12 {it7 #8 1T

Technology Introduction of Low-Speed Automated

Driving Mobility-Based Service System
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INTRODUCTION

Over the years, Yamaha Motor Co., Ltd. has developed

various automated vehicles. Examples include a
low-speed automated vehicle running along an
electromagnetic guide line'”, an automated vehicle
relying on the high-precision RTK-GPS used in surveying
and similar applications”, and an off-road automated
vehicle® functioning with a 3D LIDAR and three-
dimensional maps".

These technologies are currently serving as the building
blocks for the development of a mobility service system
that allows on-demand dispatching of multiple low-speed
automated vehicles. Looking ahead, the goal is to make
a low-speed automated vehicle-based service, covering
resorts or a few square kilometers in the city center,
available to the elderly, people traveling with children,
people in wheelchairs, and other average users.

This paper presents an overview of the above mobility
service system. More specifically, the Virtual Guide Line
(VGL) system that performs automated driving based on
localizing the vehicle using the feature values of asphalt
and other road surfaces, as well as the control server that
performs intersection arbitration and ondemand dispatch

of multiple low-speed automated vehicles, are described.

OVERVIEW;OFHE,MOBI 11T,
SERVICE SYSTEM

This section outlines the mobility service system, which
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consists of multiple low-speed automated vehicles and
the centralized control server that controls them (Figure
1).

The mobility service is available from a vehicle
dispatching application for smartphones. The application
sends a request for a vehicle to the control server,
which replies with a notification of the dispatch time
and dispatches the vehicle. Users can enter the desired
destination in their smartphone or in the on-board tablet

to have the automated vehicle take them there (Figure 2).
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Figure1. Overall configuration of the mobility service system
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Figure 2. Use cases for the mobility service system
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VGL-EQUIPRED.AUTOMATED,VEHICLE

The mobility service system is made up of multiple
automated vehicles. In automated driving control,
information on the position of the vehicle is crucial. As
stated above, technologies to localize the vehicle using
electromagnetic guide lines, high-precision real time
kinematics (RTK)-GPS used in surveying and similar
applications, and a 3D LIDAR using a laser to enable
three-dimensional surveying of the surroundings, have
been developed.

The technology presented in this paper is the Virtual
Guide Line (VGL) automated driving system'’, which was
jointly developed with the Southwest Research Institute
(SWRI) and uses the feature values of asphalt and other
road surfaces to localize of the vehicle. The vehicle is
depicted in Figure 3.

In terms of functionality, the VGL system localizes the
vehicle by comparing road surface images taken with
a camera installed in its lower portion (Figure 4) with
data in a pre-recorded map database (image matching)
to acquire information on the position and orientation
of the vehicle. The path following function that relies on
the route to the destination requested via the navigation
system and information on its current position to
follow that route at a maximum speed of 20 km/h is
complemented with an obstacle recognition function that
uses the 3D LIDAR to slow down or stop the vehicle if an

obstacle is found along the route.

3-1. VGL LOCALIZATION PRINCIPLES

This section provides more details on the localization
function that is a distinguishing feature of the above VGL
system.

Figure 5 shows the block diagram of the VGL system.

e

Figure 3. Low-speed automated vehicle equipped with
the VGL system
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Figure 4. VGL camera and LED lamps in the lower portion
of the vehicle

This function is composed of a camera mounted in the
base of the vehicle, multiple LED lamps for the stable
taking of road surface images, a controller, and a DPGS-
IMU comprised of a differential GPS (DPGS) that is not as

precise as, but less expensive than, RTK-GPS and posture
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Figure 5. Block diagram of the VGL system
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sensors. It also contains a map database with records
corresponding to the road surface images and position
data. Creating this map database in advance is necessary
to perform automated driving with the VGL system.
Figure 6 shows the procedure for creating the map,
which requires an operator to manually drive a VGL-
equipped vehicle while recording road images, DGPS-
IMU, and odometry-based vehicle speed data. This makes
it possible to extract position information corresponding
to the various road surface textures from the map
database. In addition, image matching technology is
used to join the continuously recorded road surface
images without inconsistencies in the overlapping areas,
and compensation is applied to minimize errors in the
corresponding position and orientation information
(Figure 6(b)).

During autonomous driving, features of the road surface

texture are extracted from road surface images taken
by the camera as shown in Figure 7(a), and image
matching is performed against the image data in the
aforementioned map database as Figure 7(b). These
processes lead to the acquisition of the corresponding
position and orientation information illustrated in Figure
7(c). As shown in Figure 7(a), the DGPS-IMU position and
orientation information is complemented through an
extended Kalman filter (EKF) to improve its robustness,
enabling a VGL vehicle to acquire the position and
orientation necessary for automated driving even if it
becomes temporarily unable to read the road surface
texture.

