at right.}} & Within \(\square\) & Cable length \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}
[Signal wire]

[Motor wire]

\section*{ERCD / ERCX cable}
[Flexible cable]
Connected robot \(\triangleright\) FLIP-X
\begin{tabular}{|c|c|c|c|}
\hline Set & \multicolumn{3}{|c|}{Single item} \\
\hline - & Composite & wire \(\mathrm{KX1}\) - & M4752- \(\square 0\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Note. Notation within slot in model types is as shown at right.}} & Within \(\square\) & Cable length \\
\hline & & 1 & 1 m \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10m \\
\hline
\end{tabular}

\section*{Multi-robot cable}

\section*{Single axis multi-robot cable}

\section*{[Flexible cable]}

Connected controller \(\triangleright\) RCX240
\begin{tabular}{c|c}
\hline Robot & Cable type \\
\hline FLIP-X & KX7-M4754- \(\square 0\) \\
\hline PHASER & KAU-M4757- \(\square 0\) \\
\hline
\end{tabular}

Note. Notation within slot in model Within \(\square\) Cable length types is as shown at right.

\section*{2-axes multi-robot cable}

\section*{[Flexible cable]}

Connected controller \(\downarrow \cdot\) RCX221 / RCX222
- RCX240 / RCX320 / RCX340 - DRCX
\begin{tabular}{c|c|c}
\hline \multicolumn{2}{c|}{ Robot combinations } & \multirow{2}{*}{ Cable type } \\
\hline First axis & Second axis & \\
\hline FLIP-X & FLIP-X & KX7-M4753- \(\square 1\) \\
\hline
\end{tabular}

Note. Notation within slot in model Within \(\square\) Cable length types is as shown at right.
\begin{tabular}{c|c}
Within \(\square\) & Cable length \\
\hline 3 & 3.5 m \\
\hline 5 & 5 m \\
\hline A & 10 m \\
\hline
\end{tabular}

\section*{[Flexible cable]}

Connected controller \(D\) RCX221 / RCX240
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Robot combinations} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Cable type}} \\
\hline First axis & Second axis & & \\
\hline FLIP-X & PHASER & \multicolumn{2}{|l|}{KAU-M4756- \(\square 2\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Note. Notation within slot in model types is as shown at right.}} & Within \(\square\) & Cable length \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}

\section*{[Flexible cable]}

Connected controller \(\downarrow\) RCX221 / RCX240
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Robot combinations} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Cable type}} \\
\hline First axis & Second axis & & \\
\hline PHASER & PHASER & \multicolumn{2}{|l|}{KAU-M4753- \(\square 2\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Note. Notation within slot in model types is as shown at right.}} & Within \(\square\) & Cable length \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}

\section*{[Flexible cable]}

Connected controller \(\downarrow\) RCX221 / RCX240
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Robot combinations} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Cable type}} \\
\hline First axis & Second axis & & \\
\hline PHASER & FLIP-X & KAU-M & M4754- \(\square 2\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Note. Notation within slot in model types is as shown at right.}} & Within \(\square\) & Cable length \\
\hline & & 3 & 3.5 m \\
\hline & & 5 & 5 m \\
\hline & & A & 10 m \\
\hline
\end{tabular}

\section*{Cartesian robot cable}

\section*{Cartesian 2－axes cable}

\section*{［Standard cable］}

Connected controller \(>\) DRCX／RCX222／RCX320／
\begin{tabular}{c|r}
\multicolumn{1}{r}{} & RCX340 \\
\hline Type & KT6－M4751－\(\square 1\)
\end{tabular}

Note．Notation within slot in model Within \(\square\) Cable length types is as shown at right．
\begin{tabular}{c|c}
\hline Within \(\square\) & Cable length \\
\hline 3 & 3.5 m \\
\hline 5 & 5 m \\
\hline A & 10 m \\
\hline
\end{tabular}

\section*{Cartesian 3－axes cable}

\section*{［Standard cable］}

Connected controller \(\downarrow\) RCX142／RCX240／RCX340
\begin{tabular}{c|c}
\hline Type & KT6－M4755－\(\square 0\) \\
\hline
\end{tabular}
\begin{tabular}{|c}
Note．Notation within slot in model \\
types is as shown at right．
\end{tabular} \begin{tabular}{l}
Within \(\square\) \\
\cline { 3 - 3 } \\
\cline { 2 - 3 } \\
\\
\\
\\
\end{tabular}

\section*{Cartesian 4－axes cable}

\section*{［Standard cable］}

Connected controller \(\downarrow\) RCX142／RCX240／RCX340 \begin{tabular}{c|c}
\hline Type & KT6－M4752－\(\square 1\) \\
\hline
\end{tabular}

Note．Notation within slot in model Within \(\square\) Cable length types is as shown at right．

\section*{SCARA robot cable}
[Standard cable]
Connected robot \(\downarrow \cdot\) YK-XG (No including YK120XG / YK150XG / YK180XG)
• YK-XGS
• YK-TW
• YK400XR / YK-XE
\begin{tabular}{c|c}
\hline Cable length & Type \\
\hline 3.5 m & KBF-M6211-00 \\
\hline 5 m & KBF-M6211-10 \\
\hline 10 m & KBF-M6211-20 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\multicolumn{2}{c}{ Connected robot \(D \cdot\) YK120XG } \\
& •YK150XG \\
& YK180XG
\end{tabular}

\begin{tabular}{c|c}
\multicolumn{2}{c}{ Connected robot \(D \cdot\) YK-XGP } \\
\(\bullet\) YK-XGC
\end{tabular}

\section*{Gripper cable}

Note. Be sure to adjust the total length of the robot (for gripper) cable and relay cable to 14 m or less.
- Robot cable
[Flexible cable]
\begin{tabular}{c|c}
\hline Cable length & Type \\
\hline 3.5 m & KCF-M4751-31 \\
\hline 5 m & KCF-M4751-51 \\
\hline 10 m & KCF-M4751-A1 \\
\hline
\end{tabular}
- Relay cable
[Flexible cable]

\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c}{ Type } & \multicolumn{6}{c}{ KCF-M4811- \(\square 1\)} \\
\hline Within \(\square\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Length (mm) & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \\
\hline
\end{tabular}

\section*{Cable terminal table}

This is a relay cable used between the robot body and the robot cable such cable carrier wiring, etc.

\section*{PHASER relay cable}

Motor wire (\(\mathbf{3 5 0 m m}\) to \(\mathbf{1 4 5 0 m m}\)) Note. Common to MR types and MF types
\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c|c|c}
\hline Type & \multicolumn{10}{|c}{ KAU-M4813- \(\square 0\)} \\
\hline Within \(\square\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C \\
\hline Length (mm) & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 \\
\hline
\end{tabular}

Motor wire (\(\mathbf{1 5 0 0} \mathbf{m m}\) to \(\mathbf{2 6 0 0} \mathbf{m m}\)) Note. Not usable on MR type

Signal cable (\(\mathbf{3 5 0} \mathbf{m m}\) to \(\mathbf{1 4 5 0 m m}\)) Note. Common to MR types and MF types
\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c|c|c}
\hline Type & \multicolumn{13}{|c}{ KAU-M4812- \(\square 1\)} \\
\hline Within \(\square\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C \\
\hline Length (mm) & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & 1150 & 1250 & 1350 & 1450 \\
\hline
\end{tabular}

Signal cable (1500 mm to \(\mathbf{2 6 0 0 m m}\)) Note. Common to MR types and MF types
\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c|c|c}
\hline Type & \multicolumn{10}{|c}{ KBD-M4812- \(\square 1\)} \\
\hline Within \(\square\) & 6 & 7 & 8 & 9 & A & B & C & D & E & F & G & J \\
\hline Length (mm) & 1500 & 1600 & 1700 & 1800 & 1900 & 2000 & 2100 & 2200 & 2300 & 2400 & 2500 & 2600 \\
\hline
\end{tabular}

\section*{Connector converter cable}

\section*{Programming box converter cable}

Converter cable for operating the RCX40, RCX141, RCX142 by RPB.

Type \(\quad\) KAS-M5151-10

\section*{I/O control converter cable}

Converter cable allows connecting to the SRCX connector when system using the SRCX was changed to the SR1-X.

External power supply is used for the I/O power supply.

Internal power supply of the SRCX is used for the I/O power supply.

Converter cable allows connecting to the SRCP connector when system using the SRCP was changed to the SR1-P.

\section*{TRANSERVO RF type model selection}

\section*{Selecting a model}

\section*{Operating conditions}
\begin{tabular}{lll}
Rotary type: RF03 & \begin{tabular}{l}
Acceleration/deceleration \(\dot{\omega}: 1,000 \% \mathrm{sec}^{2}\) \\
Installation posture: Horizontal \\
Kind of load: Inertial load Ta \\
Shape of load: \(150 \mathrm{~mm} \times 80 \mathrm{~mm}\) \\
(rectangular plate)
\end{tabular} & \begin{tabular}{l}
Load mass \(\mathrm{m}: 2.0 \mathrm{~kg}\) \\
Distance between shaft and center of gravity \(\mathrm{H}: 40 \mathrm{~mm}\) \\
Oscillating angle \(\theta: 180^{\circ}\)
\end{tabular}
\end{tabular}

\section*{Step 1 Moment of inertia Acceleration/deceleration}

1 Calculating the moment of inertia.

2 Checking the moment of inertia vs. acceleration/deceleration.
Select an appropriate model from the moment of inertia vs. acceleration/deceleration while referring to the moment of inertia vs. acceleration/deceleration graph.

\section*{Step 2 Selecting a torque}

1 Kinds of loads
- Static load: Ts
- Resistance load: Tf
- Inertial load: Ta

2 Checking the effective torque Check that the speed can be controlled by the effective torque by the speed while referring to the effective torque vs. speed graph.

\section*{Calculation formula \\ \(\mathrm{I}=\mathrm{m} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{m} \times \mathrm{H}^{2}\)}

\section*{Selection example}
\(\mathrm{I}=2.0 \times\left(0.15^{2}+0.08^{2}\right) / 12+2.0 \times 0.04^{2}\) \(=0.00802 \mathrm{~kg} \cdot \mathrm{~m}^{2}\)

\section*{Calculation formula}

Effective torque \(\geq\) Ts
Effective torque \(\geq \operatorname{Tf} \times 1.5\)
Effective torque \(\geq \operatorname{Ta} \times 1.5\)

\section*{Selection example}

Inertial load: Ta
\(\mathrm{Ta} \times 1.5=\mathrm{I} \times \dot{\omega} \times 2 \pi / 360 \times 1.5\)
\(=0.00802 \times 1,000 \times 0.0175 \times 1.5\)
\(=0.21 \mathrm{~N} \cdot \mathrm{~m}\)

\section*{Calculation formula}

Allowable thrust load \(\geq m \times 9.8\)
Allowable moment \(\geq \mathrm{m} \times 9.8 \times \mathrm{H}\)

RF03

\section*{Selection example}

Thrust load
\(2.0 \times 9.8=19.6 \mathrm{~N}<\) Allowable load OK
Allowable moment
\(2.0 \times 9.8 \times 0.04\)
\(=0.784 \mathrm{~N} \cdot \mathrm{~m}<\) Allowable moment OK

\section*{List of moment of inertia calculation formulas (Calculation of moment of inertia I)}

1 Thin rod
Position of rotation axis:
Passes through one end perpendicularly to the rod.

2 Thin rod
Position of rotation axis:
Passes through the center of gravity of the rod.

3 Thin rectangular plate (rectangular parallelepiped)
Position of rotation axis:
Passes through the center of gravity of the rod.

