LINEAR CONVEYOR MODULES

From "flow" to "move"
Efficient transfer processes for increased profitability

Note. As the figure shown above illustrates CG images, they are different from the actual product.
Linear Conveyor Module LCM100
Constructing high-speed throughput lines.

High-speed and high-accuracy transfer
- Max. speed: 3000 mm/sec
- Max. acceleration: 2G
- Max. load mass: 15 kg
- Repeated positioning accuracy: ±0.015 mm (standalone slider)

Note. This is the repeated positioning accuracy for a standalone slider when positioning from one direction (single-side approach).
Note. The positioning accuracy for the single-side approach after correction by RFID is 0.1 mm including the mutual difference between sliders.

POINT
Increase productivity by shortening transport time

- Comparison between LCM100 and a conventional conveyor
The length of the transfer line can be adjusted freely by adding modules.

POINT

Save equipment space.
- Since the movement direction can be changed, the same processes are made common. This makes the equipment compact and results in cost reduction.
- Forward and backward movement at a high speed can be set freely.
- Flexible actions such as moving only some sliders backward is possible.

Conventional system Two units of the same process are on one line.

LCM100 Same processes are made common as one shared process.

POINT

Can be moved efficiently between processes with different tacts
- Narrow pitch movement is possible.
- Movement time can be reduced by combining the use of different movements, such as using pitch-feed for the same processes in short-time processes while transferring three workpieces at the same time at a high speed in long-time processes.

POINT

Workpieces do not need to be retracted
- As the work moves down, you can assemble and process them on the transfer line.
- Eliminates having to retract the work from the pallet to the work table.
- Reduces costs.
POINT

Significant reduction of start-up time
- Just connect modules for easy construction of a transfer line.
- Lifting cylinders, sensors, stoppers, and other complex parts are not necessary.
- Operations can be performed by using only the LCC140 Controller.
- Economical as excess modules can be used for other lines or stored for maintenance.

POINT

Construct branching lines, joint lines, and other lines in flexible configurations.
- Layout examples by combining modules with circulation mechanisms.

Example of horizontal circulation
- Horizontal circulation mechanism
- Linear conveyor

Example of horizontal branching
- Branching mechanism
- Linear conveyor

Example of vertical circulation
- Vertical circulation mechanism
- Linear conveyor
- Belt conveyor

POINT

Optimal for small batch production of various product types
- No need for mechanical stoppers or sensors. Change layout easily.
- Reconstruction can be finished quickly by just changing the program to set a stop position.
- Frequent unit changes for different models can be handled flexibly.

Conventional system
- Requires stopper position adjustment

LCM100
- Stop positions can be set just by changing the program settings.

Note. The customer needs to prepare the return unit and the circulation mechanism.
Note. Modules convenient for the circulation are configured.
Flexible set-up of the slider's acceleration/deceleration, forward/backward movement, positioning, and other actions. The variety of possible line structures has been greatly expanded to supersede conventional models.

- **Simpler design and fewer processing steps**
 - LCM100-2MT, a module for circulation, is available to insert or eject a slider into or out of a line.
 - Also can be used for a return mechanism.

- **Belt modules can be selected to your needs**
 - Genuine new Yamaha belt modules are included in the lineup.
 - Low price......Using modules only for return processes and interprocess transfer will help reduce the facility cost.
 - Easy control without controllers and no need to create robot programs.

- **POINT**
 - Quick recovery by replacing the slider when machine trouble occurs
 - Parts can be replaced easily.
 - Parts can be kept for maintenance as they are standardized.
 - Possible to minimize the downtime of a production line.

- **POINT**
 - Easy maintenance
 - Motors and scales do not make contact and are free from abrasion.
 - As only the rails are sliding parts, dust generation is low.
 - There are only a few consumable parts, which mean a long service life.
Note 1. Please note that some Yamaha single-axis controller SR1 functions are not available with the linear conveyor controller.

Note 2. All sliders stop within the width of 100μm that includes a teaching point.

System configuration diagram (when 3 sliders are connected)

The module is standardized and can also be stored for maintenance.

If a short line is used and modules are in excess, they can be diverted to another line or stored for maintenance.

Standardized slider

The slider is standardized and can be used for any line. It is also possible to share the slider on multiple lines. Production can be restored immediately by replacing a failed slider if trouble occurs.

Controller is replaceable

The connected controller and module combinations can be changed as needed. Note that initial setting is required when a combination is changed. Replacing just the controller or the module is also possible.

Belt module

This interface allows the customer to supply 24V power and select just the necessary signals to use. Note. The customer will need to prepare the wiring on the user side.

