

INFORMATION

Circuit configuration examples

CONTENTS

CABLE

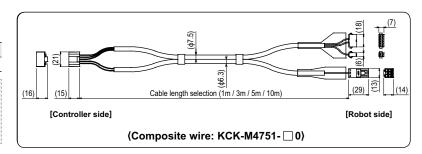
Robot cable table 596 Single-axis robot cable 596
Multi-robot cable 600
Cartesian robot cable ····· 602
SCARA robot cable 603
Gripper cable ······ 603
Cable terminal table 604 PHASER relay cable604
Connector converter cable 605 Programming box converter cable 605
I/O control converter cable ····· 605
TECHNICAL
TRANSERVO RF type model selection 606 Selecting a model 606 List of moment of inertia calculation formulas (Calculation of moment of inertia I) 607 Kinds of loads 607 R-axis tolerable moment of inertia and acceleration coefficient 608 Acceleration coefficients for inertia moment in each SCARA robot YK-X series model 608
How to find the inertia moment613
Example of moment of inertia calculation 614
External safety circuit examples ·······615 Circuit configuration examples
(TS-X/TS-P)615

(SR1) ······	616
Circuit configuration e (RCX240)······	
INFORMATION	
Cautions regarding CE s	
Cautions regarding co	mpliance with ·····618
Applicable directives a standards	
Installation of external s	safety circuits ··· 618
Compliance with EMC	Directives ·····618
Cautions regarding of EU countries ··············	
Cautions on KCs (Kore Safety) specifications · About KCs····································	an Certificate 619 619
About measures for K	Cs619
List of robots subject t	o KCs619
Cautions on Korean EMC s About Korean KC	pecifications···621
About Korean KC com	pliance ······621
List of KC compliant ro	bots621
About non-compliant i	nodels621
Warranty	622
This warranty does not caused by:	cover any failure622
The following cases a under the warranty:	

epeatability positioning accuracy ···623
Factors involving absolute accuracy 623
Operating pattern factors ·····623
Temperature factors ·····623
Fluctuating load factors623

Robot cable table

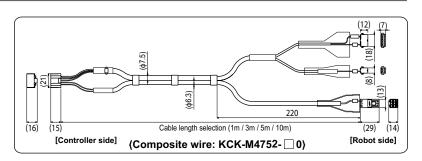
The robot cable is a cable joining the robot to the controller.


Single-axis robot cable

TS-S/TS-S2/TS-SD cable

[Flexible cable]

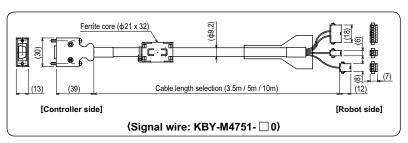
Connected robot ▷ TRANSERVO

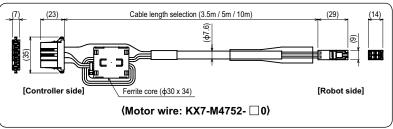

Set	Single item			
-	Composite wire		KCK	-M4751- 🗌 0
Note. Notation within slot in model types is as shown at right.		Wit	hin 🗆	Cable length
types is as shown a		****	1	
types is as shown a		****	1 3	1m 3m
types is as shown a			1	1m

TS-S2S cable

[Flexible cable]

Set Single item				
Jei	,	Single item		
-	Composite wire KCK-I		M4752-□ 0	
Note. Notation within slot	in model	Within 🗌	Cable length	
types is as shown a	t right.	1	1m	
		3	3m	
		5	5m	
		Α	10m	

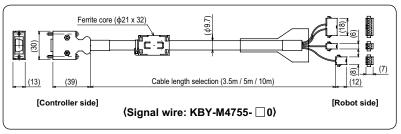


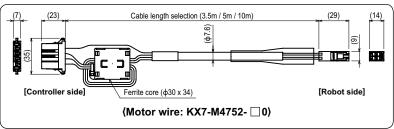

TS-X cable

[Standard cable]

Connected robot ▷ FLIP-X

Set	Single item			
KBY-M4710- □ 0	Signal w	/ire	KBY-	-M4751- □ 0
ND1-W4/10- U	Motor wire		KX7	-M4752- 🗌 0
Note. Notation within slot in model Within Cable length				
types is as shown at right.			3	3.5m
! !			5	5m
		ш	Α	10m



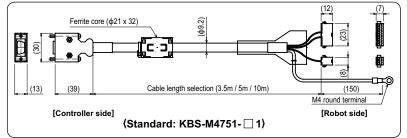


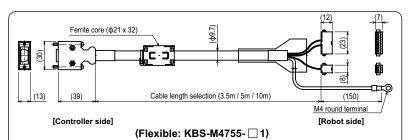
[Flexible cable]

Connected robot ▷ FLIP-X

Set	Single item			
KBY-M4720- □ 0	Signal w	ire KBY	-M4755- 🗌 0	
NB1-W4/20- U	Motor w	ire KX7	-M4752- □ 0	
Note. Notation within slot in model Within Cable length				
types is as shown at right.		3	3.5m	
		5	5m	
		Α	10m	

TS-P cable

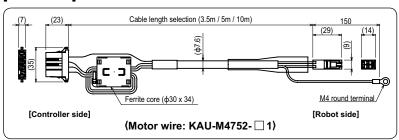

[Standard cable]


Connected robot ▷ PHASER

Set	Single item		
	Signal wire	KBS-M4751- ☐ 1	
	Motor wire	KAU-M4752- 🗌 1	

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

Connected robot ▷ PHASER

Set	Single item		
		KBS-M4755- ☐ 1	
ND3-W4720- □ U	Motor wire	KAU-M4752- 🗌 1	

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

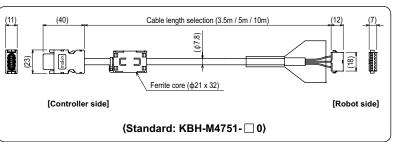
RDV-X cable (No-brake specifications)

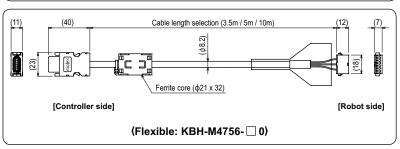
[Standard cable]

Connected robot ▷ FLIP-X

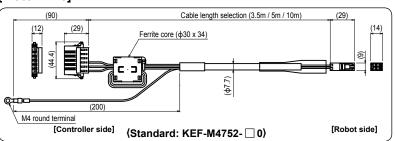
Set	Single item			
		KBH-M4751- ☐ 0		
KEF-M4710- ☐ 0	Motor wire	KEF-M4752- 🗌 0		
	I/O connector	KBH-M4420-00		

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m


[Flexible cable]


Connected robot ▷ FLIP-X

Set	Single item		
		KBH-M4756- ☐ 0	
KEF-M4730- ☐ 0	Motor wire	KEF-M4752- ☐ 0	
	I/O connector	KBH-M4420-00	


	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]

[Motor wire]

NFORMATION

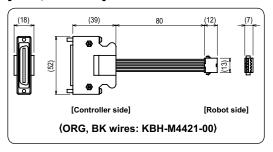
RDV-X cable (models with brake and sensor)

[Standard cable]

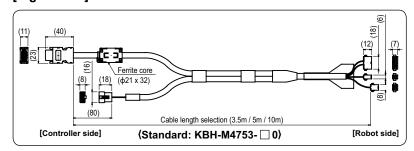
Connected robot ▷ FLIP-X

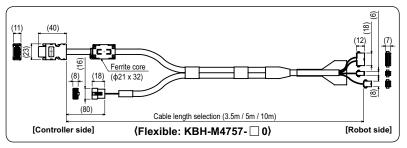
Single item		
Signal wire	KBH-M4753- ☐ 0	
Motor wire	KEF-M4752- ☐ 0	
ORG, BK wires	KBH-M4421- 00	
	Signal wire Motor wire	

Note. Notation within slot in model	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
I I	Α	10m

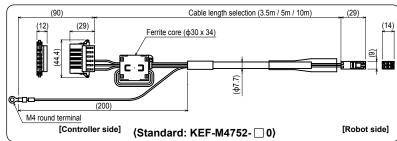

[Flexible cable]

Connected robot ▷ FLIP-X


Set	Single item		
	Signal wire	KBH-M4757- □ 0	
KEF-M4740- 🗌 0	Motor wire	KEF-M4752- □ 0	
	ORG, BK wires	KBH-M4421- 00	