Relying on this VGL localization makes it possible to
acquire vehicle position information with an accuracy
equal to or better than that of high precision RTK GPS

localization technology.
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(a) Preprocessing of road surface map database

(b) Structure of road surface map

Figure 6. Road surface map creation for the VGL system (map preprocessing)
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Figure 7. VGL system localization principles
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3-2. EVALUATION OF VGL LOCALIZATION PERFORMANCE
The histograms in Figure 8 show the variation in the
position recognition accuracy of VGL localization when
driving over asphalt or concrete.

As seen in Figure 8(a), positioning accuracy is achieved
with an error 2.68 mm on asphalt, and as seen in
Figure 8(b), even on concrete, which has relatively little
unevenness or other features compared to asphalt,
positioning accuracy with an error of 4.24 mm was
achieved.

Compared to the error range of 20 mm to 200 mm of the
RTK GPS typically used in automated driving systems, the
VGL was confirmed to have extremely high localization
accuracy.
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(b) Histogram of localization information on concrete

Figure 8. Accuracy of VGL localization (asphalt, concrete)

CONTROL.SERVER

The control server performs centralized control of the

operation of multiple automated vehicles and provides
an automated driving-based mobility service. In more
specific terms, it offers on-demand dispatching of
automated vehicles via smartphone, as well as a merging

arbitration function that performs smooth management

of the operation of the automated vehicles at
intersections. Other features include the implementation
of dispatching time notifications for users and operation
management functions for operators.

Delivering the basic functions (the database that records
vehicle information or supplementary functions such as
arbitration) of the control server as a platform enables
developers to focus their efforts on developing mobility

service applications.

4-1. CONTROL SERVER PLATFORM

The above-mentioned control server platform is
described in the following paragraphs.

The server implements arbitration at intersections by
sending an authorization to pass through the intersection
command to a running automated vehicle. Achieving this
type of arbitration function requires a server platform
that fulfills various performance requirements, such as
real time operation, high load tolerance, and security.
Therefore, the design of a logical architecture capable
of meeting the above performance requirements was
based on lambda architecture', which has a proven
itself in stock exchanges systems, whose performance
requirements include real time operation and reliability
in handling high-volume access requests (Figure 9).
Lambda architecture is suited to the parallel processing
of multiple data sets with different characteristics, such
as data requiring handling in real time or high volume
data, and the architecture distinguishes itself by applying
the optimal processing technology for each type of data.
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Figure 9. Logical architecture of the control server platform
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Figure 10. Implementation of the control server platform

To satisfy the above requirements, the resulting logical
architecture analyzes the characteristics of the data
transmitted between the automated vehicles and the
server, and achieves high speed arbitration for multiple
automated vehicles by processing data with real time
requirements with the Speed Layer Database and Speed
Event functions.

The next step, as shown in Figure 10, was to implement

S™I! ¢loud-based

the above architecture on the AW
platform as a service (PaaS). The Speed Layer Database
and Speed Event are implemented through Amazon
Kinesis"™ and EC2™. Adopting this implementation
achieved the real time operation required for automated
driving. To prevent the hacking of the automated
vehicles, vehicle-server communications use the
SORACOM'" service, which provides a connection
through a high-security virtual private cloud (VPC) as
the transmission route between the LTE network and the
AWS server.

Providing a platform for server application development
has allowed developers to focus on the development of
applications such as the arbitration function. In addition,
leveraging the existing large-scale system capabilities
of the AWS and SORACOM cloud-based PaaS made it
possible to build a stable server platform in a short time.
The use of cloud services is also expected to address the
issue of server scalability, which will become a necessity

when the number of vehicle increases.
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4-2. MOBILITY SERVICE SYSTEM AND MOBILITY
APPLICATIONS VIA WEB APIS

The platform also features web application programming
interfaces (web APIs) for service application development
to encourage open innovation-based mobility services
that make use of low-speed automated vehicles. Although
external access is normally prohibited by security
protocols, the APIs are made available to partners who

intend to create mobility services.
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Figure 11. Examples of mobility service system and
mobility applications via web APls
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Using the web APIs enables those partners to perform
user authentication or send commands such as vehicle
dispatch requests, as well as obtain vehicle use counts,
use conditions, or other information in the context of
the mobility service system. Simply put, combining these
APIs facilitates the development of mobility service
systems and mobility service applications that use low-
speed automated vehicles.

Figure 11 presents examples of mobility service systems
and service applications developed using the web APIs.
It can use the user authentication function and retrieve
data such as detailed usage by users, information on

users, or vehicle operation.

CONCLUSION

This paper introduced the Low-Speed Automated Driving-

Based Mobility Service System.

More specifically, the VGL system that localizes the
vehicle using road surface images and performs
automated driving, as well as the control server system
that provides mobility services through multiple
autonomous vehicles, were described.

Development to reduce costs and further enhance safety,
reliability and security is currently being carried out
with an eye toward commercializing the mobility service
system. There are also plans to make the system more
convenient for users by refining the usability of the
service applications.

One issue that will eventually need to be addressed is
coordination with other ordinary vehicles that cannot
be managed with this system. Compliance with dynamic
maps using high-precision three-dimensional maps'®
which have promising applications for automated driving
on public roads, will be kept in mind in studying ways to

address that issue.
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