I: Moment of inertia m : Load mass
4 Thin rectangular plate (rectangular parallelepiped)
Position of rotation axis:
Passes through one end perpendicularly to the plate.
(Same position for the rectangular parallelepiped with the plate thickened.)

5 Thin rectangular plate (rectangular parallelepiped)
Position of rotation axis:
Passes through one end perpendicularly to the plate.
(Same position for the rectangular parallelepiped with the plate thickened.)
\[
\mathrm{I}=\mathrm{m} \cdot \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{12}
\]

6 Cylinder (including thin disc)
Position of rotation axis: Central axis

\(\mathrm{I}=\mathrm{m}_{1} \cdot \frac{4 \mathrm{a}_{1}^{2}+\mathrm{b}^{2}}{12}\)
\(+\mathrm{m}_{2} \cdot \frac{4 \mathrm{a}_{2}^{2}+\mathrm{b}^{2}}{12}\)

8 Thin disc
Position of rotation axis: Diameter

9 Load at lever tip

\(\underset{(\text { Example) }}{I}=m_{1} \cdot \frac{a_{1}{ }^{2}}{3}+m_{2} \cdot a_{2}{ }^{2}+K\)
(Example)
When the shape of \(\mathrm{m}_{2}\) is a ball,
refer to [7] to obtain the following.
\(\mathrm{K}=\mathrm{m}_{2} \cdot \frac{2 \mathrm{r}^{2}}{5}\)

10 Gear transmission

2. Next, substitute \(I_{B}\) for the moment of inertia around the (A) axis to calculate \(I_{A}\) as follows.
\[
I_{A}=\left(\frac{a}{b}\right)^{2} \cdot I_{B}
\]

\section*{Kinds of loads}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Kinds of loads} \\
\hline Static load: Ts & Resistance load: Tf & \multirow[t]{2}{*}{\begin{tabular}{l}
Inertial load: Ta \\
Load with inertia needs to be rotated.
\end{tabular}} \\
\hline Only push force is needed (clamp, etc.). & Gravity or friction force applies in the rotation direction. & \\
\hline & & <Rotation center matches <Rotation axis is in to the gravity of the load.> the vertical direction.> \\
\hline \begin{tabular}{l}
\[
T s=F \cdot L
\] \\
Ts: Static load \((N \cdot m)\) \\
F: Clamp force (N) \\
L : Distance from oscillating center to clamp position (m)
\end{tabular} & \begin{tabular}{l}
Gravity applies in the rotation direction.
\[
\mathrm{Tf}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~L}
\] \\
Friction force applies in the rotation direction.
\[
\mathrm{Tf}=\mu \cdot \mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~L}
\] \\
Tf: Resistance load (\(\mathrm{N} \cdot \mathrm{m}\)) \\
m : Mass of load (kg) \\
g : Gravity acceleration \(9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)\) \\
L : Distance from oscillating center to gravity or friction force action point (m) \\
\(\mu\) : Friction coefficient
\end{tabular} & \[
\begin{aligned}
& \mathrm{Ta}=\mathrm{I} \cdot \dot{\omega} \cdot 2 \pi / 360 \\
& (\mathrm{Ta}=\mathrm{I} \cdot \dot{\omega} \cdot 0.0175) \\
& \mathrm{Ta}: \text { Inertial load }(\mathrm{N} \cdot \mathrm{~m}) \\
& \mathrm{I}: \text { Moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \\
& \dot{\omega}: \text { Acceleration } / \text { deceleration }\left(\% / \mathrm{sec}^{2}\right) \\
& \omega: \text { Speed }(\% / \mathrm{sec})
\end{aligned}
\] \\
\hline Required torque \(\quad \mathrm{T}=\mathrm{Ts}\) & Required torque \(\mathrm{T}=\mathrm{Tf} \times 1.5\) Note 1) & Required torque \(\mathrm{T}=\mathrm{Ta} \times 1.5\) Note 1) \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
- Load becomes the resistance load. \\
Gravity or friction force applies in the rotation direction. \\
Example 1) The rotation center of the rotation axis does not match to the center of gravity of the load in the horizontal direction. \\
Example 2) The load slips on the floor to move it. \\
The required torque is the total of the resistance load and inertial load.
\[
\mathrm{T}=(\mathrm{Tf}+\mathrm{Ta}) \times 1.5
\] \\
- Load does not become the resistance load. \\
Gravity or friction force does not apply in the rotation direction. \\
Example 1) The rotation axis is vertical. \\
Example 2) The rotation center of the rotation axis does not match to the center of gravity of the load in the horizontal direction. \\
The required torque is only the inertial load.
\[
\mathrm{T}=\mathrm{Ta} \times 1.5
\] \\
Note 1) An allowance is required for Tf and Ta to make the speed adjustment.
\end{tabular}} \\
\hline
\end{tabular}

\section*{R-axis tolerable moment of inertia and acceleration coefficient}

\section*{[1] Moment of inertia for material particle}

The equation for the moment of inertia for a material particle that has a rotation center such as shown in Fig.
(1) is as follows: This is used as an approximate equation when x is larger than the object size.
\(I=m x^{2}\left(\mathrm{kgm}^{2}\right)\)
\(J=\frac{W x^{2}}{g}\left(\mathrm{kgfcmsec}^{2}\right)\)
g : Gravitational acceleration (\(\mathrm{cm} / \mathrm{sec}^{2}\))
m : Mass of material particle (kg)
W: Weight of material particle (kgf)

\section*{[2] Moment of inertia for cylinder (part 1)}

The equation for the moment of inertia for a cylinder that has a rotation center such as shown in Fig. (2) is given below.
\[
\begin{gathered}
\mathrm{I}=\frac{\rho \pi \mathrm{D}^{4} \mathrm{~h}}{32}=\frac{\mathrm{mD}^{2}}{8} \quad\left(\mathrm{kgm}^{2}\right) \\
\mathrm{J}=\frac{\rho \pi \mathrm{D}^{4} \mathrm{~h}}{32 \mathrm{~g}}=\frac{\mathrm{WD}^{2}}{8 \mathrm{~g}} \quad\left(\mathrm{kgfcmsec}^{2}\right) \\
\ldots(3.2)
\end{gathered}
\]
\(\rho\) : Density (kg/m³, kg/cm \({ }^{3}\))
g : Gravitational acceleration (\(\mathrm{cm} / \mathrm{sec}^{2}\))
m : Mass of cylinder (kg)
W: Weight of cylinder (kgf)

Fig.(2)

\section*{[3] Moment of inertia for cylinder (part 2)}

The equation for the moment of inertia for a cylinder that has a rotation center such as shown in Fig. (3) is given below.
\(I=\frac{\rho \pi D^{2} h}{16}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)=\frac{m}{4}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)\left(\mathrm{kgm}^{2}\right)\)
\(J=\frac{\rho \pi D^{2} h}{16 g}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)=\frac{W}{4 g}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)(k g f c m s e c)\)

Fig.(3)

\section*{[4] Moment of inertia for prism}

The equation for the moment of inertia for a prism that has a rotation center as shown in Fig. (4) is given as follows.
\(\mathrm{I}=\frac{\rho \mathrm{abc}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{12}=\frac{\mathrm{m}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{12}\left(\mathrm{kgm}^{2}\right)\)

\(\rho:\) Density \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{~kg} / \mathrm{cm}^{3}\right)\)
g : Gravitational acceleration \(\left(\mathrm{cm} / \mathrm{sec}^{2}\right)\)
m : Mass of prism (kg)
W: Weight of prism (kgf)

Fig. (4)

\section*{[5] When the object's center line is offset from the rotation center}

The equation for the moment of inertia, when the center of the cylinder is offset by the distance "x" from the rotation center as shown in Fig.(5), is given as follows.
\(\mathrm{I}=\frac{\rho \pi \mathrm{D}^{4} \mathrm{~h}}{32}+\frac{\rho \pi \mathrm{D}^{2} h x^{2}}{4}=\frac{m D^{2}}{8}+\mathrm{mx}^{2}\left(\mathrm{kgm}^{2}\right)\)
\(J=\frac{\rho \pi D^{4} h}{32 g}+\frac{\rho \pi D^{2} h x^{2}}{4 g}\)
\(=\frac{W D^{2}}{8 g}+\frac{W x^{2}}{g}\left(\mathrm{kgfcmsec}^{2}\right)\)
. (3.5)
\(\rho:\) Density \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{~kg} / \mathrm{cm}^{3}\right)\)
g : Gravitational acceleration (cm/sec\(\left.{ }^{2}\right)\)
m : Mass of cylinder (kg)
W: Weight of cylinder (kgf)

In the same manner, the moment of inertia of a cylinder as shown in Fig. (6) is given by
\(I=\frac{\rho \pi D^{2} h}{16}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)+\frac{\rho \pi D^{2} h x^{2}}{4}=\frac{m}{4}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)+m x^{2}\left(k g m^{2}\right)\)
\(J=\frac{\rho \pi D^{2} h}{16 g}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)+\frac{\rho \pi D^{2} h x^{2}}{4 g}\)
\(=\frac{W}{4 g}\left(\frac{D^{2}}{4}+\frac{h^{2}}{3}\right)+\frac{W x^{2}}{g}\left(\mathrm{kgfcmsec}^{2}\right)\)
... (3.6)
... (3.6)

In the same manner, the moment of inertia of a prism as shown in Fig. (7) is given by
\(\mathrm{I}=\frac{\rho \mathrm{abc}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{12}+\rho \mathrm{abcx} \mathrm{x}^{2}=\frac{\mathrm{m}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{12}+\mathrm{mx}^{2}\left(\mathrm{kgm}^{2}\right)\)

\(=\frac{W\left(a^{2}+b^{2}\right)}{12 g}+\frac{W x^{2}}{g}\left(\mathrm{kgfcmsec}^{2}\right)\)
... (3.7)
m : Mass of prism (kg)
W: Weight of prism (kgf)

Fig. 7

\section*{Example of moment of inertia calculation}

Let's discuss an example in which the chuck and workpiece are at a position offset by 10 cm from the R-axis by a stay, as shown in Fig. (8). The moment of inertia is calculated with the following three factors, assuming that the load material is steel and its density \(\rho\) is \(0.0078 \mathrm{~kg} / \mathrm{cm}^{3}\).

\section*{[1] Moment of inertia of the stay}

From Fig. (9), the weight of the stay \((\mathrm{Ws})\) is given as follows :
```

Ws $=\rho a b c=0.0078 \times 12 \times 2 \times 2$

```
\(=0.37\) (kgf)
The moment of inertia of the stay (Js) is then calculated from Eq. 3-7.