Note. Notation within slot in model	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[ORG, BK wires]



[Signal wire]

[Motor wire]

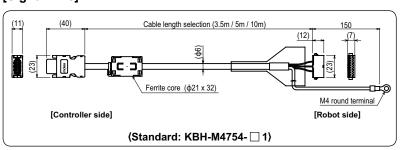
RDV-P cable

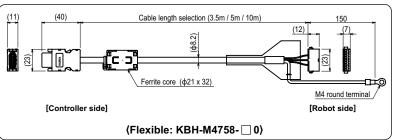
[Standard cable]

Connected robot ▷ PHASER

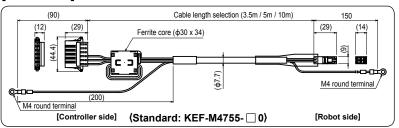
Set	Single item		
		KBH-M4754- ☐ 1	
KEF-M4711- 🗌 0	Motor wire	KEF-M4755- □ 0	
	I/O connector	KBH-M4420-00	

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m


[Flexible cable]


Connected robot ▷ PHASER

Single item	
Signal wire	KBH-M4758- ☐ 0
Motor wire	KEF-M4755- 🗌 0
I/O connector	KBH-M4420-00
	Signal wire Motor wire


,		
Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]

[Motor wire]

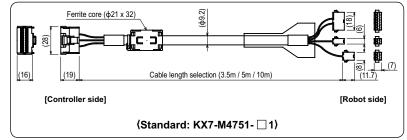
(150)

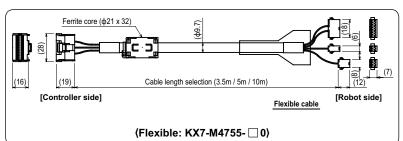
M4 round terminal

[Robot side]

(12)

SR1-X cable

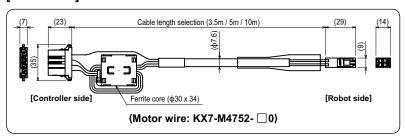

[Standard cable]


Connected robot ▷ FLIP-X

Set	Single item		
		KX7-M4751- 🗌 1	
KX7-10147 10- 🗆 0	Motor wire	KX7-M4752- ☐ 0	

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]


[Flexible cable]

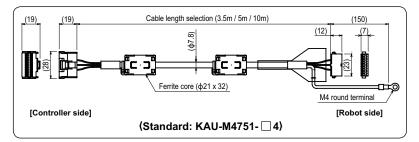
Connected robot ▷ FLIP-X

Set	Single item		
		KX7-M4755- ☐ 0	
KX7-M4720- ☐ 0	Motor wire	KX7-M4752- 🗌 0	

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Motor wire]

SR1-P cable


[Standard cable]

Connected robot ▷ PHASER

Set	Single item		
		KAU-M4751- 🗌 4	
KAU-M4710- ☐ 0	Motor wire	KAU-M4752- 🗌 1	

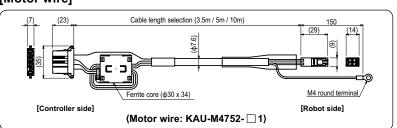
	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

[Signal wire]

Cable length selection (3.5m / 5m / 10m)

Ferrite core (\$\phi21 x 32)

[Flexible cable]


Connected robot ▷ PHASER

Set	Single item			
KAU-M4720- □ 0			KAU	-M4755- 🗌 0
KAU-W4/20- 🗆 0			KAU-M4752- 🗌	
Note. Notation within slo		Wit	hin 🔲	Cable length
Note. Notation within slot types is as shown a		Wit	hin 🔲	Cable length 3.5m
		Wit	hin 🔲 3 5	

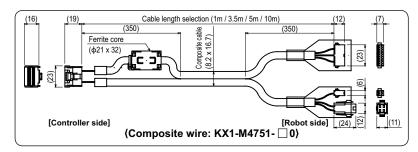
[Motor wire]

[Controller side]

(19)

(Flexible: KAU-M4755- □ 0)

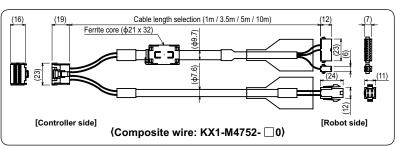
ERCD / ERCX cable


[Standard cable]

Connected robot ▷ FLIP-X

Set	Single item			
-	Composite	wire	KX1-	·M4751- □ 0
Note. Notation within slot in model types is as shown at right.		Wit	hin 🗌	Cable length
			1	1m
			2	2.5m

5m

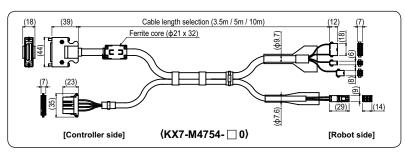

10m

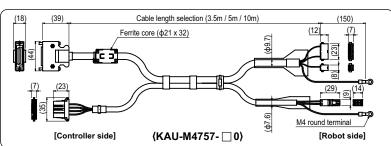
[Flexible cable]

Connected robot ▷ FLIP-X

ire KX1-	-M4752- 🗌 0
Within 🔲	Cable length
1	1m
3	3.5m
5	5m
Α	10m
	1 3 5 A

■ Multi-robot cable


Single axis multi-robot cable

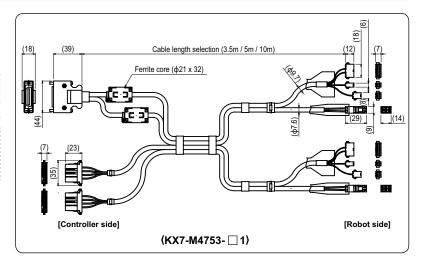

[Flexible cable]

Connected controller ▷ RCX240

Connected Controller / Itesta 10			
Robot	Cable type		
FLIP-X	KX7-M4754- □ 0		
PHASER	KAU-M4757- ☐ 0		

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

2-axes multi-robot cable

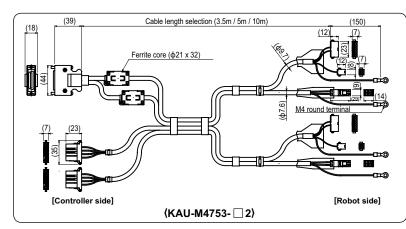

[Flexible cable]

Connected controller ▷ • RCX221/RCX222

- RCX240/RCX340
- DRCX

Robot con	nbinations	Cable type
First axis	Second axis	Cable type
FLIP-X	FLIP-X	KX7-M4753- 🗌 1

Note. Notation within slot in model	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

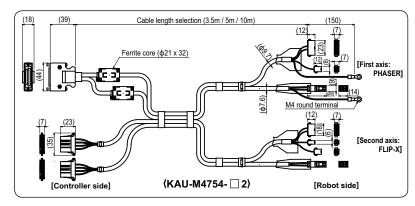


[Flexible cable]

Connected controller > RCX221 / RCX240

Robot combinations		Cable type
First axis	Second axis	Cable type
PHASER	PHASER	KAU-M4753- ☐ 2

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

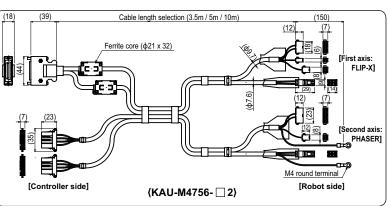


[Flexible cable]

Connected controller ▷ RCX221 / RCX240

Robot combinations		Cal	ble tune
First axis Second axis		Cal	ble type
PHASER	FLIP-X	KAU-M4754- 🗌 2	
Note. Notation within slot in model Within ☐ Cable length			
types is as shown at right.		within 🗀	Cable length
		3	3.5m
		5	5m

10m

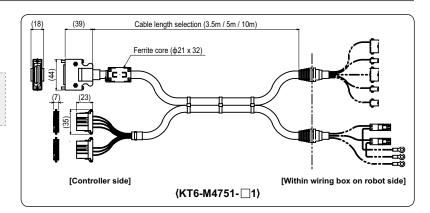


[Flexible cable]

Connected controller ▷ RCX221 / RCX240

Connected Controller & ROXZZI / ROXZZI			
Robot combinations		nbinations	Cable type
	First axis	Second axis	Cable type
	FLIP-X	PHASER	KAU-M4756- ☐ 2