Linear module controller LCC140

Program operation

The LCC140 controller can perform operations using registered programs and operations using remote commands from the PLC. In addition to the control of input/output signals such as movement or positioning, processes related to the insertion/ejection of sliders can be performed.

Controller-linking function

You can use the link cables dedicated to LCC140 controllers to connect the controllers when two or more modules are connected. You can handle multiple controllers as if they were one controller.

SR1 controller base operation system

The same user interface as the SR1 controller is incorporated, and specifications and functions specific to the linear conveyor module have been added based on this user interface. A very user friendly operation system is provided.

Position correction function using RFID

When multiple sliders are each stopped at a position of your choice, actual stop positions has an error width (machine difference) of 500 μm. This is because each slider has a different stopping accuracy. Link the RFID unit and LCC140 controller to suppress the machine difference of individual sliders to an error width of approximately 100 μm.
LINEAR CONVEYOR MODULES

LCM100

CONTENTS

■ LCM100 basic specifications 126
■ Static tolerable load of slider 126
■ Allowable overhang 126
■ Ordering method 126
■ External view of LCM100 127
● Accessory parts 130
■ Controller for linear module
 LCC140 basic specifications 132
■ External view of LCC140 132
LCM100 basic specifications

Basic specifications of linear conveyor module

Model
LCM100-4M / 3M / 2MT

Drive method
Moving magnet type, Linear motor with flat core

Repeat positioning accuracy
+/-0.015mm (single slider) / 0.0mm (mutual difference among all sliders)

Scale
Electromagnetic type / resolution 5μm

Max. speed
3000mm/sec

Max. acceleration
2G

Max. payload
15kg

Rated thrust
48N

Total module length
640mm (4M) / 480mm (3M) / 400mm (2MT circulation)

Max. number of sliders
16 (total length: 16240 mm)

Max. number of modules
16 (when 16 modules are combined)

Min. pitch between sliders
420mm

Max. external size of body cross-section
W136.5mm x H155mm (including slider)

Slider weight
2.4kg / 3.4kg (when the belt module is used.)

Module weight
12.5kg (4M) / 9.4kg (3M) / 7.6kg (2MT)

Bearing method
1 guide rail / 2 blocks (with retainer)

W173.8mm×H155mm (including slider)

Controller
LCC140

Basic specifications of belt module

Model
LCM100-4B / 3B

Drive method
Belt back surface pressing force drive

Bearing method
1 guide rail / 2 blocks (with retainer)

Max. speed
560mm/sec

Max. payload
14kg

Module length
640mm (4B) / 480mm (3B)

Max. number of sliders
1 slider / 1 module

Main unit maximum cross-section outside dimensions
W173.8mm×H155mm (including slider)

Cable length
None

Controller
Dedicated driver (Included)

Power supply
DC24V 5A

Communication I/F
Dedicated input/output 16 points

Module weight
11.2kg (4B) / 8.8kg (3B)

Static tolerable load of slider

Static loads shown below are tolerable as references when performing the screw tightening, part assembly, or light press-fitting on the slider.

Allowable overhang

Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of 10,000 km.

<table>
<thead>
<tr>
<th>(Unit: mm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5kg</td>
<td>677</td>
<td>325</td>
<td>325</td>
</tr>
<tr>
<td>10kg</td>
<td>533</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>15kg</td>
<td>468</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Ordering method

Linear module

Model
LCM100

Controller
LCC140

Current sensor
Belt module

Termination module for belt module Note 1

Cable length Note 1

Controller
10

Network option Note 2

Belt module

Model
LCM100

Controller
None

Module for circulation Note 2

Linear module is connected to the right

Linear module is connected to the left

Note 1. Parts necessary to connect the belt module and linear module.
Parts are incorporated into the belt module.
LCM100-4M/3M Linear conveyor module (640mm/ 480mm)

Note 1. All sliders and modules have the same dimensions.
Note 2. Use M6 hex socket head bolts to install the main body.
Note 3. An area of +/-6mm from both ends of each connected module and an area of 150mm from the line end become slider stop inhibited areas. (These dimensions are obtained when the slider is located at its center position.)
Note 4. Select an appropriate rail length of the insertion/ejection rail option from the "Insertion/ejection rail length selection table" shown on the left.
Note 5. The LCM100 is installed only in the horizontal direction.
Note 6. Module variations can be combined freely within the same line. (This figure shows that 3M on the left is combined with 4M on the right.)
Note 7. It is recommended to install rail support parts on the insertion/ejection rail. When no support parts are installed, the rail may be deflected by the slider's own weight, leading to poor rail accuracy or short service life of the guide.
Note 8. No mechanical stoppers are provided due to product characteristics. When necessary, the customer installs appropriate mechanical stoppers.