\(\mathrm{Js}=\frac{0.37 \times\left(12^{2}+2^{2}\right)}{12 \times 980}+\frac{0.37 \times 5^{2}}{980}=0.014\left(\mathrm{kgfcmsec}{ }^{2}\right)\)
Fig.(9)
[4] Total weight
\(W=W s+W c+W w=0.84(k g f)\)
[5] Total moment of inertia
\(\mathrm{J}=\mathrm{Js}+\mathrm{Jc}+\mathrm{Jw}=0.062\left(\mathrm{kgfcmsec}^{2}\right)\)

\section*{[2] Moment of inertia of the chuck}

When the chuck form resembles that shown in Fig. (10), the weight of the chuck (Wc) is
\[
\begin{aligned}
\mathrm{Wc} & =0.0078 \times 2 \times 4 \times 6 \\
& =0.37(\mathrm{kgf})
\end{aligned}
\]

The moment of inertia of the chuck (Jc) is then calculated from Eq. 3-7.
\(\mathrm{Jc}=\frac{0.37 \times\left(2^{2}+4^{2}\right)}{12 \times 980}\)
\(+\frac{0.37 \times 10^{2}}{980}\)
\(=0.038\left(\mathrm{kgfcmsec}^{2}\right)\)

\section*{[3] Moment of inertia of workpiece}

When the workpiece form resembles that shown in Fig. (11), the weight of the workpiece \((\mathrm{Ww})\) is
\(\begin{aligned} W w & =\frac{\rho \pi D^{2} h}{4}=\frac{0.0078 \pi \times 2^{2} \times 4}{4} \\ & =0.098(\mathrm{kgf})\end{aligned}\)

The moment of inertia of the workpiece (Jw) is then calculated from Eq. 3-5
\[
\begin{aligned}
\mathrm{Jw} & =\frac{0.097 \times 2^{2}}{8 \times 980}+\frac{0.097 \times 10^{2}}{980} \\
& =0.010\left(\mathrm{kgfcmsec}^{2}\right)
\end{aligned}
\]

\section*{External safety circuit examples}

To ensure safe use of the robot, we request the customers make a risk assessment of their end equipment to decide what performance level is needed from safety circuits at the point. Customer should then install a safety circuit at the required performance level.
Here we show examples of category 4 circuits for the TS-X/TS-P, SR1 and RCX240 controllers using a programming box with an enable switch.
Safety circuits for other categories are described in the user's manuals, so download them from our website if needed.

\section*{Circuit configuration examples (TS-X/TS-P)}

\section*{General connection diagram}

Category 4

\section*{Circuit configuration examples (SR1)}

General connection diagram

Category 4

\section*{Circuit configuration examples (RCX240)}

\section*{General connection diagram}

\section*{Category 4}

Parts Table
\begin{tabular}{c|l|l|l}
\hline Circuit No. & \multicolumn{1}{|c|}{ Part Name } & Circuit No. & \multicolumn{1}{c}{ Part Name } \\
\hline S1 & Reset switch & KM1, 2 & Contactor (mirror contact) \\
\hline S2 & Key-selector switch & KA1 to \(5^{* 1}\) & Safety relay \\
\hline S3 & Safety door switch & SRL1 to 4 & Safety relay unit \\
\hline S4 & Emergency stop switch & SRL5, \(6^{\circ 2}\) & Safety relay unit \\
\hline
\end{tabular}

\section*{CE marking}
* Check the latest information at the website shown below.
https://global.yamaha-motor.com/business/robot/support/ce/

The YAMAHA robot (robot and controller) is one component that is incorporated into the customer's system (built-in equipment), and we declare that the YAMAHA robots conform to the EC Directives only within the scope of built-in equipment (semi-finished product). So, no CE marks are affixed to the YAMAHA robot products.

\section*{Cautions regarding compliance with EC Directives}

The YAMAHA robot (robot and controller) is not, in itself, a robot system. The YAMAHA robot-series product is one component that is incorporated into the customer's system (built-in equipment), and we declare that the YAMAHA robots conform to the EC Directives only within the scope of built-in equipment. Just incorporating the YAMAHA robot does not guarantee that the customer's system conforms to the EC Directives. However, combining the YAMAHA robot that is a semi-finished product with other device or circuit that is designed and manufactured appropriately makes it possible to conform the finished system to the EC Directives. The customer who incorporates YAMAHA robot products into the customer's final system, which will be shipped to or used in European region, should verify that the overall system conforms to the EC Directives.

\section*{Installation of external safety circuits}

To comply with EC directives, customers using YAMAHA robots must always build and install their own external safety circuits after selecting product components (safety relays, etc.) according to performance levels and safety categories required by the customer equipment.

For details about examples of external safety circuits, the user's manual should be referred to.

\section*{Compliance with EMC Directives}

In order to conform to the EMC Directives, the customer should evaluate the final system (overall system) and take necessary countermeasures. As examples of EMC countermeasures for single YAMAHA robot product are described in the user's manual, these descriptions should be referred to.

\section*{Cautions regarding official language of EU countries}

Only English which is the official language of the EU is utilized in the manuals, warning labels, operating screens, and the Declaration of Incorporation for this product.
If warning text appears on the warning label, then Japanese may also sometimes be listed along with the English.

\title{
Cautions on KCs (Korean Certificate Safety) specifications
}

\section*{About KCs}
* Check the latest information at the website shown below.
https://global.yamaha-motor.com/business/robot/support/korea/

KCs is a system that conforms to Korean Industrial Safety and Health Act and self-regulatory safety confirmation declaration of hazardous machines and devices. For machines specified in this system, the KCs mark needs to be indicated after conducting the forced certification or self-regulatory safety confirmation declaration. Industrial robots that have manipulators with 3 or more axes are specified as machines needing the self-regulatory safety confirmation declaration in South Korea's Ministry of Employment and Labor Notification No. 1201-46. Its safety standards are defined in separate table 2 of this notification.

\section*{About measures for KCs}

For some YAMAHA robot models, this self-regulatory safety confirmation declaration is conducted to register these models. Additionally, the KCs mark is indicated on the robots that have been declared. When you investigate to purchase a robot to be used in South Korea, check whether or not this robot conforms to KCs and order it with the KCs specifications specified.

The YAMAHA robot is a unit that is incorporated into the customer's system. Therefore, when the customer incorporates the robot into the customer's system, additional safety measures need to be taken. For details, see "Safety standards application guide reference manual".

\section*{List of robots subject to KCs}

Robot products may not be applicable to KCs depending on the customer's applications, operating conditions, or environments. Consult YAMAHA before purchasing a product.
Since a self-regulatory safety declaration has not been made for inapplicable models, these models cannot be used in Korea. Specialorder robots are also unavailable. For details, please contact YAMAHA.

As of July, 2020
O : subject to KCs
- : not subject to KCs
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Product} & \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{Model name} & \multicolumn{2}{|c|}{KCs registration} \\
\hline & & & RCX240 (S) & RCX340 \\
\hline \multirow{14}{*}{Cartesian robot} & FXYX & 3 axes & \(\bigcirc\) & \(\bigcirc\) \\
\hline & \multirow[t]{2}{*}{SXYX} & 3 axes & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{\(\bigcirc\)} \\
\hline & & 4 axes & & \\
\hline & \multirow[t]{2}{*}{SXYBx} & 3 axes & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{\(\bigcirc\)} \\
\hline & & 4 axes & & \\
\hline & \multirow[t]{2}{*}{MXYx} & 3 axes & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{\(\bigcirc\)} \\
\hline & & 4 axes & & \\
\hline & \multirow[t]{2}{*}{HXYx} & 3 axes & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{\(\bigcirc\)} \\
\hline & & 4 axes & & \\
\hline & \multirow{3}{*}{NXY} & 3 axes & \multirow{3}{*}{-} & \multirow{3}{*}{-} \\
\hline & & 4 axes & & \\
\hline & & 6 axes & & \\
\hline & \multirow[t]{2}{*}{SXYxC} & 3 axes & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} \\
\hline & & 4 axes & & \\
\hline \multirow[t]{2}{*}{Pick \& place robot} & \multirow[t]{2}{*}{YP Series} & 3 axes & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} \\
\hline & & 4 axes & & \\
\hline \multirow{24}{*}{SCARA robot} & \multicolumn{2}{|c|}{YK400XE-4} & \multirow{4}{*}{-} & \multirow{4}{*}{\(\bigcirc\)} \\
\hline & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { YK510XE-10 } \\
& \hline \text { YK610XE-10 } \\
& \hline
\end{aligned}
\]}} & & \\
\hline & & & & \\
\hline & \multicolumn{2}{|c|}{YK710XE-10} & & \\
\hline & \multicolumn{2}{|c|}{YK180X} & \multirow{5}{*}{-} & \multirow{5}{*}{-} \\
\hline & \multicolumn{2}{|c|}{YK220X} & & \\
\hline & \multicolumn{2}{|c|}{YK120XG} & & \\
\hline & \multicolumn{2}{|c|}{YK150XG} & & \\
\hline & \multicolumn{2}{|c|}{YK180XG} & & \\
\hline & \multicolumn{2}{|c|}{YK250XG} & \multirow{3}{*}{\(\bigcirc\)} & \multirow{3}{*}{\(\bigcirc\)} \\
\hline & \multicolumn{2}{|c|}{YK350XG} & & \\
\hline & \multicolumn{2}{|c|}{YK400XG} & & \\
\hline & \multicolumn{2}{|c|}{YK400XR} & - & \(\bigcirc\) \\
\hline & \multicolumn{2}{|c|}{YK500XGL} & \multirow[t]{2}{*}{\(\bigcirc\)} & \multirow[t]{2}{*}{\(\bigcirc\)} \\
\hline & \multicolumn{2}{|c|}{YK600XGL} & & \\
\hline & \multicolumn{2}{|c|}{YK700XGL} & - & \(\bigcirc\) \\
\hline & \multicolumn{2}{|c|}{YK500XG} & \multirow{7}{*}{\(\bigcirc\)} & \multirow{7}{*}{\(\bigcirc\)} \\
\hline & \multicolumn{2}{|c|}{YK600XG} & & \\
\hline & \multicolumn{2}{|c|}{YK600XGH} & & \\
\hline & \multicolumn{2}{|c|}{YK700XG} & & \\
\hline & \multicolumn{2}{|c|}{YK800XG} & & \\
\hline & \multicolumn{2}{|c|}{YK900XG} & & \\
\hline & \multicolumn{2}{|c|}{YK1000XG} & & \\
\hline & \multicolumn{2}{|c|}{YK1200X} & - & - \\
\hline
\end{tabular}

Continues to the next page.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Product} & \multirow[b]{2}{*}{Type} & & \multirow[t]{2}{*}{Model name} & \multicolumn{2}{|c|}{KCs registration} \\
\hline & & & & RCX240 (S) & RCX340 \\
\hline & \multicolumn{3}{|c|}{YK180XC} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} \\
\hline & \multicolumn{3}{|c|}{YK220XC} & & \\
\hline & \multicolumn{3}{|c|}{YK250XGC} & \multirow{5}{*}{\(\bigcirc\)} & \multirow{5}{*}{-} \\
\hline & \multicolumn{3}{|c|}{YK350XGC} & & \\
\hline & \multicolumn{3}{|c|}{YK400XGC} & & \\
\hline & \multicolumn{3}{|c|}{YK500XGLC} & & \\
\hline & \multicolumn{3}{|c|}{YK600XGLC} & & \\
\hline & \multicolumn{3}{|c|}{YK500XC} & \multirow{5}{*}{-} & \multirow{5}{*}{-} \\
\hline & \multicolumn{3}{|c|}{YK600XC} & & \\
\hline & \multicolumn{3}{|c|}{YK700XC} & & \\
\hline & \multicolumn{3}{|c|}{YK800XC} & & \\
\hline & \multicolumn{3}{|c|}{YK1000XC} & & \\
\hline & \multicolumn{3}{|c|}{YK300XGS} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\(\bigcirc\)} \\
\hline & & YK40 & & & \\
\hline & \multicolumn{3}{|c|}{YK500XGS} & \multirow{6}{*}{\(\bigcirc\)} & \multirow{6}{*}{\(\bigcirc\)} \\
\hline \multirow{19}{*}{SCARA robot} & \multicolumn{3}{|c|}{YK600XGS} & & \\
\hline & \multicolumn{3}{|c|}{YK700XGS} & & \\
\hline & \multicolumn{3}{|c|}{YK800XGS} & & \\
\hline & \multicolumn{3}{|c|}{YK900XGS} & & \\
\hline & \multicolumn{3}{|c|}{YK1000XGS} & & \\
\hline & \multicolumn{3}{|c|}{YK250XGP} & \multirow{12}{*}{\(\bigcirc\)} & \multirow{12}{*}{-} \\
\hline & \multicolumn{3}{|c|}{YK350XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK400XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK500XGLP} & & \\
\hline & \multicolumn{3}{|c|}{YK600XGLP} & & \\
\hline & \multicolumn{3}{|c|}{YK500XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK600XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK600XGHP} & & \\
\hline & \multicolumn{3}{|c|}{YK700XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK800XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK900XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK1000XGP} & & \\
\hline & \multicolumn{3}{|c|}{YK350TW} & - & \(\bigcirc\) \\
\hline & \multicolumn{3}{|c|}{YK500TW} & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Cautions on Korean EMC specifications}

\section*{About Korean KC}

Check the latest information at the website shown below. https://global.yamaha-motor.com/business/robot/support/korea_emc/

KC is a system based on the radio regulations of Korea. Devices specified by this system must certify compliance or register compliance, and indicate compliance. Applicable devices are defined by public announcement from the Korean National Radio Research Agency (NRRA).