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

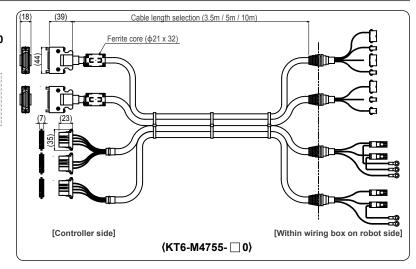

Cartesian robot cable Cartesian 2-axes cable

[Standard cable]

Connected controller > DRCX / RCX222 / RCX340

Type KT6-M4751- ☐ 1

	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
1	Α	10m

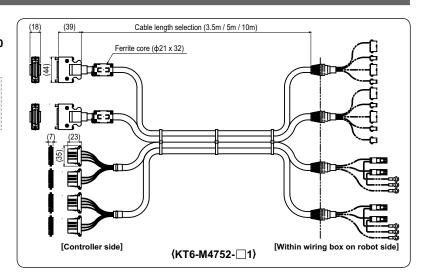

Cartesian 3-axes cable

[Standard cable]

Connected controller ▷ RCX142 / RCX240 / RCX340

Type	KT6-M4755- ☐ 0
------	----------------

	Within [Cable length
types is as shown at right.	3	3.5m
	5	5m
	A	10m


Cartesian 4-axes cable

[Standard cable]

Connected controller > RCX142 / RCX240 / RCX340

Type	KT6-M4752- ☐ 1
Note Notati	on within slot in model Within

Note. Notation within slot in model	Within 🗌	Cable length
types is as shown at right.	3	3.5m
	5	5m
	Α	10m

SCARA robot cable

Note. SCARA robot cables all use the same size connectors but different models use different cables.

[Standard cable]

Connected robot > • YK-XG (No including YK120XG / YK150XG / YK180XG)

- YK-XGS
- YK-TW
- YK400XR

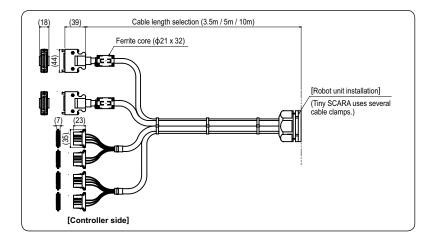
Cable length	Туре
3.5m	KBF-M6211-00
5m	KBF-M6211-10
10m	KBF-M6211-20

Connected robot ▷ • YK120XG

- YK150XG
- YK180XG

Cable length	Туре
2m	KCB-M6211-31
3.5m	KCB-M6211-01
5m	KCB-M6211-11
10m	KCB-M6211-21

Connected robot ▷ • YK-XGP


• YK-XGC

Cable length	Туре			
3.5m	KDP-M6211-00			
5m	KDP-M6211-10			
10m	KDP-M6211-20			

Connected robot \triangleright • YK-XC (Large type)

- YK-XS
- YK-XP

Cable length	Туре			
3.5m	KN3-M6211-00			
5m	KN3-M6211-10			
10m	KN3-M6211-20			

Connected robot ▷ • YK1200X

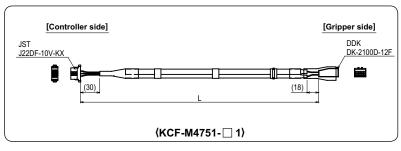
Туре
KN6-M6211-00
KN6-M6211-10
KN6-M6211-20

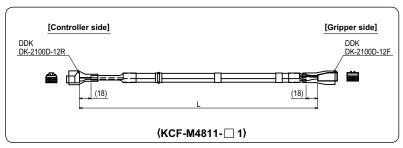
Connected robot ▷ • YK180X

- YK220X
- YK180XC
- YK220XC

Cable length	Туре
3.5m	KBE-M6211-00
5m	KBE-M6211-10
10m	KBE-M6211-20

■ Gripper cable

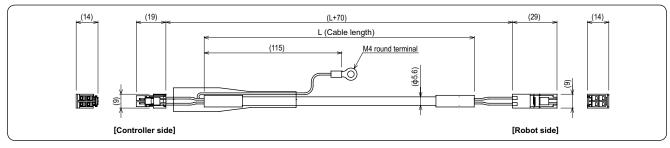

Robot cable [Flexible cable]


Cable length	Type
3.5m	KCF-M4751-31
5m	KCF-M4751-51
10m	KCF-M4751-A1

Relay cable [Flexible cable]

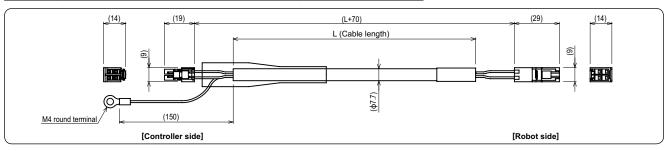
Type	KCF	-M48	311-[_				
Within 🗌	1	2	3	4	5	6	7	8
Length (mm)	0.5	1	1.5	2	2.5	3	3.5	4

Note. Be sure to adjust the total length of the robot (for gripper) cable and relay cable to 14m or less.

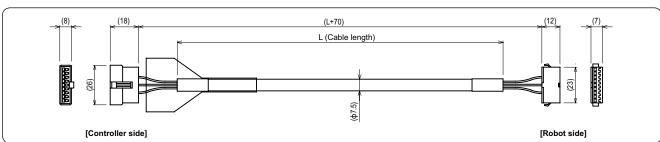

Cable terminal table

This is a relay cable used between the robot body and the robot cable such cable carrier wiring, etc.

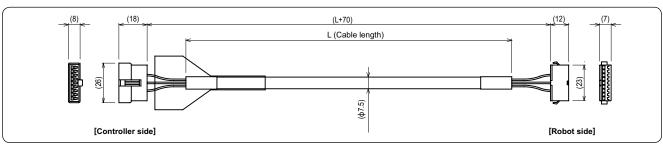
■ PHASER relay cable


Motor wire (350mm to 1450mm) Note. Common to MR types and MF types

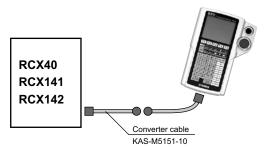
Туре	KAU-M4813- □ 0											
Within 🗌	1	2	3	4	5	6	7	8	9	Α	В	С
Length (mm)	350	450	550	650	750	850	950	1050	1150	1250	1350	1450


Motor wire (1500mm to 2600mm) Note. Not usable on MR type

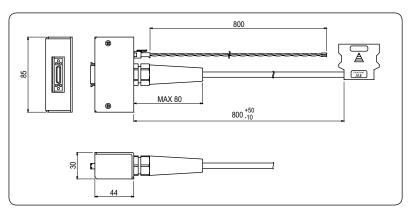
Туре	KBD-M4813- □ 0											
Within 🗌	6	7	8	9	Α	В	С	D	Е	F	G	М
Length (mm)	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600


Signal cable (350mm to 1450mm) Note. Common to MR types and MF types

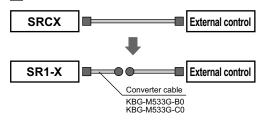
Туре	K/	NU-M4	812- 🗌]1								
Within 🗌	1	2	3	4	5	6	7	8	9	Α	В	С
Length (mm)	350	450	550	650	750	850	950	1050	1150	1250	1350	1450


Signal cable (1500mm to 2600mm) Note. Common to MR types and MF types

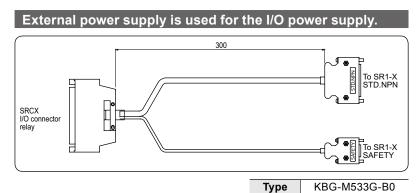
Туре	Type KBD-M4812- □ 1											
Within 🗌	6	7	8	9	Α	В	С	D	Е	F	G	J
Length (mm	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600

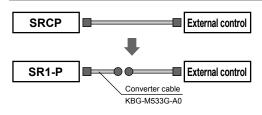

Connector converter cable

■ Programming box converter cable



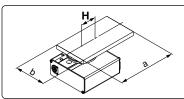
Converter cable for operating the RCX40, RCX141, RCX142 by RPB.


Type KAS-M5151-10


■ I/O control converter cable

Converter cable allows connecting to the SRCX connector when system using the SRCX was changed to the SR1-X.

Internal power supply of the SRCX is used for the I/O power supply. 30 (Only sheath is removed.) To SR1-X STD.NPN SRCX/SRCH I/O connector relay Note. It is necessary to input the 24V-power supply from the outside.