Note 1. Use M6 hex socket head bolts to install the main body.
Note 2. For the stop point when the slider enters, specify a point 190mm or more away from the module end face. When ejecting the slider, eject the slider after it has been stopped at a point 190mm or more away from the end face of the module on the ejection side. Otherwise, the slider may not be stopped or ejected correctly.
Note 3. The movement range above the module is 140mm around the center.
Note 4. No mechanical stoppers are provided due to product characteristics. When necessary, the customer installs appropriate mechanical stoppers.
LCM100-4B Belt module (640mm)

Note 1. Use the M6 hex socket head bolts to install the main unit.
Note 2. The sensor option position can be moved in a range of +/-50mm.

Note 3. Input power supply and signals to drive the motor. The connector is AMP’s dynamic connector D-3100D series. Prepare 178289-7 (16 poles) for the housing and 175217-2 (gold plated contact) for the contact.

Note 4. Select 24V power supply with a capacity of 5A or more.

Note. No mechanical stoppers are provided due to product characteristics. When necessary, the customer installs appropriate mechanical stoppers.

LCM100-3B Belt module (480mm)

Note 1. Use the M6 hex socket head bolts to install the main unit.
Note 2. The sensor option position can be moved in a range of +/-50mm.

Note 3. Input power supply and signals to drive the motor. The connector is AMP’s dynamic connector D-3100D series. Prepare 178289-7 (16 poles) for the housing and 175217-2 (gold plated contact) for the contact.

Note 4. Select 24V power supply with a capacity of 5A or more.

Note. No mechanical stoppers are provided due to product characteristics. When necessary, the customer installs appropriate mechanical stoppers.
When investigating the linear conveyor module LCM100 actually, it is necessary to discuss the specifications and restrictions in detail. So, please contact YAMAHA or your dealer to hold hearings regarding your requests.
LCM100/LCC140 Accessory parts

LCM100 main body

<table>
<thead>
<tr>
<th>Linear module</th>
<th>Robot cable for linear module</th>
<th>Slider</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCM100-4M</td>
<td>For LCM100-4M/3M</td>
<td></td>
</tr>
<tr>
<td>KDJ-M2020-40</td>
<td>(640mm)</td>
<td></td>
</tr>
<tr>
<td>LCM100-3M</td>
<td>For LCM100-3M</td>
<td></td>
</tr>
<tr>
<td>KDJ-M2020-30</td>
<td>(480mm)</td>
<td></td>
</tr>
<tr>
<td>LCM100-2MT</td>
<td>For LCM100-2MT</td>
<td></td>
</tr>
<tr>
<td>(for circulation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDJ-M2022-20</td>
<td>(400mm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belt module</th>
<th>Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LCM100-4B</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>KDJ-M4711-40</td>
<td>KDJ-M2264-00</td>
<td></td>
</tr>
<tr>
<td>LCM100-3B</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>KDJ-M4711-30</td>
<td>KDJ-M2264-10</td>
<td></td>
</tr>
</tbody>
</table>

Parts for LCM100

<table>
<thead>
<tr>
<th>Termination module for linear module (R side)</th>
<th>Termination module for linear module (L side)</th>
<th>Insertion/ejection rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>This part is attached to the right end of the module. One termination module per line is required. Additionally, even when using only one module without connections, one termination module is required.</td>
<td>This part is attached to the left end of the module. One termination module per line is required. Additionally, even when using only one module without connections, one termination module is required.</td>
<td>Tapered rail. Up to two rails per line can be installed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>44mm : KDJ-M6200-00 (With a dedicated 44mm connection block)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100mm : KDJ-M2222-10</td>
</tr>
<tr>
<td></td>
<td>160mm : KDJ-M2222-20</td>
</tr>
<tr>
<td></td>
<td>220mm : KDJ-M2222-30</td>
</tr>
<tr>
<td></td>
<td>280mm : KDJ-M2222-40</td>
</tr>
<tr>
<td></td>
<td>340mm : KDJ-M2222-50</td>
</tr>
</tbody>
</table>

Note: Not in stock. We require some lead time for delivery.

Insertion/ejection rail

<table>
<thead>
<tr>
<th>Model</th>
<th>44mm : KDJ-M6200-00 (With a dedicated 44mm connection block)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100mm : KDJ-M2222-10</td>
</tr>
<tr>
<td></td>
<td>160mm : KDJ-M2222-20</td>
</tr>
<tr>
<td></td>
<td>220mm : KDJ-M2222-30</td>
</tr>
<tr>
<td></td>
<td>280mm : KDJ-M2222-40</td>
</tr>
<tr>
<td></td>
<td>340mm : KDJ-M2222-50</td>
</tr>
</tbody>
</table>

Note 1: A state, in which multiple modules are connected, is called "line".