\section*{\(\square\) About Korean KC compliance}

Some models of YAMAHA robot (robots and controllers) are registered with the Korean National Radio Research Agency (NRRA) by selftest compliance registration. YAMAHA robots that have already been registered display the KC mark.
If you are considering the purchase of robots to be used in Korea, please check the table below for compliance before ordering the applicable product.

YAMAHA robots are devices for inclusion in a system; therefore, if you, the customer, build a complete system that includes robots, and ship that system as a final product to Korea or use it within Korea, you yourself must verify EMC compliance.
For TS series and TS-SD units, check "Examples of EMC countermeasures" within the user's manual; for other controllers, check this section within the "Safety standards application guide reference manual".

\section*{List of KC compliant robots}
* Please consult with YAMAHA before purchase, since compliance might not be possible depending on your application, conditions of use, and environment.
* In the case of 3-axis or greater Cartesian robots and SCARA robots, the robot must be compliant with both KC and KCs. In conjunction with this table, refer also to the list of KCs compliant robots.

As of December, 2020
\begin{tabular}{|c|c|c|}
\hline Product & Model name & Registration No. \\
\hline \multirow{20}{*}{Controller} & ERCD & MSIP-REM-Y3M-ERCD \\
\hline & TS-S2 & MSIP-REM-Y3M-TSS \\
\hline & TS-SD & MSIP-REM-Y3M-TSSD \\
\hline & TS-SH & MSIP-REM-Y3M-TSSH \\
\hline & TS-X & MSIP-REM-Y3M-TSX \\
\hline & TS-P & MSIP-REM-Y3M-TSP \\
\hline & RDV-X & MSIP-REM-Y3M-RDVX \\
\hline & RDV-P & MSIP-REM-Y3M-RDVP \\
\hline & SR1-X & MSIP-REM-Y3M-SR1X \\
\hline & SR1-P & MSIP-REM-Y3M-SR1P \\
\hline & RCX221 & MSIP-REM-Y3M-X221 \\
\hline & RCX222 & MSIP-REM-Y3M-X222 \\
\hline & RCX240/RCX240S & MSIP-REM-Y3M-X240 \\
\hline & RCX320 & R-R-GYM-RCX320 \\
\hline & RCX340 & MSIP-REM-Y3M-X340 \\
\hline & LCC140 & MSIP-REM-Y3M-C140 \\
\hline & YHX-HCU & R-R-GYM-YHXHCU \\
\hline & YHX-DPU & R-R-GYM-YHXDPU \\
\hline & YHX-A30/YHX-A10 & R-R-GYM-YHXA30A10 \\
\hline & EP-01-A30 / EP-01-A10 & R-R-GYM-EP-01 \\
\hline \multirow{3}{*}{Linear conveyor} & LCM100 & MSIP-REM-Y3M-M100 \\
\hline & LCMR200 & R-R-GYM-LCMR200 \\
\hline & JGX series & R-R-GYM-JGX \\
\hline \multirow{6}{*}{Single-axis robot} & TRANSERVO series & MSIP-REM-Y3M-TR \\
\hline & FLIP-X series & MSIP-REM-Y3M-FX \\
\hline & FLIP-X (24V) series & MSIP-REM-Y3M-FXL \\
\hline & PHASER series & MSIP-REM-Y3M-PH \\
\hline & GX series & R-R-GYM-GX \\
\hline & Robonity series * & R-R-GYM-ROBONITY \\
\hline Cartesian robot & XY-X series & MSIP-REM-Y3M-XY \\
\hline \multirow[b]{2}{*}{SCARA robot} & YK series & MSIP-REM-Y3M-YK \\
\hline & YK-XE series & R-R-GYM-YK710XE-10 \\
\hline
\end{tabular}
* Robonity_Motorless is not included as it is not subject to KC.

\section*{About non-compliant models}

The following robots are subject to the KC system; however, since self-test compliance registration has not been done at the present time, they cannot be used in Korea. Additionally, special-order robots are also not compliant with the KC system.
Even for the various series listed in the table, some new models might not have been registered. (Contact YAMAHA for details.)

Pick and place robots: YP-X series

\section*{Approach to complying with EU RoHS Directive}

Our approach to complying with EU RoHS Directive is explained below.
* Check the latest information at the website shown below. https://global.yamaha-motor.com/business/robot/support/rohs/

In June, 2015, Commission Delegated Directive (EU) 2015/863 was published, and four kinds of phthalates were newly added to the specified hazardous substances (lead, hexavalent chromium, mercury, cadmium, PBB and PBDE) of EU RoHS Directive 2011/65/EU.
Our products are industrial instruments listed in Category 9 "Monitoring and control instruments including industrial monitoring and control instruments" and must comply with this directive if they are launched in Europe after the directive is put into operation. We will take measures to comply with this directive by the appointed time.

\section*{EU RoHS Directive 2011/65/EU}

\section*{1. Product categories concerned (from Annex I)}
* Our products are industrial instruments listed in Category 9 "Monitoring and control instruments." Categories
\begin{tabular}{|c|l|}
\hline 1 & Large household appliances. \\
\hline 2 & Small household appliances. \\
\hline 3 & IT and telecommunications equipment. \\
\hline 4 & Consumer equipment. \\
\hline 5 & Lighting equipment. \\
\hline 6 & Electrical and electronic tools. \\
\hline 7 & Toys, leisure and sports equipment. \\
\hline 8 & Medical devices. \\
\hline 9 & Monitoring and control instruments including industrial monitoring and control instruments. \\
\hline 10 & Automatic dispensers. \\
\hline 11 & Other EEE not covered by any of the categories above. \\
\hline
\end{tabular}

\section*{2. Regulated substances and state of compliance with regulations}
* All our products comply with EU RoHS Directive 2011/65/EU.
\begin{tabular}{|c|l|c|}
\hline \multicolumn{2}{|c|}{ Substance name } & Max. allowable concentration \\
\hline 1 & Lead & 1000 ppm \\
\hline 2 & Mercury & 1000 ppm \\
\hline 3 & Cadmium & 100 ppm \\
\hline 4 & Hexavalent chromium & 1000 ppm \\
\hline 5 & PBB (polybrominated biphenyls) & 1000 ppm \\
\hline 6 & PBDE (polybrominated diphenyl ethers) & 1000 ppm \\
\hline
\end{tabular}

\section*{Addition of restricted substances to regulated substances}

Commission Delegated Directive (EU) 2015/863 (notice through official gazettes in June, 2015) added the following four kinds of restricted substances to the substances regulated by EU RoHS Directive.
\begin{tabular}{|c|l|c|c|c|}
\hline \multicolumn{2}{|c|}{ Substance name } & \multirow{2}{c|}{\begin{tabular}{c}
Max. allowable \\
concentration
\end{tabular}} & \multicolumn{2}{c|}{ Effective date } \\
& \multicolumn{2}{|c|}{\begin{tabular}{c}
Categories 1 to 7, 10 and 11
\end{tabular}} & Categories 8 and 9 \\
\hline 1 & Bis (2-Ethylhexyl) phthalate (DEHP) & 1000 ppm & & \\
\hline 2 & Benzyl butyl phthalate (BBP) & \multirow{3}{*}{ July 22, 2019 } & July 22, 2021 \\
\hline 3 & Dibutyl phthalate (DBP) & 1000 ppm & & \\
\hline 4 & Diisobutyl phthalate (DIBP) & 1000 ppm & & \\
\hline
\end{tabular}

For information on the warranty period and terms, please contact our distributor where you purchased the product.

THE WARRANTY STATED HEREIN PROVIDED BY YAMAHA ONLY COVERS DEFECTS IN PRODUCTS AND PARTS SOLD BY YAMAHA TO DISTRIBUTORS UNDER THIS AGREEMENT. ANY AND ALL OTHER WARRANTIES OR LIABILITIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY EXPRESSLY DISCLAIMED BY YAMAHA. MOREOVER, YAMAHA SHALL NOT BE HELD RESPONSIBLE FOR CONSEQUENT OR INDIRECT DAMAGES IN ANY MANNER RELATING TO THE PRODUCT.

\footnotetext{
This manual does not serve as a guarantee of any industrial property rights or any other rights and does not grant a license in any form. Please acknowledge that we bear no liability whatsoever for any problems involving industrial property rights which may arise from the contents of this manual.
}

\section*{Repeatability positioning accuracy}

The "repeatability positioning accuracy" cannot be guaranteed for the accuracy conditions listed below.

\section*{(1) Factors involving absolute accuracy}
- Under conditions requiring accuracy between the robot controller internal coordinate position (command position) and real space position (movement position).

\section*{(2) Operating pattern factors}
- Under conditions including a motion approaching close to a teaching point (position) from different directions during repeating operation.
- Under conditions where power was turned off or operation was stopped, even when approaching a teaching position from same direction.
- Under conditions where movement to a teaching position uses a hand system (left-handed or right-handed system) different from that during teaching. (SCARA robots)

\section*{(3) Temperature factors}
- Under conditions subject to drastic changes in ambient temperature.
- Under conditions where temperature of robot unit fluctuates.

\section*{(4) Fluctuating load factors}
- Under conditions where load conditions fluctuate during operation (load fluctuates due to workpiece or no workpiece).

\title{
Discontinued sales models and repair coverage limits
}

MR12/MR12D

\section*{Ordering method}

Note 1. For the details of the semi-absolute model, please refer to P.67. RDV-P has an incremental model only.
Note 2. The robot cable is standard cable (3L/5L/10L), but can be changed to flexible cable. See P. 732 for details on robot cable.
Note 3. If a flexible cable is needed for the SR1-P, TS-P, or RDV-P, then select 3K/5K/10K. On the RCX221, the standard cable is a flexible cable, so enter \(3 \mathrm{~L} / 5 \mathrm{~L} / 10 \mathrm{~L}\) when ordering.
Note 5. Select this selection when using the gateway function. For details, see P. 96
Note. It is possible to provide the model without a cable carrier. To find information on wiring (cable terminals) within the cable carrier see P.742
Double carriage model

Note. A vertical model (with brake) is not available with the PHASER series. Note. The basic specifications of semi-absolute model are the same as those of the incremental model
Note 1. Maximum speed may not be obtained depending on operating
Note 2. Maximum payload per carriage.
\(\square\) Allowable overhang \({ }^{\text {Note }}\)

\(\underline{\text { Horizontal installation (Unit: mm) Wall installation (Unit: mm) }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & & A & B & C \\
\hline 1kg & 600 & 600 & 600 & 1kg & 600 & 600 & 600 \\
\hline 2kg & 1200 & 1200 & 598 & 2kg & 529 & 1200 & 1200 \\
\hline 3kg & 1800 & 1800 & 406 & 3kg & 323 & 1450 & 1800 \\
\hline 5kg & 3000 & 1561 & 241 & 5kg & 162 & 589 & 3000 \\
\hline
\end{tabular}

\section*{\(\square\) Static loading moment}

\begin{tabular}{c|c|c}
\multicolumn{1}{l}{} & \multicolumn{1}{c}{ (Unit: \(\mathrm{N} \cdot \mathrm{m}\)) } \\
\hline MY & MP & MR \\
\hline 107 & 107 & 89 \\
\hline Controller \\
\hline \multicolumn{1}{c}{ Controller } & \multicolumn{1}{|c}{ Operating method } \\
\hline SR1-P05 & \begin{tabular}{l}
Programming / \\
I/O point trace / \\
Remote command / \\
Operation using RS-232C \\
communication
\end{tabular} \\
\hline \begin{tabular}{l}
RCX221 \\
RCX240/340
\end{tabular} & \begin{tabular}{l}
I/O point trace / \\
Remote command
\end{tabular} \\
\hline TS-P105 & Pulse train control \\
\hline TS-P205 &
\end{tabular}

\section*{Cable carrier entry location}

RH Horizontal, right
LH Horizontal, left

RW Wall mounted, right
LW Wall mounted, left

Note. Be sure to install in the direction as specified (in cable carrier take-out direction drawing and various specification drawings) individually. Installation in any other way will cause a failure. For requirement of
installation in any way other than the above standard installation, please consult YAMAHA as special arrangement will be available.