Converter cable allows connecting to the SRCP connector when system using the SRCP was changed to the SR1-P.

TRANSERVO RF type model selection

Selecting a model

Operating conditions

Rotary type: RF03 Installation posture: Horizontal Kind of load: Inertial load Ta

Shape of load: 150 mm x 80 mm (rectangular plate)

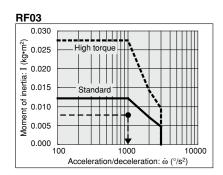
Oscillating angle θ: 180°

Acceleration/deceleration α: 1,000 °/sec2

Speed ω: 420 °/sec Load mass m: 2.0 kg

Distance between shaft and center of gravity H: 40 mm

Step 1 Moment of inertia Acceleration/deceleration


- Calculating the moment of inertia.
- Checking the moment of inertia vs. acceleration/deceleration. Select an appropriate model from the moment of inertia vs. acceleration/deceleration while referring to the moment of inertia vs. acceleration/deceleration graph.

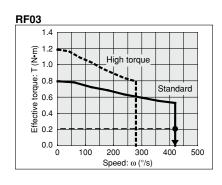
Calculation formula

 $I = m \times (a^2 + b^2)/12 + m \times H^2$

Selection example

 $I = 2.0 \times (0.15^2 + 0.08^2)/12 + 2.0 \times 0.04^2 \\ = 0.00802 kg \cdot m^2$

Step 2 Selecting a torque


- Kinds of loads
 - Static load: Ts
 - · Resistance load: Tf
 - Inertial load: Ta
- Checking the effective torque Check that the speed can be controlled by the effective torque by the speed while referring to the effective torque vs. speed graph.

Calculation formula

Effective torque≥Ts
Effective torque≥Tf x 1.5
Effective torque≥Ta x 1.5

Selection example

Inertial load: Ta
Ta×1.5=I×ων2π/360×1.5
=0.00802×1,000×0.0175×1.5
=0.21N·m

Step 3 Allowable load

- Checking the allowable load
 - Radial load
 - Thrust load
 - Moment

Calculation formula

Allowable thrust load≥m×9.8 Allowable moment≥m×9.8×H

Selection example

Thrust load 2.0×9.8=19.6N<Allowable load OK Allowable moment 2.0×9.8×0.04 =0.784N•m<Allowable moment OK

TRANSERVO RF type model selection

List of moment of inertia calculation formulas (Calculation of moment of inertia I)

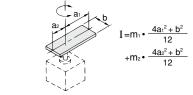
Thin rod

Position of rotation axis: Passes through one end perpendicularly to the rod.

2 Thin rod

Position of rotation axis: Passes through the center of gravity of the rod.

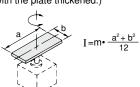
3 Thin rectangular plate 4 Thin rectangular plate (rectangular parallelepiped)


Position of rotation axis: Passes through the center of gravity of the rod.

(rectangular parallelepiped)

I: Moment of inertia m: Load mass

Position of rotation axis: Passes through one end perpendicularly to the plate.


(Same position for the rectangular parallelepiped with the plate thickened.)

5 Thin rectangular plate (rectangular parallelepiped)

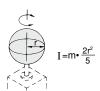
Position of rotation axis: Passes through one end perpendicularly to

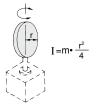
(Same position for the rectangular parallelepiped with the plate thickened.)

6 Cylinder (including thin disc)

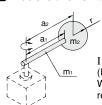
Position of rotation axis: Central axis

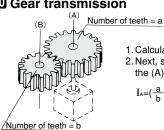

7 Solid ball


 $I=m^{\bullet}\frac{a^2}{12}$


Position of rotation axis: Diameter

8 Thin disc


Position of rotation axis: Diameter



 $I = m_1 \cdot \frac{a_1^2}{2} + m_2 \cdot a_2^2 + K$ (Example) When the shape of m2 is a ball, refer to [7] to obtain the following.

Gear transmission

- 1. Calculate the moment of inertia I_B around the (B) axis. 2. Next, substitute IB for the moment of inertia around the (A) axis to calculate IA as follows.
 - $I_A = (\frac{a}{b})^2 \cdot I_B$

Kinds of loads

Static load: Ts	Resistance load: Tf	Inertial load: Ta
Only push force is needed (clamp, etc.).	Gravity or friction force applies in the rotation direction.	Load with inertia needs to be rotated.
L F	<gravity applies.=""> <friction applies.="" force=""></friction></gravity>	<rotation center="" gravity="" load.="" matches="" of="" the="" to=""> Rotation axis is in the vertical direction.></rotation>
Ts = F•L Ts: Static load (N•m) F: Clamp force (N) L: Distance from oscillating center to clamp position (m)	Gravity applies in the rotation direction. Tf = m•g•L Tf : Resistance load (N•m) m: Mass of load (kg) g: Gravity acceleration 9.8 (m/s²) L: Distance from oscillating center to gravity or friction force action point (m) p: Friction coefficient	$Ta = I \cdot \dot{\omega} \cdot 2 \pi / 360$ $(Ta = I \cdot \dot{\omega} \cdot 0.0175)$ $Ta: Inertial load (N \cdot m)$ $I : Moment of inertia (kg \cdot m^2)$ $\dot{\omega} : Acceleration/deceleration (°/sec^2)$ $\omega : Speed (°/sec)$
Required torque T = Ts	Required torque $T = Tf \times 1.5$ Note 1)	Required torque $T = Ta \times 1.5$ Note 1)
Land barrens also made an allocations	Land days and have	

Load becomes the resistance load.

Gravity or friction force applies in the rotation direction.

Example 1) The rotation center of the rotation axis does not match to the center of gravity of the load in the horizontal direction.

Example 2) The load slips on the floor to move it. The required torque is the total of the resistance load and

inertial load. $T = (Tf + Ta) \times 1.5$

Load does not become the resistance load.

Gravity or friction force does not apply in the rotation direction.

Example 1) The rotation axis is vertical.

Example 2) The rotation center of the rotation axis does not match to the center of gravity of the load in the horizontal direction

The required torque is only the inertial load.

 $T = Ta \times 1.5$

An allowance is required for Tf and Ta to make the speed

When using the RCX240

R-axis tolerable moment of inertia and acceleration coefficient

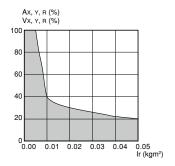
The RCX340 automatically specifies the acceleration coefficient according to the parameter settings.

The moment of inertia of a load (end effector and workpiece) that can be attached to the R-axis is limited by the strength of the robot drive unit and residual vibration during positioning. It is therefore necessary to reduce the acceleration coefficient in accordance with the moment of inertia.

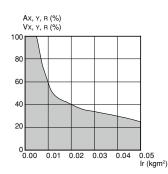
[Example: YK500XG]

If there is a payload of 1.5kg installed on the R axis then the inertia moment in the R axis vicinity is 0.1kgm2 (1.0kgfcmsec2). The tip payload set at this time is 2kg. As shown on the graph, the robot can be operated with the X axis, Y axis and R axis acceleration coefficients reduced to 62%. Always select a tip payload and acceleration coefficient parameter that matches the payload and inertia moment before operating the robot. See your "YAMAHA Robot Controller Instruction Manual" when setting the tip payload and acceleration coefficient.

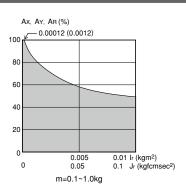
Note. The method for calculating the inertia moment load is shown on P.613. However, making an accurate calculation is difficult. If the actual inertia moment is larger than the calculated value and the robot is set for that calculated value then residual vibrations might occur

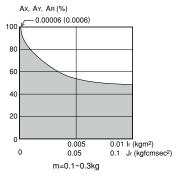

If this happens, reduce the acceleration coefficient parameter more.

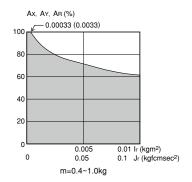
A CAUTION


- · The robot must be operated with correct tolerable moment of inertia and acceleration coefficients according to the manipulator tip mass and moment of inertia. If this is not observed, premature end to the life of the drive units, damage to the robot parts or residual vibration during positioning may result.
- Depending on the Z-axis position, vibration may occur when the X. Y or R-axis moves. If this happens, reduce the X, Y or R-axis acceleration to an appropriate level.
- If the moment of inertia is too large. vibration may occur on the Z-axis depending on its operation position. If this happens, reduce the Z-axis acceleration to an approriate level.