Module connection block (with fastening bolts)

<table>
<thead>
<tr>
<th>Model</th>
<th>Note. Use this model when installing 100 mm insertion/ejection rails to L side.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDJ-M6100-00</td>
<td>(44mm)</td>
</tr>
<tr>
<td>KDJ-M6100-10</td>
<td>(100mm)</td>
</tr>
</tbody>
</table>

Note: Not in stock. We require some lead time for delivery.
Parts for LCC140 controller

<table>
<thead>
<tr>
<th>Power connector + connection lever</th>
<th>HPB dummy connector</th>
<th>SAFETY connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>One set of parts per LCC140 is required.</td>
<td>When performing the operation with the programming box HPB removed, connect this dummy connector to the HPB connector. One connector per LCC140 is required.</td>
<td>One connector per LCC140 is required.</td>
</tr>
</tbody>
</table>

Model
- Power connector: KAS-M5382-00
- HPB dummy connector: Model KDK-M5163-00
- SAFETY connector: Model KDK-M5370-10

Parts for line configuration

<table>
<thead>
<tr>
<th>LINK cable</th>
<th>Terminator connector</th>
<th>Dust cover (for LINK connector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([Number of modules] - 1) cables per line are required.</td>
<td>When connecting modules, two connectors per line are required.</td>
<td>This dust cover is attached to the insertion port, into which the LINK cable terminator connector is not inserted. When using only one module without connections, two dust covers are required.</td>
</tr>
</tbody>
</table>

Model
- 1m: KDK-M5361-10
- 3m: KDK-M5361-30
- 5m: KDK-M5361-50

Selection parts

<table>
<thead>
<tr>
<th>Proximity sensor for belt module</th>
<th>Programming box HPB/HPB-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sensor for checking the slider position. Install this to prevent slider collisions and to ensure smooth action.</td>
<td>All operations, such as robot manual operation, program input or edit, teaching, and parameter setting can be performed with this programming box. As an interactive interface with the screen display is used, even personnel who use this programming box for the first time can easily understand how to operate it.</td>
</tr>
</tbody>
</table>

Model
- L (Left): KDJ-M2205-L0
- C (Center): KDJ-M2205-C0
- R (Right): KDJ-M2205-R0

Model
- HPB: KBB-M5110-01
- HPB-D: KBB-M5110-21
 (CE specifications / with 3-position enable switch)

Support software POPCOM+

- **PC supporting software POPCOM+**

POPCom+ software model KBG-M4966-00

- **Data cables (5m)**
 Communication cable for POPCOM+. Select from USB cable or D-sub cable.

Model
- USB type (5m): KBG-M538F-00
- D-Sub type 9pin-9pin (5m): KAS-M538F-10

POPCom+ environment

- **OS**
 Windows XP (32bit), Vista, 7, 8 / 8.1, 10 (Supported version: V.2.1.1 or later)

- **CPU**
 Processor that meets or exceeds the suggested requirements for the OS being used.

- **Memory**
 Suggested amount of memory or more for the OS being used.

- **Hard disk**
 50MB of available space required on installation drive.

- **Disk operation**
 RS-232C

Applicable controllers

- SRCX to SR1, DRCX, TRCX, ERCX, ERCD, LCC140

Note
- LCC140 is applicable to Ver. 2.1.1 or later.
- Windows is the registered trademark of US Microsoft Corporation in U.S.A. and other countries.

Note: Data cables jointly used for POPCOM+, VIP+, RCX-Studio Pro.

Note: USB driver for communication cable can also be downloaded from our website.
Controller for linear module

LCC140 basic specifications

Basic specifications of LCC140 controller

- **Controllable robot**: Linear conveyor module LCM series
- **Outside dimensions**: W402.5×H229×D106.5mm
- **Main body weight**: 4.8kg
- **Input power voltage**: Single-phase AC200 to 230V +/-10% or less (50/60Hz)
- **Maximum power consumption**: 350VA (LCM100-4M 1 slider is driven.)
- **External input/output**: SAFETY
 - RS-232C (dedicated to RFID)
 - RS-232C (for HPB / doubles as POPCOM*)
- **Network option**: CC-Link Ver. 1.10 compatible, Remote device station (2 stations)
 - DeviceNet™ Slave 1 node
 - EtherNet/IP™ adapter 2 ports
- **Programming box**: HPB, HPB-D (Software version 24.01 or later)

External view of LCC140

![External view of LCC140](image-url)