Optional cable carrier for users

MR12 single carriage wall mount model RW

Grounding terminal (M4)

Detail of section A

\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c}
\hline Effective stroke & \(\mathbf{5 0}\) & \(\mathbf{1 5 0}\) & \(\mathbf{2 5 0}\) & \(\mathbf{3 5 0}\) & \(\mathbf{4 5 0}\) & \(\mathbf{5 5 0}\) & \(\mathbf{6 5 0}\) & \(\mathbf{7 5 0}\) & \(\mathbf{8 5 0}\) & \(\mathbf{9 5 0}\) & \(\mathbf{1 0 5 0}\) \\
\hline \(\mathbf{L}\) & 338 & 438 & 538 & 638 & 738 & 838 & 938 & 1038 & 1138 & 1238 & 1338 \\
\hline \(\mathbf{M}\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \(\mathbf{N}\) & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 \\
\hline Weight (kg) & 3.9 & 4.4 & 5.0 & 5.6 & 6.1 & 6.7 & 7.3 & 7.9 & 8.4 & 9.0 & 9.5 \\
\hline
\end{tabular}
Note 1. Stop positions are determined by the mechanical stoppers at both ends. 1. Stop positions are determined by the mechanical stoppers at both ends.
2. Depending on the stroke and the operating conditions, the cable carrier bending radius
might be larger, making it higher than the dimensions shown in the diagram. . The origin is set on the \(R\) side at the time of shipment. It can be changed to the \(L\) side by parameter setting.

MR12D double carriage horizontal mount model

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Effective stroke & 50 & 150 & 250 & 350 & 450 & 550 & 650 & 750 & 850 & 950 & 1050 & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 1. Position of the table slider when returned to the origin. \\
Note 2. Stop positions are determined by the mechanical stoppers at both ends. \\
Note 3. Depending on the stroke and the operating conditions, the cable carrier bending radius might be larger, making it higher than the dimensions shown in the diagram.
\end{tabular}} \\
\hline L & 538 & 638 & 738 & 838 & 938 & 1038 & 1138 & 1238 & 1338 & 1438 & 1538 & \\
\hline M & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & \\
\hline N & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & \\
\hline Weight (kg) & 5.7 & 6.3 & 6.8 & 7.3 & 8.0 & 8.6 & 9.1 & 9.7 & 10.2 & 10.8 & 11.3 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Specifications} \\
\hline & & & X-axis & Y-axis & Z-axis & R-axis \\
\hline \multirow[t]{2}{*}{Axis specifications} & \multicolumn{2}{|l|}{Arm length} & 225 mm & 175 mm & 150 mm & - \\
\hline & \multicolumn{2}{|l|}{Rotation angle} & +/-132 \({ }^{\circ}\) & +/-150 \({ }^{\circ}\) & - & +/-360 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{AC servo motor output} & 200 W & 100 W & 100 W & 100 W \\
\hline \multirow[t]{2}{*}{Deceleration mechanism} & \multirow[t]{2}{*}{Transmission method} & Motor to speed reducer & \multicolumn{2}{|c|}{Direct-coupled} & \multicolumn{2}{|c|}{Timing belt} \\
\hline & & Speed reducer to output & \multicolumn{3}{|c|}{Direct-coupled} & Timing belt \\
\hline \multicolumn{3}{|l|}{Repeatability \({ }^{\text {Note } 1}\)} & \multicolumn{2}{|c|}{+/-0.01 mm} & +/-0.01 mm & +/-0.01 \({ }^{\circ}\) \\
\hline \multicolumn{3}{|l|}{Maximum speed} & \multicolumn{2}{|c|}{\(6 \mathrm{~m} / \mathrm{sec}\)} & \(1.1 \mathrm{~m} / \mathrm{sec}\) & \(2600 \% \mathrm{sec}\) \\
\hline \multicolumn{3}{|l|}{Maximum payload} & \multicolumn{4}{|l|}{3 kg (Standard specification), 2 kg (Option specifications \({ }^{\text {Note } 4}\))} \\
\hline \multicolumn{3}{|l|}{Standard cycle time: with \(\mathbf{2 k g}\) payload \({ }^{\text {Note } 2}\)} & \multicolumn{4}{|c|}{0.45 sec} \\
\hline \multicolumn{3}{|l|}{R -axis tolerable moment of inertia \({ }^{\text {Note } 3}\)} & \multicolumn{4}{|c|}{\(0.05 \mathrm{kgm}^{2}\left(0.5 \mathrm{kgfcms}^{2}\right)\)} \\
\hline \multicolumn{3}{|l|}{User wiring} & \multicolumn{4}{|c|}{\(0.2 \mathrm{sq} \times 10\) wires} \\
\hline \multicolumn{3}{|l|}{User tubing (Outer diameter)} & \multicolumn{4}{|c|}{\(\phi 4 \times 3\)} \\
\hline \multicolumn{3}{|l|}{Travel limit} & \multicolumn{4}{|c|}{1.Soft limit 2.Mechanical stopper (\(X, Y, Z\) axis)} \\
\hline \multicolumn{3}{|l|}{Robot cable length} & \multicolumn{4}{|c|}{Standard: 3.5 m Option: \(5 \mathrm{~m}, 10 \mathrm{~m}\)} \\
\hline \multicolumn{3}{|l|}{Weight} & \multicolumn{4}{|c|}{17 kg} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Controller} \\
\hline Controller & Power capacity (VA) & Operation method \\
\hline RCX340 & 1000 & Programming / Remote command/ Operation using RS-232C communication \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Note. The movement range can be restricted by adding the X - and Y -axis mechanical stoppers. (The maximum movement range was set at shipment.) \\
See our robot manuals (installation manuals) for detailed information. \\
Note. To set the standard coordinates with high accuracy, use a standard coordinate setting jig (option). Refer to the user's manual (installation manual) for more details.
\end{tabular}} \\
\hline \multicolumn{3}{|r|}{Our robot manuals (installation manuals) can be downloaded from our website at the address below: https://global.yamaha-motor.com/business/robot/} \\
\hline
\end{tabular}

Note 1. This is the value at a constant ambient temperature. (\(X, Y\) axes)
Note 2. When reciprocating 300 mm in horizontal and 25 mm in vertical directions and performing the coarse positioning arch operation.
Note 3. It is necessary to input the moment of inertia in the actual operating environment.
Note 4. Maximum payload of option specifications (with user wiring/tubing through spline type) is 2 kg .

\section*{RCX240/RCX240S}
\begin{tabular}{|l|l|}
\hline Sales end date & End of December 2019 \\
\hline Repar \\
\hline
\end{tabular} Repair coverage End of December 2026

Robot controller with advanced functions

An advanced multi-axial controller newly developed based on long years of actual results! Along with a full range of functions, great engineering also makes it extremely easy to use.