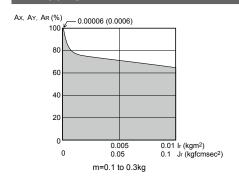
Acceleration coefficients for inertia moment in each SCARA robot YK-X series model

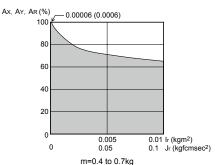

YK350TW

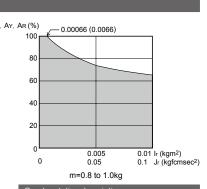

YK500TW



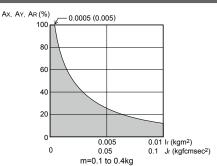
YK120XG

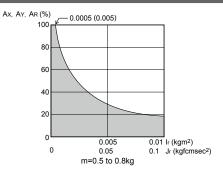


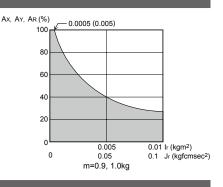

YK150XG



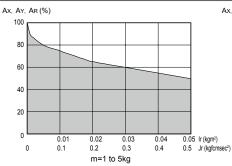
YK180XG

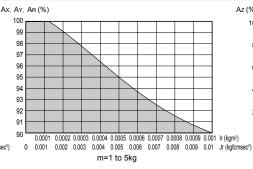


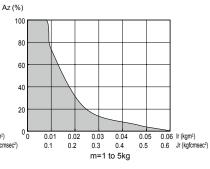


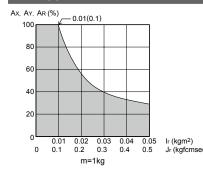

Graph notation description Ir, Jr

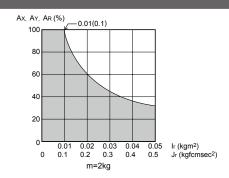
Inertia moment in R axis load vicinity m ⇒ Tip payload

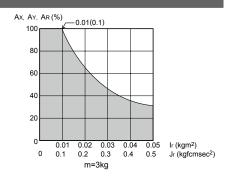


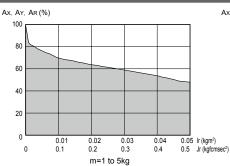


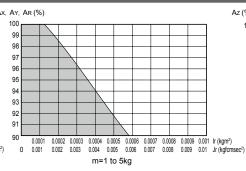


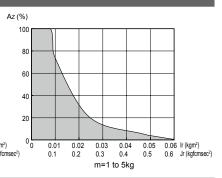

YK250XG/YK250XGP/YK250XGC

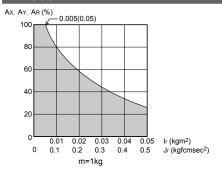


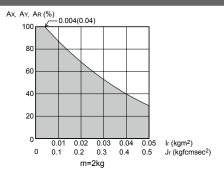


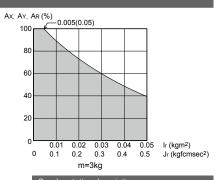

YK250XH



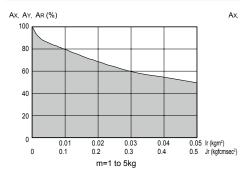


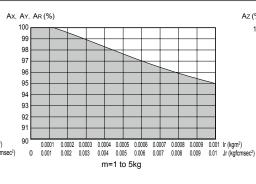

YK350XG/YK350XGP/YK350XGC/YK300XGS

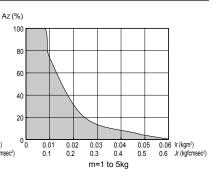




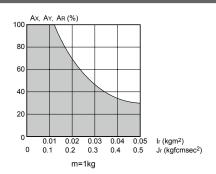
YK350XH

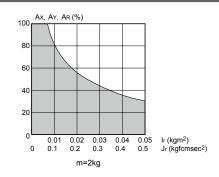


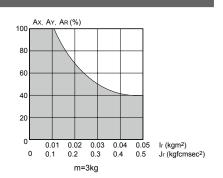


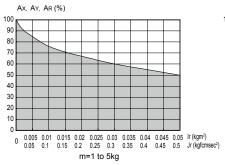


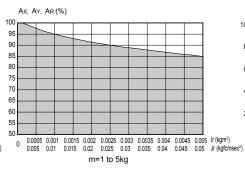
R-axis tolerable moment of inertia and acceleration coefficient

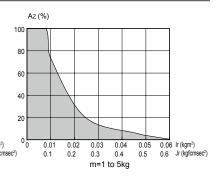

YK400XG/YK400XGP/YK400XGC/YK400XGS



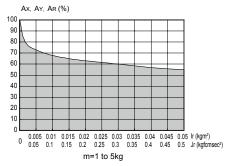


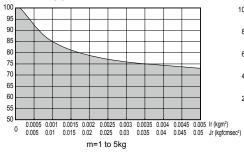

YK400XH

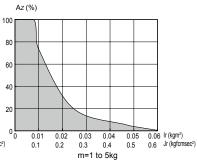




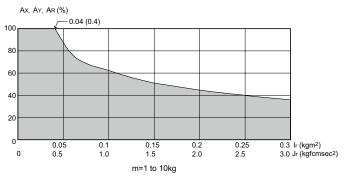
YK500XGL/YK500XGLP/YK500XGLC

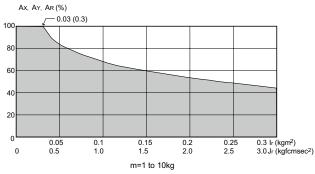




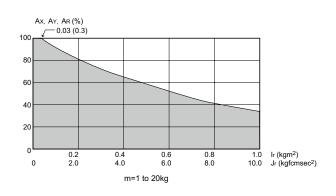

Ax. Ay. AR (%)

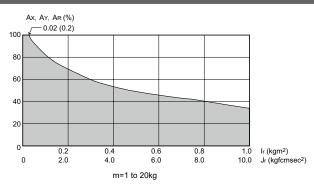
YK600XGL/YK600XGLP/YK600XGLC

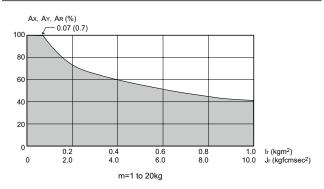



Graph notation description

 $\begin{array}{c} Ax,\,AY,\,AR \implies \text{Acceleration coefficient for X axis, Y axis, R axis} \\ Ir,\,Jr \implies Inertia \,moment\,in\,\,R\,\,axis\,\,load\,\,vicinity \\ m \implies Tip\,\,payload \end{array}$

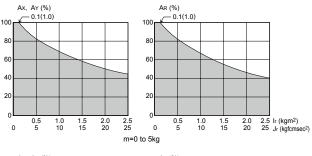

YK500XG/YK500XGS/YK500XGP

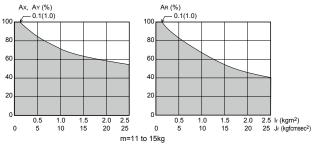

YK600XG/YK600XGS/YK600XGP

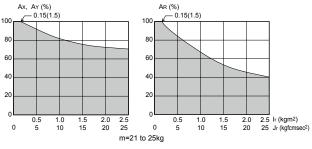

YK600XGH/YK600XGHP

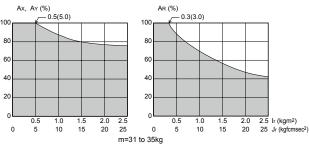
YK700XG/YK700XGS/YK700XGP/YK800XG/ YK800XGS/YK800XGP

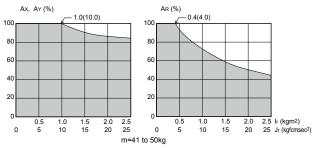
YK900XG/YK900XGS/YK900XGP/YK1000XG/ YK1000XGS/YK1000XGP