Programming box
- RPB/RPB-E

P700
Support software for PC
- VIP+

C6S2

\section*{Basic specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Model & RCX240 / RCX240S \\
\hline \multirow{8}{*}{} & \multicolumn{2}{|l|}{Number of controllable axes} & 4 axes maximum (Control simultaneously: 4 axes) \\
\hline & \multicolumn{2}{|l|}{Controllable robots} & Single-axis robot FLIP-X, Linear motor single-axis robot PHASER, Cartesian robot XY-X, SCARA robot YK-XG, Pick \& place robot YP-X \\
\hline & \multicolumn{2}{|l|}{Maximum power consumption} & 2500VA (RCX240) / 1500VA (RCX240S) \\
\hline & \multicolumn{2}{|l|}{Capacity of the connected motor} & 1600W (RCX240) /800W (RCX240S) \\
\hline & \multicolumn{2}{|l|}{Dimensions} & \(\mathrm{W} 180 \times \mathrm{H} 250 \times\) D235mm \\
\hline & \multicolumn{2}{|l|}{Weight} & 6.5 kg \\
\hline & \multirow[t]{2}{*}{Input power supply} & Control power supply & Single phase AC200 to 230V +/-10\% maximum (\(50 / 60 \mathrm{~Hz}\)) \\
\hline & & Motor power supply & Single phase AC200 to \(230 \mathrm{~V}+/-10 \%\) maximum \((50 / 60 \mathrm{~Hz}\)) \\
\hline \multirow{8}{*}{\[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 . \frac{n}{x}
\end{aligned}
\]} & \multicolumn{2}{|l|}{Drive method} & AC full-digital software servo \\
\hline & \multicolumn{2}{|l|}{Position detection method} & Multi-turn resolver with data backup function, Magnetic linear scale \\
\hline & \multicolumn{2}{|l|}{Operating method} & PTP (Point to Point), Linear interpolation, Circular interpolation, ARCH \\
\hline & \multicolumn{2}{|l|}{Coordinate system} & Joint coordinates, Cartesian coordinates \\
\hline & \multicolumn{2}{|l|}{Position indication units} & Pulses, mm (millimeters), deg (degrees) \\
\hline & \multicolumn{2}{|l|}{Speed setting} & \(1 \%\) to \(100 \%\) (In units of \(1 \%\). However speed is in units of \(0.01 \%\) during single-axis operation by DRIVE statement.) \\
\hline & \multicolumn{2}{|l|}{Acceleration setting} & \begin{tabular}{l}
1. Automatic acceleration setting based on robot model type and end mass parameter \\
2. Setting based on acceleration and deceleration parameter (Setting by \(1 \%\) unit)
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Origin search method} & Incremental, Absolute, Semi-absolute \\
\hline \multirow{4}{*}{} & \multicolumn{2}{|l|}{Program language} & YAMAHA BASIC (Conforming to JIS B8439 SLIM Language) \\
\hline & \multicolumn{2}{|l|}{Multitasks} & 8 tasks maximum \\
\hline & \multicolumn{2}{|l|}{Sequence program} & 1 program \\
\hline & \multicolumn{2}{|l|}{Point-data input method} & Manual data input (coordinate value input), Direct teaching, Teaching playback \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& \text { İ } \\
& \stackrel{y}{c} \\
& \frac{1}{2}
\end{aligned}
\]} & \multicolumn{2}{|l|}{Memory capacity} & \begin{tabular}{l}
364KB (total capacity of program and points) \\
(available program capacity during use of maximum number of points is 84 KB)
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Programs} & 100 program (Max.) 9,999: maximum lines per program 98KB: maximum capacity per program \\
\hline & \multicolumn{2}{|l|}{Points} & 10,000 points: maximum numbers of points \\
\hline & \multicolumn{2}{|l|}{Memory Backup battery} & Lithium metallic battery (service life 4 years at \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\)) \\
\hline & \multicolumn{2}{|l|}{Internal flash memory} & 512KB (ALL data only) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Item} & Model & & RCX240 / RCX240S \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{STD.DIO}} & I/O input & & \multicolumn{2}{|l|}{Dedicated input 10 points, General input 16 points (NPN / PNP specifications selectable)} \\
\hline & & I/O output & & \multicolumn{2}{|l|}{Dedicated output 11 points, General output 8 points} \\
\hline \multicolumn{3}{|c|}{SAFETY} & & \multicolumn{2}{|l|}{Emergency stop input (Relay contact), Service mode input (NPN/PNP specification is set according to STD. DIO setting), Enabling switch input (Enabled only when the RPB-E is used.)} \\
\hline \multicolumn{3}{|c|}{Brake output} & & \multicolumn{2}{|l|}{Relay contact} \\
\hline & \multicolumn{2}{|l|}{Origin sensor input} & & \multicolumn{2}{|l|}{Connectable to DC 24 V normally-closed contact sensor} \\
\hline & \multicolumn{2}{|l|}{External communications} & & \multicolumn{2}{|l|}{RS-232C: 1CH D-SUB9 (female) RS-422: 1CH (Dedicated RPB)} \\
\hline & \multicolumn{2}{|l|}{Regenerative unit connection} & & \multicolumn{2}{|l|}{RGEN connector} \\
\hline \multirow{10}{*}{} & \multicolumn{2}{|l|}{Slots} & & \multicolumn{2}{|l|}{4} \\
\hline & \multirow{10}{*}{Options} & \multirow{10}{*}{Type} & & Optional input/output (NPN/PNP) & General input 24 points, General output 16 points \\
\hline & & & & CC-Link & Dedicated input 16 points, Dedicated Output 16 points, General input 96 points, General output 96 points (4 nodes occupied) \\
\hline & & & & DeviceNet \({ }^{\text {TM }}\) & Dedicated input 16 points, Dedicated Output 16 points, General input 96 points, General output 96 points \\
\hline & & & & PROFIBUS & Dedicated input 16 points, Dedicated Output 16 points, General input 96 points, General output 96 points \\
\hline & & & & Ethernet & IEEE802.3 10Mbps (10BASE-T) \\
\hline & & & & EtherNet/IP \({ }^{\text {TM }}\) & \begin{tabular}{l}
Dedicated input 16 points, dedicated output 16 points, General-purpose input 96 points, general-purpose output 96 points \\
Conforms to Ethernet (IEEE 802.3) 10Mbps/100Mbps.
\end{tabular} \\
\hline & & & & iVY & Camera input (2ch), camera trigger input, PC connection input \\
\hline & & & & Tracking & AB phase input, lighting trigger input, lighting power supply input/output \\
\hline & & & & Lighting control & Lighting trigger input, lighting power supply input/output \\
\hline & & & & Gripper control & No. of axes: 1 axis, Position detection method: Optical rotary encoder, Min. setting distance: 0.01 mm \\
\hline \(\stackrel{\sim}{\circ}\) & \multicolumn{3}{|l|}{Programming box} & \multicolumn{2}{|l|}{RPB, RPB-E (with enable switch)} \\
\hline 율 & \multicolumn{3}{|l|}{Support software for PC} & \multicolumn{2}{|l|}{VIP+} \\
\hline \(\bigcirc\) & \multicolumn{3}{|l|}{Regenerative unit} & \multicolumn{2}{|l|}{RGU-2, RGU-3} \\
\hline \(\stackrel{\sim}{0}\) & \multicolumn{3}{|l|}{Operating temperature} & \multicolumn{2}{|l|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\)} \\
\hline - & \multicolumn{3}{|l|}{Storage temperature} & \multicolumn{2}{|l|}{\(-10^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\)} \\
\hline \(\stackrel{4}{4}\) & \multicolumn{3}{|l|}{Operating humidity} & \multicolumn{2}{|l|}{\(35 \%\) to \(85 \%\) RH (non-condensing)} \\
\hline \(\stackrel{0}{0}\) & \multicolumn{3}{|l|}{Absolute backup battery} & \multicolumn{2}{|l|}{Lithium metallic battery \(3.6 \mathrm{~V} 5400 \mathrm{mAH}(2700 \mathrm{mAH} \times 2)\)} \\
\hline \(\frac{\infty}{0}\) & \multicolumn{3}{|l|}{Absolute data backup period} & \multicolumn{2}{|l|}{1 year (in state with no power applied)} \\
\hline \(\stackrel{\text { ® }}{ }\) & \multicolumn{3}{|l|}{Noise immunity} & \multicolumn{2}{|l|}{IEC61000-4-4 Level 3} \\
\hline \(\bigcirc\) & \multicolumn{3}{|l|}{Protective structure} & \multicolumn{2}{|l|}{IP10} \\
\hline
\end{tabular}

\section*{Controller model selection table}

The RCX240S controller is limited to use with robots that handles 200W or lower on each axis and is partly modified such as for optimizing the IPM, but it is fully compatible with RCX240 operation and functions, and peripheral equipment can be used by both models.

Multi-robot: Driver list for each model
For "multi-robots" that are used in combination with one or more single-axis robots, the RCX240S can be used unless the divers for the combined models include a 20A model.

Regenerative unit selection table
\begin{tabular}{|c|}
\hline & \multicolumn{6}{|c|}{XY-X} & \multicolumn{36}{|c|}{YK-XG} & \multicolumn{12}{|c|}{Clean} \\
\hline & & & & & & & YK120XG & & YK180XG & & & & YK350XG & & & & & & & & YK800XG & \[
\begin{array}{|l|}
\hline 0 \\
\text { x } \\
0 \\
0 \\
\cline { 1 - 1 } \\
\hline \mathbf{y} \\
\hline
\end{array}
\] & YK1000XG & & & & & & & & YK1000XGS & \[
\begin{aligned}
& 0 \\
& 0 \\
& \times \\
& \underset{\sim}{0} \\
& \underset{\sim}{c} \\
& \underset{y}{c}
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \mathbf{y} \\
& \mathbf{x}
\end{aligned}
\] & & & & & & & & & & & \[
\begin{aligned}
& 0 \\
& x_{x} \\
& 0 \\
& \frac{1}{x} \\
& \hline \boldsymbol{y}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \mathbf{x} \\
& 0 \\
& \underset{N}{\mathbf{y}} \\
& \mathbf{x}
\end{aligned}
\] & & & \[
\begin{array}{|l}
\hline \mathbf{y} \\
0 \\
\mathbf{x} \\
0 \\
\mathbf{y} \\
\mathbf{y} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& \mathbf{x} \\
& 0 \\
& 0 \\
& \mathbf{h} \\
& \mathbf{y} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \mathbf{x} \\
& 0 \\
& 0 \\
& 0 \\
& \mathbf{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{y} \\
& \mathrm{x} \\
& 0 \\
& \mathrm{C} \\
& \mathbf{y} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& x \\
& 0 \\
& 0 \\
& 0 \\
& \mathbf{y} \\
& \hline
\end{aligned}
\] & YK1000XC \\
\hline No entry (None) & \(\bigcirc\) & \(\bigcirc\) & & & & & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & & \(\bigcirc\) & & & & & & & & - & - & & & & & & - & - & \(\bigcirc\) & \(\bigcirc\) & & \(\bigcirc\) & & & & & & \(\bigcirc\) & \(\bigcirc\) & - & & & & - & & & & & \\
\hline R (RGU-2) & & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & & & & & & & & & & & & & & & & & - & - & - & - & - & \(\bigcirc\) \\
\hline R3 & & & & & & & & & & & & & & & & \(\bigcirc\) & , & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & & & \(\bigcirc\) & - & - & & \(\bigcirc\) & & & & & \(\bigcirc\) & & & & & & \(\bigcirc\) & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Conditions where regenerative unit is needed on multi robots}
- Motor capacity exceeds a total of 450W.
- Motor capacity for perpendicular axis exceeds a total of 240 W .
- B14H which maximum speed exceeds 1250 mm per second.

The following conditions apply when perpendicular axis capacity is 240 W or less.
- perpendicular axis is 200 W .
- perpendicular axis is 100 W and stroke is 700 mm or more.
- there are 2 perpendicular axes at 100 W , and includes leads of 5 mm .

\section*{Installation conditions}
- Install the RCX240/RCX240S inside the control panel.
- Install the RCX240/RCX240S on a flat, level surface.
- Install the RCX240/RCX240S in a well ventilated location, with space on all sides of the RCX240/RCX240S (See fig. at right.).
- Do not block the heat-sink on the side panel.
- Do not block the fan on the bottom of the controller.
- Ambient temperature : 0 to \(40^{\circ} \mathrm{C}\)
- Ambient humidity : 35 to \(85 \%\) RH (no condensation)

Power supply capacity and heat emission
The required power supply capacity and heat emission will vary depending on the robot type and number of axes.
Using the following table as a general guide consider the required power supply preparation and control panel size, controller installation, and cooling method.
(1) When connected to SCARA robot
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Robot type} & \multirow[b]{2}{*}{Power capacity (VA)} & \multirow[b]{2}{*}{Generated heat amount (W)} \\
\hline Standard type & Clean type & Dust-proof \& drip-proof type & \begin{tabular}{l}
Wall-mount / \\
Ceiling-mount / inverse type
\end{tabular} & Orbit type & & \\
\hline YK180X, 220X & - & - & - & - & 500 & 63 \\
\hline YK250XG, 350XG, 400XG, 500XGL, 600XGL & YK250XGC, 350XGC, 400XGC, 500XGLC, 600XGLC & YK250XGP, 350XGP, 400XGP, 500XGLP, 600XGLP & YK300XGS, 400XGS & - & 1000 & 75 \\
\hline - & YK500XC, 600XC & - & - & - & 1500 & 88 \\
\hline YK550X, 500XG, 600XG & - & YK500XGP, 600XGP & YK500XGS, 600XGS & - & 1700 & 93 \\
\hline - & \[
\begin{aligned}
& \text { YK700XC, 800XC, } \\
& \text { 1000XC }
\end{aligned}
\] & - & - & - & 2000 & 100 \\
\hline \[
\begin{aligned}
& \text { YK600XGH, 700XG, } \\
& \text { 800XG, 900XG, 1000XG, } \\
& 1200 X
\end{aligned}
\] & - & YK600XGHP, 700XGP, 800XGP, 900XGP, 1000XGP & YK700XGS, 800XGS, 900XGS, 1000XGS & \begin{tabular}{l}
YK350TW, \\
YK500TW
\end{tabular} & 2500 & 113 \\
\hline
\end{tabular}
(2) When connected to 2 axis (Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{|c|}{ Axial current sensor value \({ }^{\text {Note }}\)}
\end{tabular} \begin{tabular}{c}
Power capacity \\
(VA)
\end{tabular}\(\quad\)\begin{tabular}{c}
Generated heat \\
amount (W)
\end{tabular}
(4) When connected to 4 axis (Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c|c|c}
\hline \multicolumn{4}{|c|}{ Axial current sensor value \({ }^{\text {Note }}\)} & \begin{tabular}{c}
Power capacity \\
(VA)
\end{tabular} & \begin{tabular}{c}
Generated heat \\
amount (W)
\end{tabular} \\
\hline X axis & Y axis & Z axis & R axis & \begin{tabular}{c}
(W)
\end{tabular} \\
\hline 05 & 05 & 05 & 05 & 800 & 70 \\
\hline 10 & 05 & 05 & 05 & 1000 & 75 \\
\hline 10 & 10 & 05 & 05 & 1100 & 78 \\
\hline 10 & 10 & 10 & 05 & 1300 & 83 \\
\hline 10 & 10 & 10 & 10 & 1400 & 85 \\
\hline 20 & 05 & 05 & 05 & 1200 & 80 \\
\hline 20 & 10 & 05 & 05 & 1400 & 85 \\
\hline 20 & 10 & 10 & 05 & 1500 & 88 \\
\hline 20 & 10 & 10 & 10 & 1700 & 93 \\
\hline 20 & 20 & 05 & 05 & 1600 & 90 \\
\hline 20 & 20 & 10 & 05 & 1800 & 95 \\
\hline 20 & 20 & 10 & 10 & 2000 & 100 \\
\hline 20 & 20 & 20 & 05 & 2100 & 103 \\
\hline 20 & 20 & 20 & 10 & 2200 & 105 \\
\hline 20 & 20 & 20 & 20 & 2500 & 113 \\
\hline
\end{tabular}