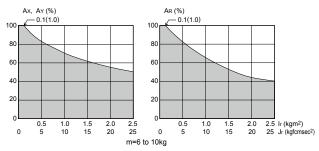


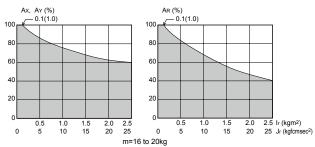

Graph notation description

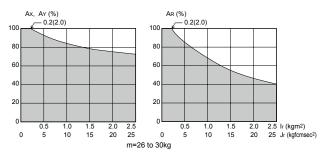

 $\begin{array}{c} Ax,\,AY,\,AR \implies \text{Acceleration coefficient for X axis, Y axis, R axis} \\ Ir,\,Jr \implies Inertia \ moment \ in \ R \ axis \ load \ vicinity \\ m \implies Tip \ payload \end{array}$

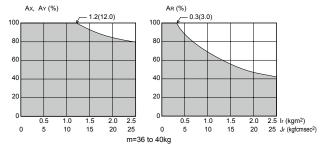

R-axis tolerable moment of inertia and acceleration coefficient


YK1200X





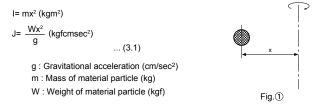




aph notation description

 $\begin{array}{c} Ax,\,AY,\,AR \implies \text{Acceleration coefficient for X axis, Y axis, R axis} \\ Ir,\,Jr \implies Inertia \,moment\,in\,\,R\,\,axis\,\,load\,\,vicinity \\ m \implies Tip\,\,payload \end{array}$

How to find the inertia moment

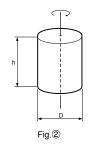

The tool and work are not usually a simple shape so calculating the inertia moment is not easy.

As a method, the load is replaced with several factors that resemble a simple form for which the moment of inertia can be calculated. The total of the moment of inertia for these factors is then obtained. The objects and equations often used for the calculation of the moment of inertia are shown below. Incidentally, there is the following relation: J (kgfcmsec2) = I (kgm2) x 10.2

[1] Moment of inertia for material particle

The equation for the moment of inertia for a material particle that has a rotation center such as shown in Fig.

1) is as follows: This is used as an approximate equation when x is larger than the object size.


[2] Moment of inertia for cylinder (part 1)

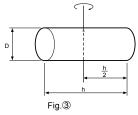
The equation for the moment of inertia for a cylinder that has a rotation center such as shown in Fig. 2 is given below.

$$I = \frac{\rho \pi D^{4}h}{32} = \frac{mD^{2}}{8} \quad (kgm^{2})$$

$$J = \frac{\rho \pi D^{4}h}{32g} = \frac{WD^{2}}{8g} \quad (kgfcmsec^{2})$$
... (3.2)

- ρ: Density (kg/m³, kg/cm³)
- g: Gravitational acceleration (cm/sec2)
- m: Mass of cylinder (kg)
- W: Weight of cylinder (kgf)

[3] Moment of inertia for cylinder (part 2)

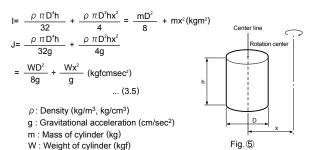

The equation for the moment of inertia for a cylinder that has a rotation center such as shown in Fig. 3 is given below.

$$I = \frac{\rho \pi D^{2}h}{16} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) = \frac{m}{4} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) (kgm^{2})$$

$$J = \frac{\rho \pi D^{2}h}{16g} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) = \frac{W}{4g} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) (kgfcmsec^{2})$$
... (3.3)
$$\rho : Density (kg/m^{3}, kg/cm^{3})$$

$$g : Gravitational acceleration (cm/sec2)$$

- m: Mass of cylinder (kg)
- W: Weight of cylinder (kgf)

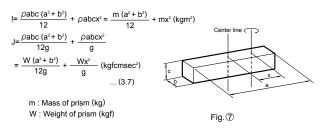

[4] Moment of inertia for prism

The equation for the moment of inertia for a prism that has a rotation center as shown in Fig. 4 is given as follows.

$$\begin{split} & I = \frac{\rho \, abc \, (a^2 + b^2)}{12} = \frac{m \, (a^2 + b^2)}{12} \, (kgm^2) \\ & J = \frac{\rho \, abc \, (a^2 + b^2)}{12g} = \frac{W \, (a^2 + b^2)}{12g} \, (kgfcmsec^2) \\ & \dots \, (3.4) \\ & \rho : Density \, (kg/m^3, \, kg/cm^3) \\ & g : Gravitational acceleration \, (cm/sec^2) \\ & m : Mass \, of \, prism \, (kg) \\ & W : Weight \, of \, prism \, (kgf) \end{split}$$

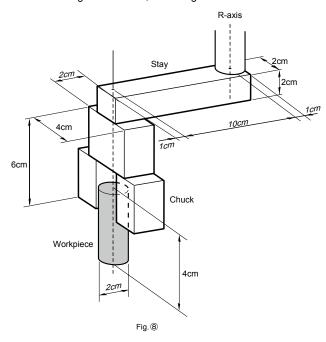
[5] When the object's center line is offset from the rotation center

The equation for the moment of inertia, when the center of the cylinder is offset by the distance "x" from the rotation center as shown in Fig. 5, is given as follows.


In the same manner, the moment of inertia of a cylinder as shown in Fig. 6 is given by

$$I = \frac{\rho \pi D^{2}h}{16} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) + \frac{\rho \pi D^{2}hx^{2}}{4} = \frac{m}{4} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) + mx^{2}(kgm^{2})$$

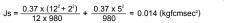
$$J = \frac{\rho \pi D^{2}h}{16g} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) + \frac{\rho \pi D^{2}hx^{2}}{4g}$$


$$= \frac{W}{4g} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) + \frac{Wx^{2}}{g} \left(kgfcmsec^{2}\right)$$
... (3.6)
$$D = \frac{W}{4g} \left(\frac{D^{2}}{4} + \frac{h^{2}}{3}\right) + \frac{Wx^{2}}{g} \left(kgfcmsec^{2}\right)$$
Fig. ©

In the same manner, the moment of inertia of a prism as shown in Fig. 7 is given by

Example of moment of inertia calculation

Let's discuss an example in which the chuck and workpiece are at a position offset by 10cm from the R-axis by a stay, as shown in Fig. 8. The moment of inertia is calculated with the following three factors, assuming that the load material is steel and its density ρ is 0.0078kg/cm³.



[1] Moment of inertia of the stay

From Fig. (9), the weight of the stay (Ws) is given as follows:

Ws = ρ abc=0.0078 x 12 x 2 x 2 = 0.37 (kgf)

The moment of inertia of the stay (Js) is then calculated from Eq. 3-7.

[4] Total weight

W = Ws + Wc + Ww = 0.84 (kgf)

[5] Total moment of inertia

 $J = Js + Jc + Jw = 0.062 (kgfcmsec^2)$

[2] Moment of inertia of the chuck

When the chuck form resembles that shown in Fig. ⁽¹⁾, the weight of the chuck (Wc) is

Wc =0.0078 x 2 x 4 x 6 =0.37 (kgf)

The moment of inertia of the chuck (Jc) is then calculated from Eq. 3-7.

$$Jc = \frac{0.37 \times (2^2 + 4^2)}{12 \times 980} + \frac{0.37 \times 10^2}{980} = 0.038 \text{ (kgfcmsec}^2)$$

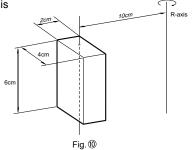
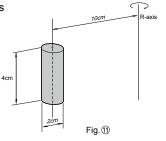


Fig. 9


[3] Moment of inertia of workpiece

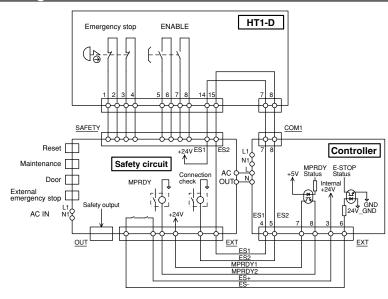
When the workpiece form resembles that shown in Fig. ①, the weight of the workpiece (Ww) is

$$Ww = \frac{\rho \pi D^2 h}{4} = \frac{0.0078 \pi \times 2^2 \times 4}{4}$$
$$= 0.098 \text{ (kgf)}$$
The moment of inertia of the