\footnotetext{
Note. Even if axial current sensor values for each axis are interchanged no problem will
} occur.
(3) When connected to 3 axis (Cartesian robot and/or multi-axis robot)
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{|c|}{ Axial current sensor value Note } & \begin{tabular}{c}
Power capacity \\
(VA)
\end{tabular} & \begin{tabular}{c}
Generated heat \\
amount (W)
\end{tabular} \\
\hline X axis & Y axis & Z axis & \begin{tabular}{c}
(V)
\end{tabular} \\
\hline 05 & 05 & 05 & 700 & 68 \\
\hline 10 & 05 & 05 & 900 & 73 \\
\hline 10 & 10 & 05 & 1000 & 75 \\
\hline 10 & 10 & 10 & 1200 & 80 \\
\hline 20 & 05 & 05 & 1200 & 80 \\
\hline 20 & 10 & 05 & 1300 & 83 \\
\hline 20 & 10 & 10 & 1500 & 88 \\
\hline 20 & 20 & 05 & 1600 & 90 \\
\hline 20 & 20 & 10 & 1800 & 95 \\
\hline 20 & 20 & 20 & 2000 & 95 \\
\hline
\end{tabular}

Note. Motor capacity vs. current sensor table
\begin{tabular}{c|c}
\hline \begin{tabular}{c}
Connected \\
motor capacity
\end{tabular} & Current sensor \\
\hline 100W or less & 05 \\
\hline 200 W & 10 \\
\hline 400 W or more & 20 \\
\hline
\end{tabular}

Note. Motor output of the B14H is 200W but the current sensor is 05 .

\section*{Regenerative unit}

RGU-2 basic specifications

RGU-3 basic specifications
\begin{tabular}{|c|c|c|}
\hline & Item & RGU-3 \\
\hline \(\because 0\) & Model & KX0-M4107-30 (including cable supplied with unit) \\
\hline II & Dimensions & \(\mathrm{W} 62 \times \mathrm{H} 250 \times \mathrm{D} 242.5 \mathrm{~mm}\) \\
\hline & Weight & 3.7 kg \\
\hline & Regenerative voltage & Approx. 380V or more \\
\hline E & Regenerative stop voltage & Approx. 360V or less \\
\hline \% & Accessory & Cable for connection with controller (300 mm) \\
\hline - & Note. Cannot be installe & ed as a separate unit. \\
\hline
\end{tabular}

\section*{Example of output signal connection}

Emergency input signal connections

Installing an external safety circuit will satisfy safety category class 4 standards. See P. 750 for more information.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Connector input / output signals} & & & & \\
\hline PIN & I/O No. & Name & Note & PIN & I/O No. & Name & Note \\
\hline 1 & DI05 & I/O command execution trigger input & \multirow[b]{12}{*}{Common terminal :P.COMDI N.COMDI} & 27 & COMMON & Relay common & \multirow{12}{*}{\begin{tabular}{l}
(Relay output) Maximum capacity of each terminal (resistance load) \\
: DC 24 V 0.5 A \\
Common terminal \\
: COMMON
\end{tabular}} \\
\hline 2 & DI01 & Servo ON input & & 28 & DO01b & CPU_OK (B contact) & \\
\hline 3 & DI10 & Sequence control & & 29 & DO01a & CPU_OK (A contact) & \\
\hline 4 & DI11 & Interlock & & 30 & DO02b & Servo ON output (B contact) & \\
\hline 5 & DI12 & Program start & & 31 & DO02a & Servo ON output (A contact) & \\
\hline 6 & DI13 & AUTO mode input & & 32 & DO03b & Alarm (B contact) & \\
\hline 7 & DI14 & Return-to-origin & & 33 & DO03a & Alarm (A contact) & \\
\hline 8 & DI15 & Program reset & & 34 & DO10 & AUTO mode output & \\
\hline 9 & DI16 & MANUAL mode input & & 35 & DO11 & Return-to-origin complete & \\
\hline 10 & DI17 & Absolute reset / Return-to-origin & & 36 & DO12 & Sequence program in-progress & \\
\hline 11 & DI20 & General input 20 & & 37 & DO13 & Robot program in-progress & \\
\hline 12 & DI21 & General input 21 & & 38 & DO14 & Program reset & \\
\hline 13 & DI22 & General input 22 & \multirow{13}{*}{\begin{tabular}{l}
(Photo-coupler input) NPN specification \\
: Source type PNP specification \\
: Sink type
\end{tabular}} & 39 & DO20 & General output 20 & \multirow{8}{*}{\begin{tabular}{l}
(Transistor output) \\
NPN specification or PNP specification Maximum capacity of each terminal (resistance load): 0.1 A \\
+Common terminal : DC+24V \\
- Common terminal : GND
\end{tabular}} \\
\hline 14 & DI23 & General input 23 & & 40 & DO21 & General output 21 & \\
\hline 15 & DI24 & General input 24 & & 41 & DO22 & General output 22 & \\
\hline 16 & DI25 & General input 25 & & 42 & DO23 & General output 23 & \\
\hline 17 & DI26 & General input 26 & & 43 & DO24 & General output 24 & \\
\hline 18 & DI27 & General input 27 & & 44 & DO25 & General output 25 & \\
\hline 19 & DI30 & General input 30 & & 45 & DO26 & General output 26 & \\
\hline 20 & DI31 & General input 31 & & 46 & DO27 & General output 27 & \\
\hline 21 & DI32 & General input 32 & & 47 & \multirow[t]{2}{*}{DC24V} & \multirow[t]{2}{*}{DC+24V (P.COMDI)} & \multirow[t]{2}{*}{External power supply input} \\
\hline 22 & DI33 & General input 33 & & 48 & & & \\
\hline 23 & DI34 & General input 34 & & 49 & \multirow[t]{3}{*}{GND} & \multirow[t]{3}{*}{GND (N.COMDI)} & \multirow[t]{2}{*}{} \\
\hline 24 & DI35 & General input 35 & & 50 & & & \\
\hline 25 & DI36 & General input 36 & & & & & \\
\hline
\end{tabular}

Note. When using the CC-Link, DeviceNetTM, EtherNet/IPTM, or PROFIBUS, the dedicated inputs other than the interlock signal (DI11) of the STD.DIO that are provided on the RCX240 controller are disabled
Additionally, when the external 24 V monitor control of the system parameters is set disabled, the interlock signal (D11) becomes disabled.

\section*{SAFETY connector signals}
\begin{tabular}{c|l|l|l|l}
\hline \multirow{2}{*}{\begin{tabular}{c}
Terminal \\
number
\end{tabular}} & \multicolumn{2}{|c|}{ RPB connected } & \multicolumn{2}{c}{ RPB-E connected } \\
\hline \(\mathbf{1}\) & DIO2 & \multicolumn{1}{c}{ Name. } & \multicolumn{1}{c}{ I/O No. } & \multicolumn{1}{c}{ Name } \\
\hline \(\mathbf{2}\) & MP READY & SERVICE mode & Motor power ready signal & MP READY \\
\hline \(\mathbf{3}\) & E-STOPIN 1 & Emergency stop input 1 & Motor power ready signal \\
\hline \(\mathbf{4}\) & E-STOPIN 2 & Emergency stop input 2 & E-STOPIN 1 & Emergency stop input 1 \\
\hline \(\mathbf{5}\) & NC & NC & E-STOPIN 2 & Emergency stop input 2 \\
\hline \(\mathbf{6}\) & NC & Emergency stop input 3 \\
\hline \(\mathbf{7}\) & NC & NC & E-STOPIN 4 & Emergency stop input 4 \\
\hline \(\mathbf{8}\) & NC & NC & LCKIN 1 & Enabling switch input 1 \\
\hline \(\mathbf{9}\) & NC & NC & LCKIN 2 & Enabling switch input 2 \\
\hline \(\mathbf{1 0}\) & NC & NC & LCKIN 3 & Enabling switch input 3 \\
\hline \(\mathbf{1 1}\) & P.COM & DC+24V (P.COM DI) & LCKIN 4 & Enabling switch input 4 \\
\hline \(\mathbf{1 2}\) & N.COM & GND (N.COM DI) & P.COM & DC+24V (P.COM DI) \\
\hline \(\mathbf{1 3}\) & E-STOP 24V & Emergency stop input supply & N.COM & GND (N.COM DI) \\
\hline \(\mathbf{1 4}\) & E-STOPRDY & Emergency stop READY signal & E-STOP 24V & Emergency stop input supply \\
\hline \(\mathbf{1 5}\) & NC & NC & NC & Emergency stop READY signal \\
\hline \(\mathbf{y}\) & & & & \\
\hline
\end{tabular}

Standard functions of the controller
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Function } & \multicolumn{1}{c}{\(\quad\) Description } \\
\hline Operation mode & \begin{tabular}{l}
Automatic mode (main task: execution of program, execution of step), Program mode (main task: creation of program), \\
Manual mode (main task: jog movement, point teaching), System mode (main task: parameter editing, data initialization), \\
Utility mode (main task: operation of motor power source)
\end{tabular} \\
\hline Command & \begin{tabular}{l}
Array declarator command (DIM statement), Assignment command (numeric value assignment statement, character string \\
assignment statement, point definition statement), Movement related command (MOVE statement, DRIVE statement, \\
PMOVE statement), Condition branching command (IF statement, FOR statement, WHILE statement), External output \\
command (DO statement, MO statement, LO statement, TO statement, SO statement), Parameter command (ACCEL \\
statement, OUTPOS statement, TOLE statement), Task related command (START statement, SUSPEND statement, CUT \\
statement), Condition wait command (WAIT statement), etc.
\end{tabular} \\
\hline Function & \begin{tabular}{l}
Arithmetic function (SIN function, COS function, TAN function), Character string function (STR\$ function, LEFT\$ function, \\
MID\$ function, RIGHT\$ function), Point function (WHERE function, JTOXY function, XYTOJ function), Parameter function \\
(ACCEL statement, OUTPOS statement, TOLE statement), etc.
\end{tabular} \\
\hline Variable & \begin{tabular}{l}
Simple variable (integer type variable, real number type variable, character string type variable), Array variable (integer type \\
variable, real number type variable, character string type variable), Point variable, Shift variable, Element variable (point \\
element variable, shift element variable), Input/output variable, etc.
\end{tabular} \\
\hline Operator & \begin{tabular}{l}
Arithmetic operator (+,, -, *, , MOD), Logical operator (AND, OR, XOR), \\
Comparison operator (\(=,<,<,>,<>,<=, ~>=) ~\)
\end{tabular} \\
\hline Monitor & Monitor of input/output (200ms interval) \\
\hline On-line command & \begin{tabular}{l}
Key operation command (AUTO, RUN, RESET, STEP), Data handling command (READ, WRITE, ?VER, ?CONFIG), Utility \\
command (COPY, ERA, INIT), Robot language command (independently executable command)
\end{tabular} \\
\hline Data file & Program, Point, Parameter, Shift, Hand, AlI, Error history, etc.
\end{tabular}

\section*{Robot Language Table}

\section*{General commands}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline DECLARE & Declares that a label or sub-procedure is in an external program. \\
\hline DEF FN & Defines a function that is available to the user. \\
\hline DIM & Declares the name of an array variable and the number of elements. \\
\hline EXIT FOR & Terminates a FOR statement to NEXT statement loop. \\
\hline FOR to NEXT & Controls repetitive operations \\
\hline GOSUB to & \begin{tabular}{l}
Jumps to a subroutine with the label specified by a \\
RETURN \\
GOSUB statement and executes the subroutine.
\end{tabular} \\
\hline GOTO & Unconditionally jumps to the line specified by a label. \\
\hline HALT & Stops a program and resets it. \\
\hline HOLD & Pauses a program. \\
\hline IF & Allows control flow to branch according to conditions. \\
\hline LET & Executes a specified assignment statement. \\
\hline ON to GOSU & \begin{tabular}{l}
Jumps to a subroutine with each label specified by a GOSUB \\
statement according to conditions and executes the subroutine.
\end{tabular} \\
\hline ON to GOTO & Jumps to each line specified by a label according to conditions. \\
\hline REM & \begin{tabular}{l}
All characters that follow REM or an apostrophe (') are \\
viewed as comments.
\end{tabular} \\
\hline \begin{tabular}{c}
SELECT CASE \\
to END SELECT
\end{tabular} & Allows control flow to branch according to conditions. \\
\hline \multicolumn{2}{c}{ SWI }
\end{tabular} \begin{tabular}{l}
Switches the currently executed program to a specified \\
program, and executes from the first line after compiling.
\end{tabular},

\section*{I/O control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline DELAY & Waits for the specified length of time (ms). \\
\hline DO & Outputs the specified value to the DO ports. \\
\hline LO & \begin{tabular}{l}
Outputs the specified value to the LO port to prohibit axis \\
movement or permit axis movement.
\end{tabular} \\
\hline MO & Outputs the specified value to the MO ports. \\
\hline OUT & \begin{tabular}{l}
Turns ON the bits of the specified output ports and the \\
command statement ends.
\end{tabular} \\
\hline RESET & Turns OFF the bits of the specified output ports. \\
\hline SET & Turns ON the bits of the specified output ports \\
\hline SO & Outputs the specified value to the SO port. \\
\hline TO & Outputs the specified value to the TO port. \\
\hline WAIT & \begin{tabular}{l}
1. Waits until the condition in DI/DO conditional \\
expression are met.
\end{tabular} \\
2. Waits until positioning on the robot axes is complete \\
(within the tolerance range).
\end{tabular}

\section*{Coordinate control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline CHANGE & Switches the hand of the main robot. \\
\hline HAND & \begin{tabular}{l}
Defines the hand of the main robot.
\end{tabular} \\
\hline \begin{tabular}{c}
RIGHTY/ \\
LEFTY
\end{tabular} & \begin{tabular}{l}
Selects whether the main robot will be "right-handed" \\
or "left-handed" when moving to a point specified on a \\
Cartesian coordinate system.
\end{tabular} \\
\hline SHIFT & \begin{tabular}{l}
Sets the shift coordinates for the main robot by using the \\
shift data specified by a shift variable.
\end{tabular} \\
\hline
\end{tabular}

\section*{Condition change}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline ACCEL & Changes the acceleration coefficient parameter of the main group. \\
\hline ARCH & Changes the arch position parameter of the main group. \\
\hline ASPEED & Changes the automatic movement speed of the main group. \\
\hline AXWGHT & Changes the axis tip weight parameter of the main group. \\
\hline DECEL & Changes the deceleration rate parameter of the main group. \\
\hline ORGORD & \begin{tabular}{l}
Sets the axis sequence parameter to perform return-to- \\
origin and absolute search in the main group.
\end{tabular} \\
\hline OUTPOS & Changes the OUT position parameter of the main group. \\
\hline PDEF & Defines the pallet used to execute a pallet movement command. \\
\hline SPEED & Changes the program speed for the main group. \\
\hline TOLE & Changes the tolerance parameter of the main group. \\
\hline WEIGHT & Changes the tip weight parameter of the main robot. \\
\hline
\end{tabular}

\section*{Communication control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{|c}{ Function } \\
\hline ONLINE / & \begin{tabular}{l}
Changes communication mode and initialize the \\
OFFLINE \\
communication port.
\end{tabular} \\
\hline SEND & Sends the read file data into a write file. \\
\hline
\end{tabular}

\section*{Screen control}
\begin{tabular}{c|l}
\hline Language & Function \\
\hline PRINT & Displays the value of specified variable on the MPB/RPB screen. \\
\hline
\end{tabular}

\section*{Key control}
\begin{tabular}{c|l}
Language & Function \\
\hline INPUT & Assigns a value to the variable specified from the MPB/RPB.
\end{tabular}

\section*{Procedure}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline CALL & \begin{tabular}{l}
Calls up sub-procedures defined by the SUB and END \\
SUB statements.
\end{tabular} \\
\hline EXIT SUB & \begin{tabular}{l}
Terminates the sub-procedure defined by the SUB and \\
END SUB statements.
\end{tabular} \\
\hline SHARED & \begin{tabular}{l}
Does not permit variables declared with a program \\
written outside a subprocedure (SUB to END SUB) to be \\
passed on as dummy arguments, but allows them to be \\
referred to with a sub-procedure.
\end{tabular} \\
\hline
\end{tabular}

SUB to END SUB Defines a sub-procedure.

\section*{Task control}
\begin{tabular}{c|l}
\hline Language & \multicolumn{1}{c}{ Function } \\
\hline CHGPRI & Changes the priority of the specified task. \\
\hline CUT & \begin{tabular}{l}
Terminates a task currently being executed or temporarily \\
stopped.
\end{tabular} \\
\hline EXIT TASK & Terminates its own task currently being executed. \\
\hline RESTART & Restarts a task that is temporarily stopped. \\
\hline START & \begin{tabular}{l}
Sets the task number and priority of the specified task \\
and starts that task.
\end{tabular} \\
\hline SUSPEND & Temporarily stops another task being executed. \\
\hline
\end{tabular}

\section*{Error control}
Language

If an error occurs during program execution, this command
ON ERROR GOTO allows the program to jump to the error processing routine specified by the label without stopping the program, or stops the program and displays the error message.
RESUME Resumes the program execution after recovery from an error. This command is used in the error processing routine.
ERL Gives the line number where an error occurred.
ERR
Gives the error code number when an error occurred.

\section*{PATH control}

Language
PATH
Sets the PATH motion on the main robot axis
PATH SET Starts the path setting for PATH motion.
PATH START Starts the PATH motion.

\section*{Torque control}
\begin{tabular}{c|l}
\hline \begin{tabular}{c}
Language \\
DRIVE \\
(with torque limit option)
\end{tabular} & \begin{tabular}{l}
Executes an absolute movement command on each axis \\
in the main group.
\end{tabular} \\
\hline TORQUE & \begin{tabular}{l}
Changes the maximum torque instruction for the \\
specified main group axis.
\end{tabular} \\
\hline TRQTIME & \begin{tabular}{l}
Sets the current limit time-out period on the specified \\
main group axis when using a torque limit setting option \\
in the DRIVE statement.
\end{tabular} \\
\hline TRQTIME & \begin{tabular}{l}
Sets the current limit time-out period on the specified \\
main group axis when using a torque limit setting option \\
in the DRIVE statement.
\end{tabular} \\
\hline
\end{tabular}

Standard accessories

Options
- L type stay (for side surface installation)

\author{
Use to install the controller.
}
\begin{tabular}{l|l}
\hline Model & KX0-M410H-10 \\
\hline
\end{tabular}

RCX240/S
Note. Model No. is for a single bracket (L type stay).

\section*{- Programming box}

\section*{RPB/RPB-E}

This device can perform all operations such as manual robot operation, program entry and edit, teaching and parameter settings.

\begin{tabular}{l|c|c|c|}
\hline & RPB & RPB-E & \\
\hline & & \\
\hline Model & KBK-M5110-10 & KBK-M5110-00 & RCX221 \\
\hline \begin{tabular}{l}
Enable \\
switch
\end{tabular} & - & 3-position & \\
\hline
\end{tabular}

\section*{Support software for PC PG92 VIP+}

VIP+ is a simple to use application software that makes tasks such as robot operation, writing-editing programs, and point teaching easy to visually understand.

\begin{tabular}{l|l|l|}
& \begin{tabular}{|l}
RCX221 \\
\\
VIP+ software model \\
KX0-M4966-00 \\
RCX222 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Environment}
\begin{tabular}{l|l}
\hline OS & \begin{tabular}{l}
Windows 2000, XP (32bit), Vista, 7, \\
10 (Supported version: V.2.8.4 or later)
\end{tabular} \\
\hline CPU & \begin{tabular}{l}
Processor that meets or exceeds the suggested \\
requirements for the OS being used.
\end{tabular} \\
\hline Memory & Suggested amount of memory or more for the OS being used. \\
\hline Hard disk & 40 MB of available space required on installation drive. \\
\hline Communication method & \begin{tabular}{l}
RS-232C, Ethernet \\
Note. For Ethernet communication, Ethernet unit for RCX series \\
controller is required.
\end{tabular} \\
\hline Applicable robot controllers & RCX14x / 22x / 240 \\
\hline
\end{tabular}

Note. Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.
Note. ADOBE and ADOBE READER are registered trademarks of Adobe Systems Incorporated.
Note. Ethernet is a registered trademark of Xerox Corporation.

\section*{Data cables}

Communication cable for VIP+
Select from USB cable or D-sub cable.

D-Sub
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{Model} & & KBG-M538F-00 & C140 \\
\hline & USB type (5m) & KBG-M538F-00 & ERCD \\
\hline & \multirow[t]{2}{*}{D-Sub type 9pin-9pin (5m)} & \multirow[t]{2}{*}{KAS-M538F-10} & SR1-X \\
\hline & & & SR1-P \\
\hline \multicolumn{3}{|l|}{Note. This USB cable supports Windows 2000/XP or later.} & RCX221 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Note. Data cable jointly used for POPCOM \({ }^{+}\), \(\mathrm{VIP}^{+}\), RCX-Studio Pro.}} & RCX222 \\
\hline & & & RCX240/S \\
\hline Note. U & \multicolumn{2}{|l|}{USB driver for communication cable can also be ownloaded from our website.} & RCX340 \\
\hline
\end{tabular}```

[^0]: Note 1. The size shows approximate maximum cross sectional size.

[^1]: Note. For this specification, when writing one controller model, two controller will be arranged automatically

[^2]: Note 1. The size shows approximate maximum cross sectional size

[^3]: Note 1. The size shows approximate maximum cross sectional size.

[^4]: Note 1. With a 400 W servomotor, 20 mm ball screw lead, and portability of 40 kg

[^5]: * When checking the basic specifications and external views of the discontinued models, refer to the catalog PDF on the "Discontinued models and repair support periods" page at YAMAHA's website.

[^6]: * When checking the basic specifications and external views of the discontinued models, refer to the catalog PDF on the "Discontinued models and repair support periods" page at YAMAHA's website.

[^7]: * When checking the basic specifications and external views of the discontinued models, refer to the catalog PDF on the "Discontinued models and repair support periods" page at YAMAHA's website.