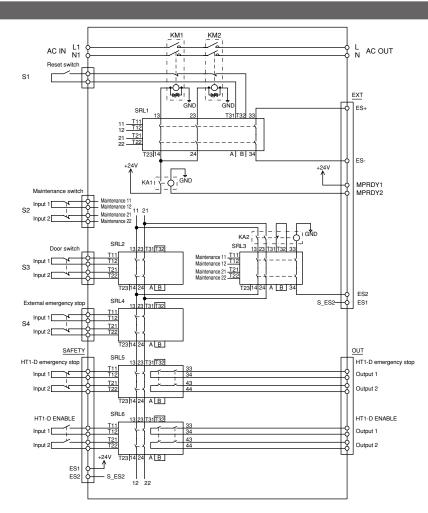
The moment of inertia of the workpiece (Jw) is then calculated from Eq. 3-5.

$$Jw = \frac{0.097 \times 2^{2}}{8 \times 980} + \frac{0.097 \times 10^{2}}{980}$$
$$= 0.010 \text{ (kgfcmsec}^{2}\text{)}$$

External safety circuit examples

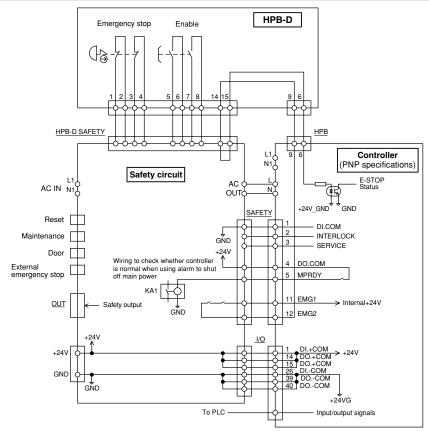

To ensure safe use of the robot, we request the customers make a risk assessment of their end equipment to decide what performance level is needed from safety circuits at the point. Customer should then install a safety circuit at the required performance level.

Here we show examples of category 4 circuits for the TS-X/TS-P, SR1 and RCX240 controllers using a programming box with an enable switch.

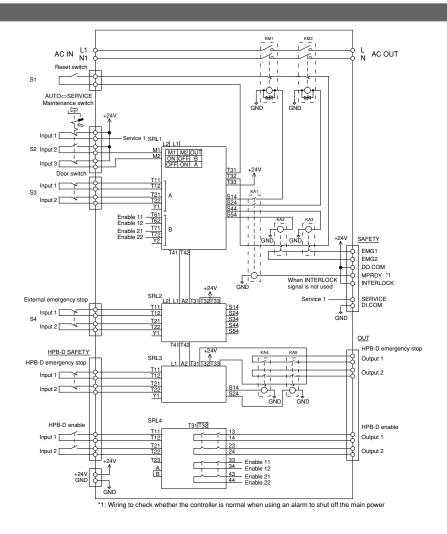

Safety circuits for other categories are described in the user's manuals, so download them from our website if needed.

■ Circuit configuration examples (TS-X/TS-P)

General connection diagram

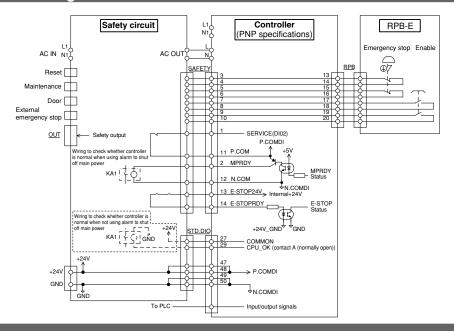


Category 4

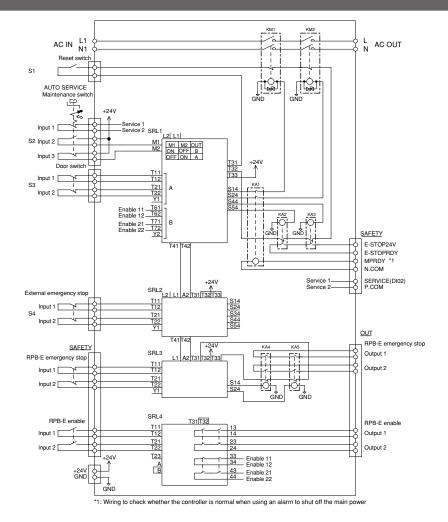


■ Circuit configuration examples (SR1)

General connection diagram



Category 4



■ Circuit configuration examples (RCX240)

General connection diagram

Category 4

Parts Table

•	arts rabic				
Ī	Circuit No.	Part Name	Circuit No.	Part Name	i
Ī	S1	Reset switch	KM1, 2	Contactor (mirror contact)	
	S2	Key-selector switch	KA1 to 5 *1	Safety relay	
_	S3	Safety door switch	SRL1 to 4	Safety relay unit	٠,
	S4	Emergency stop switch	SRL5, 6 *2	Safety relay unit	,

^{*1.} TS-X and TS-P are KA1 to 2. *2. Only TS-X and TS-P.

Cautions regarding CE specifications

■ CE marking

The YAMAHA robot (robot and controller) is one component that is incorporated into the customer's system (built-in equipment), and we declare that the YAMAHA robots conform to the EC Directives only within the scope of built-in equipment (semi-finished product). So, no CE marks are affixed to the YAMAHA robot products.

Cautions regarding compliance with EC Directives

The YAMAHA robot (robot and controller) is not, in itself, a robot system. The YAMAHA robot-series product is one component that is incorporated into the customer's system (built-in equipment), and we declare that the YAMAHA robots conform to the EC Directives only within the scope of built-in equipment. This does not therefore guarantee that the YAMAHA robot-series product conforms to the EC Directives if only the robot is used independently. The customer who incorporates YAMAHA robot products into the customer's final system, which will be shipped to or used in the European region, should verify that the overall system conforms to the EC Directives.

Applicable directives and their related standards

Directives applicable to YAMAHA robots and related standards are shown below.

TS-S2 / TS-X / TS-P / SR1-X / SR1-P / RCX221 / RCX222 / RDV-X / RDV-P

EC Directives	Related Standards		
Machinery Directive 2006/42/EC	EN ISO12100 EN 60204-1		
EMC Directive 2004/108/EC	EN 55011 EN 61000-6-2		

RCX240 / RCX340

EC Directives	Related Standards
Machinery	EN ISO12100
Directive	EN ISO10218-1
2006/42/EC	EN 60204-1
EMC Directive	EN 55011
2004/108/EC	EN 61000-6-2

■ Installation of external safety circuits

To comply with EC directives, customers using YAMAHA robots must always build and install their own external safety circuits after selecting product components (safety relays, etc.) according to performance levels and safety categories required by the customer equipment.

For details about examples of external safety circuits, the user's manual should be referred to.

■ Compliance with EMC Directives

In order to conform to the EMC Directives, the customer should evaluate the final system (overall system) and take necessary countermeasures. As examples of EMC countermeasures for single YAMAHA robot product are described in the user's manual, these descriptions should be referred to.

Cautions regarding official language of EU countries

Only English which is the official language of the EU is utilized in the manuals, warning labels, operating screens, and the Declaration of Incorporation for this product.

If warning text appears on the warning label, then Japanese may also sometimes be listed along with the English.

Cautions on KCs (Korean Certificate Safety) specifications

About KCs

KCs is a system that conforms to Korean Industrial Safety and Health Act and self-regulatory safety confirmation declaration of hazardous machines and devices. For machines specified in this system, the KCs mark needs to be indicated after conducting the forced certification or self-regulatory safety confirmation declaration. Industrial robots that have manipulators with 3 or more axes are specified as machines needing the self-regulatory safety confirmation declaration in South Korea's Ministry of Employment and Labor Notification No. 1201-46. Its safety standards are defined in separate table 2 of this notification.

About measures for KCs

For some YAMAHA robot models, this self-regulatory safety confirmation declaration is conducted to register these models. Additionally, the KCs mark is indicated on the robots that have been declared. When you investigate to purchase a robot to be used in South Korea, check whether or not this robot conforms to KCs and order it with the KCs specifications specified.

The YAMAHA robot is a unit that is incorporated into the customer's system. Therefore, when the customer incorporates the robot into the customer's system, additional safety measures need to be taken. For details, see "Safety standards application guide reference manual".

■ List of robots subject to KCs

Robot products may not be applicable to KCs depending on the customer's applications, operating conditions, or environments. Consult YAMAHA before purchasing a product.

Since a self-regulatory safety declaration has not been made for inapplicable models, these models cannot be used in Korea. Special-order robots are also unavailable. For details, please contact YAMAHA.

As of October, 2015
O: subject to KCs
-: not subject to KCs

Product	T	Model name	KCs registration	
	Туре	Wiodername	RCX240 (S)	RCX340
	FXYx	3 axes	0	0
	SXYx	3 axes		0
	O/(1x	4 axes	U U	
	SXYBx	3 axes		0
-		4 axes		
	MXYx	4 axes		0
Cartesian robot		3 axes	_	0
	HXYx	4 axes		
		3 axes		-
	NXY	4 axes	_	
		6 axes		
	SXYxC	3 axes 4 axes	_	_
		3 axes		
Pick & place robot	YP Series		-	
	4 axes YK180X			
-	YK220X		_	-
-				
-	YK120XG YK150XG			
-	YK180XG			
-	YK250XG		0	_
-	YK350XG			
-	YK400XG			
-	YK400XR		_	0
	YK500XGL			
-	YK600XGL		0	-
SCARA robot	YK700XGL		_	_
-	YK500XG		0	_
-	YK600XG			
	YK600XGH			
	YK700XG			
	YK800XG			
	YK900XG			
	YK1000XG			
-	YK1200X		_	_
-	YK180XC			_
-	YK220XC		-	
	TIVEZUNO			

Continues to the next page.

Compact single-axis robots TRANSERVC

single-axis robots
FLIP-X

Linear motor ngle-axis robots

PHASER

rtesian bbots **Y-X**

Pick & pla robots **YP-X**

< & place obots P-X

CONTROLLER

CABLE

INFORMATION

Duaduat	Time	Model name	KCs registration	
Product	Туре	Model name	RCX240 (S)	RCX340
	YK250XGC		, ,	-
	YK350XGC			
	YK400XGC		0	
	YK500XGLC			
	YK600XGLC			
	YK300XGS		_	_
	YK400XGS			
	YK500XGS			-
	YK600XGS			
	YK700XGS		0	
	YK800XGS			
	YK900XGS			
	YK1000XGS			
SCARA robot	YK250XGP		0	_
	YK350XGP			
	YK400XGP			
	YK500XGLP			
	YK600XGLP			
	YK500XGP			
	YK600XGP			
	YK600XGHP			
	YK700XGP			
	YK800XGP			
	YK900XGP			
		00XGP		
		50TW	-	
	YK50	OOTW WTOC		_

Cautions on Korean EMC specifications

About Korean KC

KC is a system based on the radio regulations of Korea. Devices specified by this system must certify compliance or register compliance, and indicate compliance. Applicable devices are defined by public announcement from the Korean National Radio Research Agency (NRRA).

About Korean KC compliance

Some models of YAMAHA robot (robots and controllers) are registered with the Korean National Radio Research Agency (NRRA) by self-test compliance registration. YAMAHA robots that have already been registered display the KC mark.

If you are considering the purchase of robots to be used in Korea, please check the table below for compliance before ordering the applicable product.

YAMAHA robots are devices for inclusion in a system; therefore, if you, the customer, build a complete system that includes robots, and ship that system as a final product to Korea or use it within Korea, you yourself must verify EMC compliance.

For TS series and TS-SD units, check "Examples of EMC countermeasures" within the user's manual; for other controllers, check this section within the "Safety standards application guide reference manual".

List of KC compliant robots

- * Please consult with YAMAHA before purchase, since compliance might not be possible depending on your application, conditions of use, and environment.
- * In the case of 3-axis or greater Cartesian robots and SCARA robots, the robot must be compliant with both KC and KCs. In conjunction with this table, refer also to the list of KCs compliant robots.

As of January 2016

Product	Model name	Registration number
	ERCD	MSIP-REM-Y3M-ERCD
	TS-S2	MSIP-REM-Y3M-TSS
	TS-SD	MSIP-REM-Y3M-TSSD
	TS-SH	MSIP-REM-Y3M-TSSH
	TS-X	MSIP-REM-Y3M-TSX
	TS-P	MSIP-REM-Y3M-TSP
	RDV-X	MSIP-REM-Y3M-RDVX
Controller	RDV-P	MSIP-REM-Y3M-RDVP
	SR1-X	MSIP-REM-Y3M-SR1X
	SR1-P	MSIP-REM-Y3M-SR1P
	RCX221	MSIP-REM-Y3M-X221
	RCX222	MSIP-REM-Y3M-X222
	RCX240(S)	MSIP-REM-Y3M-X240
	RCX340	MSIP-REM-Y3M-X340
	LCC140	MSIP-REM-Y3M-C140
	TRANSERVO series	MSIP-REM-Y3M-TR
	FIID Vanda	MSIP-REM-Y3M-FXL
Robot	FLIP-X series	MSIP-REM-Y3M-FX
HOUDI	PHASER series	MSIP-REM-Y3M-PH
	XY-X series	MSIP-REM-Y3M-XY
	YK series	MSIP-REM-Y3M-YK
Linear conveyor	Linear Conveyor Module	MSIP-REM-Y3M-M100

About non-compliant models

The following robots are subject to the KC system; however, since self-test compliance registration has not been done at the present time, they cannot be used in Korea. Additionally, special-order robots are also not compliant with the KC system.

Even for the various series listed in the table, some new models might not have been registered.

(Contact YAMAHA for details.)

Pick and place robots: YP-X series

General-purpose assembly base machines: YSC series

Warranty

For information on the warranty period and terms, please contact our distributor where you purchased the product.

■ This warranty does not cover any failure caused by:

- 1. Installation, wiring, connection to other control devices, operating methods, inspection or maintenance that does not comply with industry standards or instructions specified in the YAMAHA manual;
- 2. Usage that exceeded the specifications or standard performance shown in the YAMAHA manual;
- 3. Product usage other than intended by YAMAHA;
- 4. Storage, operating conditions and utilities that are outside the range specified in the manual;
- 5. Damage due to improper shipping or shipping methods;
- 6. Accident or collision damage;
- 7. Installation of other than genuine YAMAHA parts and/or accessories;
- 8. Modification to original parts or modifications not conforming to standard specifications designated by YAMAHA, including customizing performed by YAMAHA in compliance with distributor or customer requests;
- 9. Pollution, salt damage, condensation;
- 10. Fires or natural disasters such as earthquakes, tsunamis, lightning strikes, wind and flood damage, etc;
- 11. Breakdown due to causes other than the above that are not the fault or responsibility of YAMAHA;

■ The following cases are not covered under the warranty:

- 1. Products whose serial number or production date (month & year) cannot be verified.
- 2. Changes in software or internal data such as programs or points that were created or changed by the customer.
- 3. Products whose trouble cannot be reproduced or identified by YAMAHA.
- 4. Products utilized, for example, in radiological equipment, biological test equipment applications or for other purposes whose warranty repairs are judged as hazardous by YAMAHA.

THE WARRANTY STATED HEREIN PROVIDED BY YAMAHA ONLY COVERS DEFECTS IN PRODUCTS AND PARTS SOLD BY YAMAHA TO DISTRIBUTORS UNDER THIS AGREEMENT. ANY AND ALL OTHER WARRANTIES OR LIABILITIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY EXPRESSLY DISCLAIMED BY YAMAHA. MOREOVER, YAMAHA SHALL NOT BE HELD RESPONSIBLE FOR CONSEQUENT OR INDIRECT DAMAGES IN ANY MANNER RELATING TO THE PRODUCT.

This manual does not serve as a guarantee of any industrial property rights or any other rights and does not grant a license in any form. Please acknowledge that we bear no liability whatsoever for any problems involving industrial property rights which may arise from the contents of this manual.

Repeatability positioning accuracy

The "repeatability positioning accuracy" cannot be guaranteed for the accuracy conditions listed below.

(1) Factors involving absolute accuracy

• Under conditions requiring accuracy between the robot controller internal coordinate position (command position) and real space position (movement position).

(2) Operating pattern factors

- Under conditions including a motion approaching close to a teaching point (position) from different directions during repeating operation.
- Under conditions where power was turned off or operation was stopped, even when approaching a teaching position from same direction.
- Under conditions where movement to a teaching position uses a hand system (left-handed or right-handed system) different from that during teaching. (SCARA robots)

(3) Temperature factors

- Under conditions subject to drastic changes in ambient temperature.
- Under conditions where temperature of robot unit fluctuates.

(4) Fluctuating load factors

• Under conditions where load conditions fluctuate during operation (load fluctuates due to workpiece or no workpiece).